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Abstract

Background: Aiming at the characteristics of nonlinear, multi-parameter, strong coupling and difficulty in direct on-
line measurement of key biological parameters of marine low-temperature protease fermentation process, a soft-
sensing modeling method based on artificial bee colony (ABC) and multiple least squares support vector machine
(MLSSVM) inversion for marine protease fermentation process is proposed.

Methods: Firstly, based on the material balance and the characteristics of the fermentation process, the dynamic
“grey box” model of the fed-batch fermentation process of marine protease is established. The inverse model is
constructed by analyzing the inverse system existence and introducing the characteristic information of the fermentation
process. Then, the inverse model is identified off-line using MLSSVM. Meanwhile, in order to reduce the model error, the ABC
algorithm is used to correct the inverse model. Finally, the corrected inverse model is connected in series to the marine
alkaline protease MP fermentation process to form a composite pseudo-linear system, thus, real-time on-line prediction of
key biological parameters in fermentation process can be realized.

Results: Taking the alkaline protease MP fermentation process as an example, the simulation results demonstrate that the
soft-sensing modeling method can solve the real-time prediction problem of key biological parameters in the fermentation
process on-line, and has higher accuracy and generalization ability than the traditional soft-sensing method of support
vector machine.

Conclusions: The research provides a new method for soft-sensing modeling of key biological parameters in fermentation
process, which can be extended to soft-sensing modeling of general nonlinear systems.

Keywords: Marine alkaline protease MP, Material balance, Inverse system, Support vector machine, Soft-sensing
Background
Marine alkaline protease MP is a fermentation enzyme
that adapts well to the low-temperature environment [1].
In addition to a wide range of pH, the MP enjoys a high
activity at room temperature, and becomes less active with
the decrease of temperature [2, 3]. This emerging indus-
trial enzyme brings new vitality and opportunities to such
fields as medicine, food, enzyme industry, national defense
and so on, and greatly broadens application regions of
protease [4]. The marine low-temperature alkaline
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protease MP fermentation process is a dynamic process
with high nonlinearity and strong coupling effect. Like
general nonlinear systems, fermentation has time-varying,
correlated and uncertain parameters [5]. Therefore, it is
very difficult to directly measure the key biological param-
eters in the fermentation process [6]. Currently, these pa-
rameters can only be obtained through regular sampling,
offline analysis and lab test. The current method has a
poor real-time performance, and increases the bacteria ex-
posure of the samples, hindering the advanced control of
fermentation. This calls for a strategy that timely acquires
the state of key biological parameters in the fermentation
process. Without the state information, it is impossible to
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achieve dynamic and optimal control of the fermentation
process, which boosts the biomass density and productiv-
ity of enzyme.
The inverse system method provides a good solution to

the soft-sensing modelling of the fermentation process.
This method boasts strict theoretical bases and clear phys-
ical meanings. Coupled with learning algorithms (e.g.
neural network (NN) and support vector machine
(SVM)), the inverse system method can complete soft-
sensing of nonlinear systems, which are difficult to be
modelled accurately [7, 8]. Suffice it to say that the inverse
system method greatly facilitates the soft-sensing model-
ling of highly nonlinear systems in engineering practices.
However, the inverse system method faces two problems
in soft-sensing of the marine low-temperature alkaline
protease MP fermentation process. On the one hand, the
mathematical model of the controlled object and the sys-
tem parameters of the model must be known before using
the inverse system method. It is no easy task to obtain ei-
ther information from the highly nonlinear and strongly
coupled fermentation process. On the other hand, the in-
verse system of the original system must be established
before using the inverse system method. In other words,
the inverse system should be expressed mathematically in
advance (that is, to derive a mathematical expression that
can be used to describe the inverse system) [8]. To solve
the problems, the literature [9] proposes a neural network
inverse system method, which integrates intelligent con-
trol with the inverse system method. The inverse system is
approximated by the neural network in this literature. The
method was successfully applied to the soft-sensing of
erythromycin fermentation, creating a “gray-box” model
of the fermentation process. Nevertheless, the “gray-box”
model is a simplified model based on the Monod equa-
tion, which ignores many important nonlinear factors in
the actual process of erythromycin fermentation. Besides,
the neural network, inspired by the asymptotic theory, is
based on the unrealistic assumption that the number of
samples is infinite, but the number of samples in the ac-
tual problem is often limited, especially the strong coup-
ling, large lag complex nonlinear system as the marine
alkaline protease MP fermentation process, it is extremely
difficult to obtain accurate sample data. Therefore, in the
case of small samples, the research of inverse soft-sensing
methods suitable for the marine alkaline protease MP fer-
mentation process and easy to implement in engineering
has become the key problem to be solved urgently in the
marine low-temperature alkaline protease MP fermenta-
tion process.
Considering the limited number of samples in actual

fermentation, this paper attempts to design an easy-to-
use inverse system method for soft-sensing modeling of
the marine alkaline protease MP fermentation process.
Firstly, a “gray-box” dynamic model was established for
the the marine low-temperature alkaline protease MP
fermentation process, according to material balance and
features of that process. Secondly, the existing inverse
system was analyzed, and the design of extended inverse
model was introduced. Thirdly, the offline identification
of MLSSVM and online optimization of ABC were com-
bined to develop the extended inverse model based on
ABC-MLSVM, and the extended inverse model was con-
nected in series after the primary fermentation process,
serving as the soft-sensing model that predicts key bio-
logical parameters online in real time. Fourthly, the ef-
fectiveness of the soft-sensing modelling method was
verified through a simulation of the MP fermentation in
lab; the simulation results show that the method can ef-
fectively predict the key biological parameters of the
marine low-temperature alkaline protease MP fermenta-
tion process online, and outperform the traditional least
square support vector machine (LS-SVM) soft-sensing
modeling method in prediction accuracy.

