Anderson RT, Vrionis HA, Ortiz-Bernad I, Resch CT, Long PE, Dayvault R, Karp K, Marutzky S, Metzler DR, Peacock A, et al: Stimulating the in situ activity of Geobacter species to remove uranium from the groundwater of a uranium-contaminated aquifer. Applied and Environmental Microbiology. 2003, 69 (10): 5884-5891. 10.1128/AEM.69.10.5884-5891.2003.
Article
CAS
Google Scholar
Lovley DR: Cleaning up with genomics: Applying molecular biology to bioremediation. Nature Reviews Microbiology. 2003, 1 (1): 35-44. 10.1038/nrmicro731.
Article
CAS
Google Scholar
Lovley DR, Phillips EJP, Gorby YA, Landa ER: Microbial reduction of uranium. Nature. 1991, 350 (6317): 413-416. 10.1038/350413a0.
Article
CAS
Google Scholar
Lovley DR, Baedecker MJ, Lonergan DJ, Cozzarelli IM, Phillips EJP, Siegel DI: Oxidation of aromatic contaminants coupled to microbial iron reduction. Nature. 1989, 339 (6222): 297-300. 10.1038/339297a0.
Article
CAS
Google Scholar
Lovley DR: Potential for anaerobic bioremediation of BTEX in petroleum-contaminated aquifers. Journal of Industrial Microbiology & Biotechnology. 1997, 18 (2-3): 75-81. 10.1038/sj.jim.2900246.
Article
CAS
Google Scholar
Lovley DR, Lonergan DJ: Anaerobic oxidation of toulene, phenol, and para-cresol by the dissimilatory iron-reduction organism, GS 15. Applied and Environmental Microbiology. 1990, 56 (6): 1858-1864.
CAS
Google Scholar
Lovley DR: Dissimilatory fe(III) and Mn(IV) reduction. Microbiological Reviews. 1991, 55 (2): 259-287.
CAS
Google Scholar
Bond DR, Lovley DR: Electricity production by Geobacter sulfurreducens attached to electrodes. Applied and Environmental Microbiology. 2003, 69 (3): 1548-1555. 10.1128/AEM.69.3.1548-1555.2003.
Article
CAS
Google Scholar
Caccavo F, Lonergan DJ, Lovley DR, Davis M, Stolz JF, McInerney MJ: Geobacter sulfurreducens sp. nov., a hydrogen- and acetate-oxidizing dissimilatory metal-reducing microorganism. Applied and Environmental Microbiology. 1994, 60 (10): 3752-3759.
CAS
Google Scholar
Coppi MV, Leang C, Sandler SJ, Lovley DR: Development of a genetic system for Geobacter sulfurreducens. Applied and Environmental Microbiology. 2001, 67 (7): 3180-3187. 10.1128/AEM.67.7.3180-3187.2001.
Article
CAS
Google Scholar
Methe BA, Nelson KE, Eisen JA, Paulsen IT, Nelson W, Heidelberg JF, Wu D, Wu M, Ward N, Beanan MJ, et al: Genome of Geobacter sulfurreducens: Metal reduction in subsurface environments. Science. 2003, 302 (5652): 1967-1969. 10.1126/science.1088727.
Article
CAS
Google Scholar
Methe BA, Webster J, Nevin K, Butler J, Lovley DR: DNA microarray analysis of nitrogen fixation and Fe(III) reduction in Geobacter sulfurreducens. Applied and Environmental Microbiology. 2005, 71 (5): 2530-2538. 10.1128/AEM.71.5.2530-2538.2005.
Article
CAS
Google Scholar
Nunez C, Esteve-Nunez A, Giometti C, Tollaksen S, Khare T, Lin W, Lovley DR, Methe BA: DNA microarray and proteomic analyses of the RpoS regulon in Geobacter sulfurreducens. Journal of Bacteriology. 2006, 188 (8): 2792-2800. 10.1128/JB.188.8.2792-2800.2006.
Article
CAS
Google Scholar
Repaske DR, Adler J: Change in intracellular pH of Escherichia coli mediates the chemotactic response to certain attractants and repellents. Journal of Bacteriology. 1981, 145 (3): 1196-1208.
CAS
Google Scholar
Duarte NC, Herrgard MJ, Palsson BO: Reconstruction and validation of Saccharomyces cerevisiae iND750, a fully compartmentalized genome-scale metabolic model. Genome Research. 2004, 14 (7): 1298-1309. 10.1101/gr.2250904.
Article
CAS
Google Scholar
Oh YK, Palsson BO, Park SM, Schilling CH, Mahadevan R: Genome-scale reconstruction of metabolic network in Bacillus subtilis based on high-throughput phenotyping and gene essentiality data. Journal of Biological Chemistry. 2007, 282: 28791-28799. 10.1074/jbc.M703759200.
Article
CAS
Google Scholar
Becker SA, Palsson BO: Genome-scale reconstruction of the metabolic network in Staphylococcus aureus N315: an initial draft to the two-dimensional annotation. Bmc Microbiology. 2005, 7 (5): 8-10.1186/1471-2180-5-8.