Methods
Dynamic model of fermentation process
In this paper, Taking the fermentation process as the ob-
ject, this paper assumes that both cell concentration and
the protease concentration are zero. The fermentation
states (concentration of each substance) were taken as
dependent variables of differential equation, while time t
was taken as an independent variable or separate vari-
able. Then, the “grey box” dynamic model could be de-
scribed by the material balance equations of various
substances (mycelia, restrictive substrate, protease, oxy-
gen, H+, etc.) [10], as shown in Eq. (1):

Variable quantity Target substance per unit of timeð Þ
¼ influx Target substance per unit of timeð Þ
−outflow þ formation amount

ð1Þ

The construction process of the dynamic model of the
ash box is as follows:

Volume change equilibrium equation
During the fermentation process, culture medium should be
added at a rational rate to supplement the nutrients and in-
crease the protease yield. The culture medium mainly con-
sists of carbon source, nitrogen source, inorganic salt, growth
factor and enzyme-producing promoter. Through prelimin-
ary experiments, this paper selects maize flour hydrolysate as
carbon source, soybean meal hydrolysate as nitrogen source,
ammonia sulfate ((NH4)2SO4) as inorganic salt, malt extract
as growth factor and Polysorbate 80 (Tween-80) as surfac-
tant. The volume (V) of the fermentation broth changes with
the addition of nutrients and enzyme-producing promoter.
The equilibrium equation is as follows:
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dV
dt

¼ f mh þ f s þ f a þ f m þ f tw ð2Þ

where: V is fermentation broth volume, fmh, fs, fa, fm and
ftw are respectively the flow rate of maize flour hydrolys-
ate, soyabean cake meal hy-drolysate, (NH4)2SO4), malt
extract and enzyme-producing promoter (Tween-80).

Cell growth kinetics equation
The previous studies have found that, the growth of the
enzyme producing strain has a maximum concentration,
i.e. a saturation point, which could be reached if the ini-
tial sugar concentration is on suitable levels. The time to
reach the saturation point varies with the initial sugar
concentration. The higher the initial sugar concentra-
tion, the slower the cells grow, that is, the substrate con-
centration inhibits the cell growth. Considering the
deviation of Monod equation-based description, the lo-
gistic equation was employed to depict the growth law
of the cells, in the light of the volume change in fed-
batch fermentation, and the volume change during fed-
batch fermentation is taken into account. The growth
kinetics model of cell is as follows:

dX
dt

¼ μX−
X
V
dV
dt

ð3Þ

where: μ is the specific growth rate of somatic cells, X is
cell concentration.

Substrate consumption equation
The substrate consumption of marine low-temperature
alkaline protease MP was modelled based on the mater-
ial balance. The effect of additive carbon source (maize
flour hydrolysate) was considered in the model, because
the carbon source, as the only restrictive substrate, is
consumed rapidly in large quantities. The model is
expressed as follows:

dS
dt

¼ −νX þ Smh

V
−
S
V
dV
dt

ð4Þ

where: S is the substrate concentration, ν is the specific
consumption rate of substrate (h−1), Smh is the maize
flour hydrolysate flow rate.

Protease synthesis kinetics
The model of fermentation enzyme production is partial
growth coupled type (It belongs to extracellular enzyme,
and its synthesis regulation is affected by many mecha-
nisms), high concentration substrate can obviously in-
hibit the secretion of protease while maintaining low
carbon source concentration is beneficial to the secre-
tion of protease MP. At the same time, the hydrolysis of
alkaline protease MP also has a certain effect on prote-
ase MP itself. On this basis, Tween-80, growth factor
and the hydrolysis rate which have influence on the fer-
mentation process are introduced into the protease syn-
thesis kinetics, the model is expressed as follows:

dE
dt

¼ ρX−KP þ Km

V
f m þ Ktw

V
f tw−

E
V
dV
dt

ð5Þ

where: E is protease content (%), ρ is the specific growth
rate of protease, K is hydrolysis constants of protease,
and Km, Ktw are inhibition constants.

Dissolved oxygen concentration (DO) variation model
The MP fermentation is aerobic, i.e. oxygen is involved
in cell growth and protease synthesis. DO must be con-
trolled in a suitable range. In fact, the oxygen demand
constantly changes through the cell growth, because cell
concentration and cell respiration intensity change from
stage to stage. Based on the varying oxygen demands,
the DO in the fermentation broth must be regulated in
real time. According to the aerobic features of MP fer-
mentation and the effect of bioreactor size on DO level
in culture medium, the oxygen volumetric mass transfer
coefficient of the bioreactor was introduced to the DO
concentration equilibrium equation. The equilibrium
equation is as follows:

dCL

dt
¼ −ηX þ KLa C�

L−CL
� �

−
CL

V
dV
dt

ð6Þ

where: CL is the DO concentration (mol/L), KLa is oxy-
gen volume mass transfer coefficient in bioreactor (s−1),
C�

L is saturation concentration of oxygen dissolved in
fermentation liquid phase (mol/L), and η is the specific
consumption rate of oxygen.

PH dynamic change model
During the fermentation, the enzyme producing strain
favors an alkaline environment, with the optimal pH
range of 9.0~10.0. Any change of pH in fermentation
broth will exert a huge impact on the fermentation of
the MP. Excessively high or low pH values will slow
down the strain growth and the formation of protease,
weakening the enzyme activity. Therefore, the pH of fer-
mentation broth was regulated within the optimal range
by the flow of nutrients through the fermentation
process, so that it can be maintained in the optimum
range. The pH equilibrium equation of fermentation
broth is expressed as:

d H½ �þ
dt

¼ γX−
H½ �þ
V

dV
dt

þ Ss f s−Smh f mh−Sm f m−Stw f tw
V

ð7Þ
where:[H]+ is the hydrogen ion concentration in fermen-
tation broth (used to characterize the pH of fermenta-
tion broth), fmh, fs, fm and ftw are respectively flow rate of



Fig. 1 u1~u5 are input parameters, x1~x6 are the six process
parameters of fermentation process. The process parameters x4, x5,
x6 are directly measurable parameters and x1, x2, x3 are key
parameters that are difficult to measure directly on-line (That is, the
variable that needs to be predicted)
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maize flour hydrolysate, soyabean cake meal hy-
drolysate, malt extract and Tween-80. Smh, Ss, Sm, Stw are
respectively the liquid concentrations of maize flour hy-
drolysate, soyabean cake meal hy-drolysate, malt extract
and Tween-80, γ is the specific consumption of [H+].
Through the above analysis, the “gray-box” dynamic

model of the marine low-temperature alkaline protease
MP fermentation process can be expressed as:(

ẋ1 ¼ μx1−
x1
x6

X5
i¼1

ui

ẋ2 ¼ −νx1 þ s1u1
x6

−
x2
x6

X5
i¼1

ui

ẋ3 ¼ ρx1−s2x3 þ s3u4
x6

þ s4u5
x6

−
x3
x6

X5
i¼1

ui

ẋ4 ¼ −ηx1−s5x4 þ s6−
x4
x6

X5
i¼1

ui

ẋ5 ¼ γx1 þ s7u2−s1u1−s8u4−s9u5
x6

−
x5
x6

X5
i¼1

ui

ẋ6 ¼
X5
i¼1

ui ¼ u1 þ u2 þ u3 þ u4 þ u5

ð8Þ

where: x= [x1, x2, x3, x4, x5, x6]
T = [X, S, E,CL, [H]

+,V]T repre-
sent the status vector, u= [u1,u2, u3, u4, u5]

T = [fmh, fs, fa, fm,
ftw]

T is the input vector, μ(x), ν(x), ρ(x), η(x), γ(x) are the ana-
lytical functions of the respective status variables x, Si (i= 1,
2, ⋯9) are all constants other than zero and represent re-
spectively the liquid feeding concentration of maize flour hy-
drolysate, hydrolysis constants of protease, inhibition
constant, gas saturated oxygen concentration, C�

L�KLa, the li-
quid feeding concentration of soyabean cake meal hy-
drolysate, (NH4)2SO4 and Tween-80.

Reversibility analysis
The marine low-temperature alkaline protease MP fer-
mentation process is shown in Fig. 1. u1~u5 are input
parameters, x1~x6 are the six process parameters of fer-
mentation process. The process parameters x4, x5, x6 are
directly measurable parameters and x1, x2, x3 are key
Fig. 2 This “virtual subsystem” is regarded as a “virtual sensor” in the marin
be used as a dynamic compensator in series with the “virtual subsystem”, a
present an identity mapping relationship, that is, the output of the compo
sensor”, and then the soft-sensing of x1, x2, x3 can be realized
parameters that are difficult to measure directly on-line
(That is, the variable that needs to be predicted).
In order to predict the non-direct measurable key bio-

logical parameters x1, x2, x3, a virtual subsystem was as-
sumed to exist in the marine low-temperature alkaline
protease MP fermentation process, including three non-
directly measureable inputs x1, x2, x3, three directly
measurable outputs x4, x5, x6 and five variables u1~u5.
This virtual subsystem is regarded as a “virtual sensor”
[11] of the marine low-temperature alkaline protease
MP fermentation process. The soft-sensing of x1, x2, x3
can be realized through the following steps: solve the in-
verse model of the virtual subsystem; take the model as
a dynamic compensator in series with the virtual subsys-
tem, forming a composite system [12]; reproduce the in-
puts of the “virtual sensor” based on the outputs of the
composite system, as shown in Fig. 2.
In order to achieve the soft-sensing of key biological

parameters x1, x2, x3, the reversibility analysis of the “vir-
tual sensor” must be carried out, and the inverse system
model should be solved.
e low-temperature alkaline protease MP fermentation process. It can
unit compound system can be formed. Its the input and output

site system can completely reproduce the input of the original “virtual
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Lemma Necessary and sufficient conditions for system
Σ reversibility in some field of point (x0, u0): The system
meets rankð∂zTm=∂x̂TÞ ¼ rm ¼ l , l is the dimension
number of non-direct measurable variable.
The reversibility of “virtual sensor” is analyzed by

Interactor algorithm: The direct measurable variable
z = [z1, z2, z3] = [x4, x5, x6] are derived by using the mod-

eling algorithm, and all-order derivatives żi;€zi;⋯; zðkiÞi

(i = 1, 2, 3) can be obtained, and then the independent
derivative information of the function is selected to form
the vector Zm,as shown in Eq. 9:(