Article
Google Scholar
Famili I, Forster J, Nielson J, Palsson BO: Saccharomyces cerevisiae phenotypes can be predicted by using constraint-based analysis of a genome-scale reconstructed metabolic network. Proceedings of the National Academy of Sciences of the United States of America. 2003, 100 (23): 13134-13139. 10.1073/pnas.2235812100.
Article
CAS
Google Scholar
Forster J, Famili I, Fu P, Palsson BO, Nielsen J: Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. Genome Research. 2003, 13 (2): 244-253. 10.1101/gr.234503.
Article
CAS
Google Scholar
Reed JL, Palsson BO: Genome-scale in silico models of E. coli have multiple equivalent phenotypic states: Assessment of correlated reaction subsets that comprise network states. Genome Research. 2004, 14 (9): 1797-1805. 10.1101/gr.2546004.
Article
CAS
Google Scholar
Reed JL, Palsson BO: Thirteen years of building constraint-based in silico models of Escherichia coli. Journal of Bacteriology. 2003, 185 (9): 2692-2699. 10.1128/JB.185.9.2692-2699.2003.
Article
CAS
Google Scholar
Feist AM, Palsson BO: The growing scope of applications of genome-scale metabolic reconstructions using Escherichia coli. Nature Biotechnology. 2008, 26 (6): 659-667. 10.1038/nbt1401.
Article
CAS
Google Scholar
Palsson B: The challenges of in silico biology. Nature Biotechnology. 2000, 18 (11): 1147-1150. 10.1038/81125.
Article
CAS
Google Scholar
Reed JL, Vo TD, Schilling CH, Palsson BO: An expanded genome-scale model of Escherichia coli K-12 (iJR904 GSM/GPR). Genome Biology. 2003, 4 (9): 10.1186/gb-2003-4-9-r54.
Mahadevan R, Bond DR, Butler JE, Esteve-Nunez A, Coppi MV, Palsson BO, Schilling CH, Lovley DR: Characterization of metabolism in the Fe(III)-reducing organism Geobacter sulfurreducens by constraint-based modeling. Applied and Environmental Microbiology. 2006, 72 (2): 1558-1568. 10.1128/AEM.72.2.1558-1568.2006.
Article
CAS
Google Scholar
Brown TDK, Jonesmortimer MC, Kornberg HL: The enzymatic interconversion of acetate and acetyl-coenzyme A in Escherichia coli. Journal of General Microbiology. 1977, 102 (OCT): 327-336.
Article
CAS
Google Scholar
Phue JN, Noronha SB, Bhattacharyya R, Wolfe AJ, Shiloach J: Glucose metabolism at high density growth of E. coli B and E. coli K: Differences in metabolic pathways are responsible for efficient glucose utilization in E. coli B as determined by microarrays and northern blot analyses (vol 90, pg 805, 2005). Biotechnology and Bioengineering. 2005, 91 (5): 649-649. 10.1002/bit.20594.
Article
CAS
Google Scholar
Reiling HE, Laurila H, Fiechter A: Mass culture of Escherichia coli: Medium development for low and high density cultivation of Escherichia coli B/r in minimal and complex media. Journal of Biotechnology. 1985, 2 (3-4): 191-206. 10.1016/0168-1656(85)90038-0.
Article
CAS
Google Scholar
Rinas U, Krackehelm HA, Schugerl K: Glucose as a substrate in recombinant strain fermentation technology. By-product formation, degradation and intracellular accumulation of recombinant protein. Applied Microbiology and Biotechnology. 1989, 31 (2): 163-167. 10.1007/BF00262456.
Article
CAS
Google Scholar
Doelle HW, Ewings KN, Hollywood NW: Regulation of glucose metabolism in bacterial systems. Adv Biochem Eng. 1982, 23: 1-35.
CAS
Google Scholar
Landwall P, Holme T: Influence of glucose and dissolved oxygen concentrations on yields of Escherichia coli B in dialysis culture. Journal of General Microbiology. 1977, 103 (DEC): 353-358.
Article
CAS
Google Scholar
Smirnova GV, Oktyabrskii ON: Effect of the activity of primary proton pumps on the growth of Escherichia coli in the presence of acetate. Microbiology. 1988, 57 (4): 446-451.
Google Scholar
Anderson KW, Grulke E, Gerhardt P: Microfiltration culture process for enhanced production of rDNA receptor Cells of Escherichia coli. Bio-Technology. 1984, 2 (10): 891-896.
Article
CAS
Google Scholar
Cozzone AJ: Regulation of acetate metabolism by protein phosphorylation in enteric bacteria. Annual Review of Microbiology. 1998, 52: 127-164. 10.1146/annurev.micro.52.1.127.
Article
CAS
Google Scholar
Kovarova-Kovar K, Egli T: Growth kinetics of suspended microbial cells: From single-substrate-controlled growth to mixed-substrate kinetics. Microbiology and Molecular Biology Reviews. 1998, 62 (3): 646-
CAS
Google Scholar
Zinn M, Witholt B, Egli T: Dual nutrient limited growth: models, experimental observations, and applications. Journal of Biotechnology. 2004, 113 (1-3): 263-279. 10.1016/j.jbiotec.2004.03.030.