ẋ4 ¼ −ηx1−s5x4 þ s6−
x4
x6

X5
i¼1

ui

€x4 ¼ g1 x;uð Þ þ g2
�
x4; x5; x6;u; u̇Þ

ẋ5 ¼ γx1 þ s7u2−s1u1−s8u4−s9u5
x6

−
x5
x6

X5
i¼1

ui

ð9Þ

where:(
g1 x;uð Þ ¼ ∂η

∂x1
x1 þ ∂η

∂x2
x2 þ ∂η

∂x3
x3 þ ∂η

∂x4
x4 þ ∂η

∂x5
x5

� �
x1
x6

X5
i¼1

ui

þs5ηx1−
∂η
∂x1

μ−
∂η
∂x2

νþ ∂η
∂x3

ρ−
∂η
∂x4

ηþ ∂η
∂x5

γ

� �
x21

þ ∂η
∂x3

s2 x1 x3 −
∂η
∂x3

x1
x6

s3u4 þ s4u5ð Þ−ημ x1− ∂η
∂x4

s6 x1

þ ∂η
∂x5

x1
x6

s8u4 −
∂η
∂x5

x1
x6

s7u2−s1
∂η
∂x2

−
∂η
∂x5

� �
x1
x6

u1

þ ∂η
∂x4

s5 x1 x4 þ 2ηx1
x6

X5
i¼1

ui þ ∂η
∂x5

x1
x6

s9u5

g2
�
x4; x5; x6;u; u̇Þ ¼ 2

s5x4
x6

X5
i¼1

ui−
s6
x6

X5
i¼1

ui þ s25x4−s5s6

þ 2
x4
x26

X5
i¼1

ui

 !2

−
x4
x6

X5
i¼1

u̇i

ð10Þ

According to Eq. (9), ∂€z2=∂xi ¼ ∂g1ðxÞ=∂xi; i ¼ 1; 2; 3;.

m = 3is obtained, and the Jacobian Matrix J ¼ ∂

ð€z1; ż1; ż2ÞT=∂ðx1; x2; x3Þ is further solved:

J ¼

"
∂€z1
∂x1

∂€z1
∂x2

∂€z1
∂x3

∂ż1
∂x1

∂ż1
∂x2

∂ż1
∂x3

∂ż2
∂x1

∂ż2
∂x2

∂ż2
∂x3

#
¼

∂g1 x; uð Þ
∂x1

∂g1 x; uð Þ
∂x2

∂g1 x; uð Þ
∂x3

−
∂η
∂x1

x1−η −
∂η
∂x2

x1 −
∂η
∂x3

x1

∂γ
∂x1

x1 þ γ
∂γ
∂x2

x1
∂γ
∂x3

x1

2
6666664

3
7777775
ð11Þ

After the transformation of the elementary row of Eq.
(11) and obtain the following:
~J ¼

g7 x;uð Þ
0 0

g3 x;uð Þ
g4 x;uð Þ 0

∂γ
∂x1

x1 þ γ
∂γ
∂x2

x1
∂γ
∂x3

x1

2
666664

3
777775 ð12Þ

where: g3ðx;uÞ ¼
h
ð ∂γ∂x1 x1 þ γÞ ∂η

∂x3

i.
∂γ
∂x3

− ∂η
∂x1

x1−η;

g4ðx;uÞ ¼
�
x1

∂γ
∂x2

∂η
∂x3

�. ∂γ
∂x3

− ∂η
∂x2

x2;

g5ðx;uÞ ¼ ∂g1ðx;uÞ
∂x1

−
h
ð ∂v∂x1 x1 þ γÞ ∂g1ðx;uÞ∂x3

i.
∂v
∂x3
;

g6ðx;uÞ ¼ ∂g1ðx;uÞ
∂x2

−
� ∂γ
∂x2

∂g1ðx;uÞ
∂x3

�� ∂γ
∂x3
;

g7 x;uð Þ ¼ g5 x;uð Þ− g6 x;uð Þ
g4 x;uð Þ g3 x;uð Þ:

If detð~JÞ ¼ g7ðx;uÞ∙g4ðx;uÞ∙
∂γ
∂x3

x1≢0 in the entire real

vector space, it can be known that J ¼ ∂ZT
m=∂x̂

T ¼ ∂ð€z1;
ż1; z2Þ=∂ðx1; x2; x3Þ ¼ 3 from Lemma, and it meet the
system reversibility condition, that is, the system is glo-
bally reversible. However, for det ð~JÞ≢0, it is quite diffi-
cult to guarantee that it satisfies the non-zero conditions
everywhere in the entire real vector space R.
Considering the above situation and the current oper-

ation state of the marine low temperature alkaline prote-
ase MP fermentation process, it is assumed that
det ð~JÞ≢0, a small work area of the fermentation process
within the real vector space R, satisfies the reversibility
condition of the “virtual sensor”. Then, an inverse soft-
sensing model is constructed based on ABC-MLSVM.
The assumption is verified against actual analysis results.
Suppose the system satisfies the reversibility condition

for the work area. Then, the inverse system of the virtual
sensor of he marine low-temperature alkaline protease
MP fermentation process is established based on the in-
verse function theorem, using Eqs. (8)~(9):

x̂ ¼
x1
x2
x3

0
@

1
A ¼

φ1

�
x4; x5; x6; ẋ4; €x4; ẋ5;u; u̇

�
φ2

�
x4; x5; x6; ẋ4; €x4; ẋ5;u; u̇

�
φ3

�
x4; x5; x6; ẋ4; €x4; ẋ5;u; u̇

�
!0

BB@
ð13Þ

The “gray-box” model is obtained through lab research
based on the material balance of fed-batch fermentation.
The model ignores the influence of many factors, and
merely approximates the actual kinetics [13]. There are
several constraints of this model: (1) The temperature,
fermenter pressure and agitation speed are constant in
the fermentation process; (2) The broth and substrate
concentrations are not affected by fermentation heat.
The inverse system model Eq. (13) of the “virtual sensor”
is established based on the gray box model under the
above constraints. Obviously, the established model fails
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to reflect the influence of several key factors in the fer-
mentation process, including but not limited to fermen-
tation temperature, in-tank pressure, agitation speed,
and air flowrate. As a result, the soft-sensing prediction
based on Eq. (13) will have a huge error, undermining
the subsequent optimization control.
To overcome the defect, fermentation temperature

(Wt), tank inside pressure(Pt), agitation speed (Sa), air
flow rate (Fa) four process parameters are included to
the soft-sensing model based on Eq. (13). The structure
of the extended inverse model for soft-sensing can be
described as:

x̂ ¼
x1
x2
x3

0
@

1
A ¼

φ4

�
x4; x5; x6; ẋ4; €x4; ẋ5; u; u̇;Wt ;Pt; Sa; Fa

�
φ5

�
x4; x5; x6; ẋ4; €x4; ẋ5;u; u̇;Wt; Pt; Sa; Fa

�
φ6

�
x4; x5; x6; ẋ4; €x4; ẋ5;u; u̇;Wt; Pt; Sa; Fa

�
!0

BB@
ð14Þ

The addition of the key parameters provides the ex-
tended inverse model for soft-sensing with more charac-
teristic information of the fermentation process, which
greatly promotes the adaptability and anti-jamming abil-
ity of the model.
Although the inverse soft-sensing model of the marine

low-temperature alkaline protease MP fermentation
process is constructed in this paper, However, Eq. (14)
shows that the extended inverse model for soft-sensing
is difficult to solve, despite the possible existence of a so-
lution. The LSSVM offers a solution to this problem,
thanks to its strong approximation ability to nonlinear
functions.

Improved MLSSVM
Traditional LSSVM is grounded on multi-input single-
output (MISO) systems. It cannot be directly applied to iden-
tify multi-input multi-output (MIMO) systems [14], such as
the extended inverse model of the marine alkaline protease
MP fermentation process. Thus, the MLSSVM was proposed
to build the extended inverse model of the marine alkaline
protease MP fermentation process (MIMO).
LSSVM is proposed by Suykens in which author has

changed the inequality constraints in SVM [15, 16] with
equality and converted the convex quadratic program-
ming problem to a convex linear system problem, which
is often used for model decomposition problems and
function prediction. Its modeling principle is as follows:
Given l training samples {(xi, yi)| i = 1, 2, ..., l}, xi ∈ R

n

is an input and yi ∈ R is output. The optimization prob-
lem for regression LSSVM is as follows:

min J w; b; ξð Þ ¼ 1
2

wk k2 þ 1
2
γ
Xl
i¼1

ξ2i

s:t:yi ¼ wTφ xið Þ þ bþ ξ i i ¼ 1; 2;⋯; l

ð15Þ
where: w is the weight vector, b is the deviation, φ(xi) is
a mapping to a high dimensional space, ξi is relaxation
factor (error), γ is regularization parameter.
In order to transform the single-output optimization

problem into a multi-output optimization problem. In
this paper, the quadratic loss function of error(ξiξ

T
i , ξ ∈

R1 × n) is introduced to replace the relaxation factor(ξ2i )
in optimization problem(15):

min J w; b; ξð Þ ¼ 1
2

Xn
i¼1

wi
Twi þ 1

2
γi
Xn
i¼1

ξiξ
T
i

s:t:yi ¼ wT
i φi xð Þ þ γTbi þ ξi i ¼ 1; 2;⋯; l

ð16Þ

where: ξ ∈R1 × n, n is the number of output variables,
φi(x) = [φi(x1),⋯, φi(xl)].
Lagrange function is used to solve the above

optimization problems:

L ¼ 1
2

Xl
i¼1

wi
Twi þ 1

2

Xl
i¼1

ξiξ
T
i −
Xl
i¼1

aTi wT
I φi xð Þ þ γTbi þ ξi−yi

� �
ð17Þ

where: ai ∈R
m × l is a Lagrange multiplier, m is input vec-

tors number.
According to the KKT condition, the transformation

to linear equation is as follow:(
∂L
∂wi

¼ 0→wi ¼ φ xið ÞaTi
∂L
∂bi

¼ 0→γTaTi ¼ 0

∂L
∂ξi

¼ 0→ai ¼ ξi; i ¼ 1; 2;⋯; l

∂L
∂ai

¼ 0→wT
i φi xð Þ þ γTbi þ ξi−yi ¼ 0; i ¼ 1; 2;⋯; l

ð18Þ

From the above equations, wi ¼ aiφT
i ðxÞ and ξi = ai

can be easily obtained, and then they can be substituted
into the last term of Eq. (18):

aiφ
T
i xð Þφi xð Þ þ γTbi þ ai−yi ¼ 0 ð19Þ

So that for the above optimization problem(18), the
estimation function is written as:

bi ai½ � 0 γT

γ Ki xi; xð Þ þ I

� �
¼ 0 yi½ � ð20Þ

where: K(xi, x) is the kernel function satisfying Mercer
condition. In this paper, the kernel function is Gaussian
radial basis function.
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Considering that the matrix
0 γT