Article
CAS
Google Scholar
Beg QK, Vazquez A, Ernst J, de Menezes MA, Bar-Joseph Z, Barabasi AL, Oltvai ZN: Intracellular crowding defines the mode and sequence of substrate uptake by Escherichia coli and constrains its metabolic activity. Proceedings of the National Academy of Sciences of the United States of America. 2007, 104 (31): 12663-12668. 10.1073/pnas.0609845104.
Article
CAS
Google Scholar
Butler JE, Glaven RH, Esteve-Nunez A, Nunez C, Shelobolina ES, Bond DR, Lovley DR: Genetic characterization of a single bifunctional enzyme for fumarate reduction and succinate oxidation in Geobacter sulfurreducens and engineering of fumarate reduction in Geobacter metallireducens. Journal of Bacteriology. 2006, 188 (2): 450-455. 10.1128/JB.188.2.450-455.2006.
Article
CAS
Google Scholar
Esteve-Nunez A, Rothermich M, Sharma M, Lovley D: Growth of Geobacter sulfurreducens under nutrient-limiting conditions in continuous culture. Environmental Microbiology. 2005, 7 (5): 641-648. 10.1111/j.1462-2920.2005.00731.x.
Article
CAS
Google Scholar
Francis AJ, Dodge CJ: Influence of Complex Structure on the Biodegradation of Iron-Citrate Complexes. Applied and Environmental Microbiology. 1993, 59 (1): 109-113.
CAS
Google Scholar
Kotyk A: Proton Extrusion in Yeast. Methods in Enzymology. 1989, 174: 592-603. full_text.
Article
CAS
Google Scholar
Sigler K, Hofer M: Mechamisms of acid extrusion in Yeast. Biochimica Et Biophysica Acta. 1991, 1071 (4): 375-391.
Article
CAS
Google Scholar
Castrillo JI, Demiguel I, Ugalde UO: Proton production and consumption pathways in yeast metabolism. A chemostat culture analysis. Yeast. 1995, 11 (14): 1353-1365. 10.1002/yea.320111404.
Article
CAS
Google Scholar
San KY, Stephanopoulos G: Studies on on-line bioreactor identification. IV. Utilization of pH measurements for product estimation. Biotechnology and Bioengineering. 1984, 26 (10): 1209-1218. 10.1002/bit.260261009.
Article
CAS
Google Scholar
Sigler K, Knotkova A, Paca J, Wurst M: Extrusion of metabolites from baker's yeast during glucose-induced acidification. Folia Microbiologica. 1980, 25 (4): 311-317. 10.1007/BF02876611.
Article
CAS
Google Scholar
Sigler K, Kotyk A, Knotkova A, Opekarova M: Processes involved in the creation of buffering capacity and in substrate-induced proton extrusion in the yeast Saccharomyces cerevisiae. Biochimica Et Biophysica Acta. 1981, 643 (3): 583-592. 10.1016/0005-2736(81)90354-0.
Article
CAS
Google Scholar
Roos W, Luckner M: Relationships between proton extrusion and fluxes of ammonium ions and organic acids in Penicillium cyclopium. Journal of General Microbiology. 1984, 130 (APR): 1007-1014.
CAS
Google Scholar
Causey TB, Zhou S, Shanmugam KT, Ingram LO: Engineering the metabolism of Escherichia coli W3110 for the conversion of sugar to redox-neutral and oxidized products: Homoacetate production. Proceedings of the National Academy of Sciences of the United States of America. 2003, 100 (3): 825-832. 10.1073/pnas.0337684100.
Article
CAS
Google Scholar
Becker SA, Feist AM, Mo ML, Hannum G, Palsson BO, Herrgard MJ: Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox. Nature Protocols. 2007, 2: 727-738. 10.1038/nprot.2007.99.
Article
CAS
Google Scholar
Sun J, Sayyar B, Butler JE, Pharkya P, Fahland TR, Famili I, Schilling CH, Lovley DR, Mahadevan R: Genome-scale constraint-based modeling of Geobacter metallireducens. BMC Systems Biology. 2009, 3: 10.1186/1752-0509-3-15. doi:10.1186/1752-0509-1183-1115
Google Scholar
Larsson G, Enfors SO, Pham H: The pH-Auxostat as a Tool for Studying Microbial Dynamics in Continuous Fermentation. Biotechnology and Bioengineering. 1990, 36 (3): 224-232. 10.1002/bit.260360303.
Article
CAS
Google Scholar
Ishizaki A, Tripetchkul S, Tonokawa M, Shi ZP, Shimizu K: pH-mediated control methods for continuous ethanol fermentation using Zymomonas mobilis. Journal of Fermentation and Bioengineering. 1994, 77 (5): 541-547. 10.1016/0922-338X(94)90125-2.
Article
CAS
Google Scholar