γ Kiðxi; xÞ þ I

� �
is

nonsingular, Eq. (20) can be converted to Eq. (21) by
small transformation as follows:

bi ai½ � ¼ 0 yi½ � 0 γT

γ Ki xi; xð Þ þ I

� �−1
ð21Þ

Then, MLSSVM approximation is expressed as:

f i xð Þ ¼ aiK xi; x j
� �þ bi ð22Þ

The MLSSVM identification of the extended inverse
model for soft-sensing depends heavily on the selection
of kernel function parameter σ and regularization par-
ameter γ. If σ is too small, the training effect will be
undermined by the localized kernel; Otherwise, there
will be a high risk of undertraining; If γ is too small, the
training error will increase and the learning machine will
have stronger generalization ability; Otherwise, the train-
ing error will decrease and the learning machine will
have a weaker generalization ability. Traditionally, these
parameters are selected empirically through trial-and-
error. The selection process is inaccurate and time-
consuming. To ensure the prediction precision of our
extended inverse model, this paper adopts the ABC algo-
rithm to optimize and fine-tune the parameter combin-
ation (σ, γ).
Fig. 3 According to the deviation between the off-line, assay analysis value
soft-sensing model, the ABC algorithm is used to optimize and adjust the p
expanded model can be corrected on-line
ABC optimization algorithm
In recent years, the research on intelligent optimization
algorithm and its application in model parameter
optimization is very active and has achieved encouraging
results [15, 17, 18]. Inspired by the foraging behavior of
bees, the ABC is an intelligent optimization algorithm
that has been successfully applied in optimization of
model parameters [19, 20]. This algorithm does not care
about the specific information of the problem, but the
merits and demerits of the problem. By the ABC, three
types of bees are set up to perform local optimization,
and the optimal food source is updated iteratively to ob-
tain the global optimal solution. Therefore, the ABC
converges fast and stays immune to the local optimum
trap, providing an effective way to solve multi-
dimensional engineering problems. Many numerical ex-
amples have shown that the ABC has better
optimization and convergence performance than differ-
ential evolution (DE), genetic algorithm (GA) and par-
ticle swarm optimization (PSO) [21, 22]. That is why
this algorithm is adopted here to optimize two key pa-
rameters. Based on this, the paper selects the ABC algo-
rithm to optimize the performance parameters of
MLSSVM.
In the ABC, the colony consists of three groups of

bees: leading bees, following bees and scout bees. The
leading bees whose food source has been abandoned
in the actual fermentation process and the output of the inversion
erformance parameters of the MLS-SVM, so that the initial inverse



Wang et al. BMC Biotechnology            (2020) 20:9 Page 8 of 13
becomes a scout. The leading bees search for high-
quality food sources, the following bees watch the
dances of leading bees and choose one source depending
on the dances, and the scout bees search for new food
sources randomly around the chosen source. The total
number of leading bees and following bees equals the
number of food sources. Let SN. xij(i = 1, 2,⋯, SN, j = 1,
2,⋯,D) be the locations of food sources, with D be the
number of optimization parameters. After initialization,
the leading bees start to search for food sources itera-
tively. In each iteration, an leading bee remembers the
new food source, if it has a higher nectar amount than
the old one. The following bees will choose a food
source, go to that source, choose a neighbor, and evalu-
ate its nectar amount. Then, abandoned food sources
are determined and are replaced with the new food
sources discovered scout bees. Finally, the best food
source found so far is registered.
The leading bees search for new solutions based on

their current location, which can be described as follows:

vij ¼ xij þ ϕij xij−xkj
� � ð23Þ

where: k ∈ {1, 2,⋯, SN} and j ∈ {1, 2,⋯,D} are randomly
selected, and k ≠ i. ϕij is a random number between [−1,
1].
The conversion probability of each individual is calcu-

lated as follows:
Fig. 4 The initial value is preset to initialize the ABC algorithm, and the dimen
applied as F(xi) = 1/MSEi, where MSEi represents the root mean square error of
is calculated as the initial value of the fitness function, and the minimum valu
sensing model, in this case, the corresponding (γ, σ) is the optimal solution in
Pi ¼ f xið ÞXSN
n¼1

f xnð Þ
ð24Þ

where: f(xi) is the fitness value of each individual and SN
is the number of food sources.
If the solution xi update fails, it means that the solu-

tion can not be optimized and needs to be replaced by a
new solution generated by running the following
formula:

xij ¼ x min; j þ rand 0; 1ð Þ x max; j−x min; j
� � ð25Þ

When using the ABC algorithm to optimize the
MLSSVM parameters, it is necessary to set the relevant
parameters and fitness functions, including the
initialization of the control parameters in the ABC algo-
rithm. The detailed flow chart of ABC-MLSSVM is
shown in Fig. 3, the specific parameters are set as
follows:

1) Initialize various parameters in the ABC algorithm,
the number of food source SN is 20, the maximum
number of searches limit is 50, and the number of
termination cycles MCN is 100.

2) Performance parameters (γ, σ) of MLSSVM
represents the location of food source, D is set to 6,
sion of variables and boundary conditions are set. The fitness function is
the MLS-SVM of i th solution, MSEi of the initial MLS-SVM training sample
e of the fitness function in the global range is the optimal MLS-SVM soft-
the set search range
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and the search range of LSSVM parameters is set to
[0.01, 1000].

3) Set the usage function in the ABC algorithm. The
purpose of optimizing MLSSVM is to reduce the
prediction error, so the fitness function is applied as
FðxiÞ ¼ 1

MSEi
, where MSEi represents the root mean

square error of the MLSSVM of i-th solution.

ABC optimization algorithm does not care about the
specific information of the problem, but the merits and
demerits of the problem. It can quickly converge and keep
immune to the local optimal trap, which provides an ef-
fective way to solve multi-dimensional engineering prob-
lems. Based on this, this paper uses ABC algorithm to
optimize the performance parameters (σ, γ) of MLSSVM,
in order to get a more accurate inverse model.
Inverse model identification based on ABC-MLSSVM
The order of each input and its derivative of ABC-
MLSSVM inverse soft-sensing model is determined ac-
cording to Eq. (14), and φ4, φ5, φ6 in Eq. (14) are ob-
tained by using MLSSVM off-line identification and
ABC algorithm on-line optimization. Then the inverse
soft-sensing model developed in this way can realize the
Fig. 5 The fermentation tank is added into the culture medium (soyabean
extract, Tween-80) and sterilized by steam at high temperature, after coolin
certain proportion, and the appropriate amount of the enzyme producing
soft-sensing of x1, x2, x3, and the kernel function of
MLSSVM is Gauss radial basis function. The identifica-
tion process of inverse soft-sensing model is as follows:

1) Fermentation data acquisition. On the premise of
meeting the sampling theorem, the input variable u
is collected with appropriate excitation signal
during the working area of the marine low-
temperature alkaline protease MP fermentation
process, direct measurable parameter {x4, x5, x6},
and process parameter {Wt, Pt, Sa, Fa} to obtain the
original data sample set {u1, u2, u3, u4, u5, x4, x5, x6,
Wt, Pt, Sa, Fa}. Non-direct measurable variable {x1,
x2, x3} can be obtained by off-line, assay analysis in
the laboratory.

2) Data preprocessing. Through certain technical
processing (such as digital filtering, improving
measurement redundancy, etc.), the bad data
caused by working conditions, manual operation or
environmental impact can be deleted, and the
reliability of sample data can be improved. At the
same time, in order to accurately calculate the
required derivatives, according to the structure of
the extended inverse model determined by Eq. (14),
the five-point derivation method is adopted to
cake meal hy-drolysate, maize flour hydrolysate, ammonia sulfate, malt
g, the fermentation strain is connected to the fermentation strain in a
strain is carried out at the right time



Fig. 6 The actual data curve is described by a black solid line with
+, the predictive value curve of ABC-MLSSVM inversion soft-sensing
modeling is described by a red solid line with *, the predictive value
curve of MLSSVM soft-sensing modeling is described by a blue solid
line with ◊. (a) shows the comparison between the the predictive
value curve of biomass concentration and the actual data curve. (b)
shows the comparison between the the predictive value curve of
substrate concentration and the actual data curve. (c) shows the
comparison between the the predictive value curve of relative
enzyme activity and the actual data curve
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obtain the every derivative fẋ4; €x4; ẋ5; u̇g of {x4, x5,
u}, and the interpolation method is used to process
the {x1, x2, x3} (keep it synchronized with measur-
able data in real time to ensure consistency of data),
and finally the data sample sets {x1, x2, x3} and fx4;
x5; x6; ẋ4; €x4; ẋ5;u; u̇;Wt ; Pt ; Sa; Fag are obtained,
the former is used as the output of the inverse soft-
sensing model, that is, the key biological parameter,
and the latter is the input of the inverse soft-
sensing model.

3) Off-line training and on-line correction. According
to the input and output sample data, the MLSSVM
is trained off-line and the corresponding initial pa-
rameters are determined by cross-validation, and
the initial inverse expanded model is established.
Then, according to the deviation between the off-
line, assay analysis value in the actual fermentation
process and the output of the inversion soft-sensing
model, the ABC algorithm is used to optimize and
adjust the performance parameters of the
MLSSVM, so that the initial inverse expanded
model can be corrected on-line. Figure 4 shows the
on-line correction figure of the inverse soft-sensing
model of fermentation process.
Results
Take the low-temperature alkaline protease MP fermen-
tation process as the object for experimental verification.
The flow chart of marine low-temperature alkaline pro-
tease MP fermentation process is shown in Fig. 5. In
order to make the experiment closer to the production
process, the experiment scheme is designed as follows:

1) The high-yield low-temperature alkaline protease
strain YS-80 isolated from Huang Hai water sam-
ples of China is selected as the strain (with the
characteristics of short fermentation period, high
protease yield, good enzyme stability, safety and
reliability, non-toxicity and so on). It is fermen-
ted in the fermenter of 1m3 and is fermented ac-
cording to the technological requirements of the
marine alkaline protease MP fermentation. After
the fermentation tank is added into the culture



Fig. 7 The relative error curve of ABC-MLSSVM inversion soft-sensing
modeling is described by a red solid line with *, the relative error
curve of MLSSVM soft-sensing modeling is described by a blue solid
line with ◊. (a) is the relative error curve of biomass concentration.
(b) is the relative error curve of substrate concentration. (c) is the
relative error curve of relative enzyme activity

Wang et al. BMC Biotechnology            (2020) 20:9 Page 11 of 13
medium and sterilized by steam at high
temperature, after cooling, the fermentation
strain is connected to the fermentation strain in
a certain proportion, and the appropriate amount
of the enzyme producing strain is carried out at
the right time.

2) Set fermentation period T as 90 h and sampling
period t as 5 min of each batch, the fermentation
temperature is controlled at about 28 °C, the pH
value is about 9.5, the tank pressure is controlled at
0.04 Mpa, the stirring speed is controlled at 250r/
min, the dissolved oxygen is controlled between
45~75%, and ventilation volume is 1000 L/h. Non-
direct measurable variable {x1, x2, x3} is obtained by
off-line analysis and test after regular sampling (the
appropriate fermentation broth is taken every 4 h
through sampling mouth) in the laboratory. Among
them, X is obtained based on the cell dry weight
method, a certain amount of fermentation broth is
centrifuged at 3000r/min for 5min in a centrifuge
tube. Then, the supernatant is discarded, washing
twice with distilled water, and drying it at 105 °C to
a constant weight, weighing it. S is measured using
a SBA − 40A glucose analyzer and P is determined
by an automatic scanning spectrophotometer.

3) Only 10 batches of sample data are considered to
test the identification ability of ABC-MLSSVM in-
verse soft-sensing model to small samples in the ex-
periment. In order to enhance the difference among
different batches, the initial conditions of each
batch fermentation and the feeding strategy of each
nutrient solution are set to be different. And the
first six batches of fermentation data are used as
training samples to off-line train the inverse ex-
panded model of fermentation process. The seventh
batch and the eighth batch of fermentation data are
used to on-line correction the initial extended in-
verse model, and the ninth batch and the 10th
batch fermentation data are used to verify the ef-
fectiveness and prediction accuracy of the inverse
expanded model.

In order to test the performance of the ABC-
MLSSVM inverse soft-sensing modeling method, it is
compared with the traditional LSSVM soft-sensing mod-
eling method, and the relative errors of the prediction
results of the two methods are calculated. The initial



Table 1 MRE comparison by two models

Fermentation
batch

ABC-MLSSVM
Inversion

MLSSVM

X/g·L− 1 S/g·L-1 E/g·L-1 X /g·L-1 S/g·L-1 E /g·L-1

The 9th batch 1.38% 1.63% 1.97% 4.62% 3.36% 5.76%

The 10th batch 1.43% 1.72% 2.06% 5.11% 2.98% 6.32%
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performance parameters of MLSSVM are taken as:
σ2 = [1.0, 1.0, 1.0], γ = [10, 10, 10], and the performance
parameters of MLSSVM after on-line optimization by
ABC algorithm are γ = [10.1, 6.3, 8.2], σ2 = [0.532, 1, 613,
0.479].
Figure 6 is a comparison of soft-sensing results of key

biological parameters of the ninth batch fermentation
(protease content is characterized by relative enzyme ac-
tivity in Fig. 6). Figure 7 is a relative error curve. Table 1
lists the average relative error MRE of the soft-sensing
results of the two methods (protease content is charac-
terized by relative enzyme activity in Fig. 7).

Discussion
As can be seen from Figs. 6, 7 and Table 1, compared
with the traditional LS-SVM soft-sensing method, the
on-line estimation results of the ABC-MLSSVM inverse
soft-sensing method are closer to the off-line assay
values, especially in the prediction of cell concentration.
It is fully proved that the reversibility assumption of the
“virtual sensor” is reasonable. During the logarithmic
growth period and stable growth period (20 h–60 h) of
marine low-temperature alkaline protease MP fermenta-
tion, the average RMSE (root-mean-square error) of cell
concentration, substrate concentration and relative en-
zyme activity are 0.146, 0.127 and 0.185 respectively
when the MLS-SVM method is used. While when the
ABC-MLSSVM inversion method is adopted, the soft-
sensing RMSE of the there results are 0.0645, 0.0538 and
0.0712. This indicates that the ABC-MLSSVM inverse
system method is effective and credible, and can greatly
improve the soft-sensing precision of key biological pa-
rameters in the low-temperature alkaline protease MP
fermentation process, which satisfactorily meets the ex-
pected accuracy requirements.

Conclusion
In order to solve the problem that the key biological pa-
rameters of marine low-temperature alkaline protease
MP cannot be measured directly on-line during fed-
batch fermentation, a soft-sensing modeling method for
marine low-temperature alkaline protease MP fermenta-
tion process based on ABC-MLSSVM inversion is pro-
posed by combining the inverse system method with
least square support vector machine. This paper firstly
establishes a “gray-box” model for the marine low-
temperature alkaline protease MP fermentation process
based on the material balance. Then, the reversibility of
the nonlinear model was analyzed based on the inverse
method, and the extended inverse model was con-
structed, coupling MLSSVM system identification with
ABC optimization. Finally, the extended inverse model
was connected in series with the original fermentation
system, forming a composite pseudo-linear system. The
composite system supports the online prediction of key
biological parameters in fermentation process. The
simulation results show the rationality of the system
dynamic model and the validity of ABC-MLSSVM in-
verse soft-sensing method for predicting the key bio-
logical parameters of marine low-temperature alkaline
protease MP fermentation process.
The proposed model offers a feasible theoretical method

to solve the soft-sensing of key biological parameters of
the marine alkaline protease MP fermentation process.
The model achieves ideal identification effect based on a
few input/output data, eliminating the need for an exact
kinetics model of the fermentation process. The soft-
sensing of key parameters can be achieved by connecting
the inverse system with the original system into a compos-
ite system. With clear physical meanings, The ABC-
MLSSVM inversion soft-sensing method effectively over-
comes the bottleneck of traditional inverse system
method: The difficulty in implementing an accurate
model, and enables the soft-sensing of general nonlinear
reversible systems. The proposed model enjoys a wide
scope of applications, laying the basis for nonlinear soft-
sensing modelling of MIMO systems.
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