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Abstract

Background:Cellulosic biomass degradation still needs to be paid more attentions as bioenergy is the most likely
to replace fossil energy in the future, and more evaluable cellulolytic bacteria isolation will lay a foundation for this
filed. Qinling Mountains have unique biodiversity, acting as promising source of cellulose-degrading bacteria
exhibiting noteworthy properties. Therefore, the aim ofthis work was to find potential cellulolytic bacteria
and verify the possibility of the cloning of cellulases from the selected powerful bacteria.

Results:In present study, 55 potential cellulolytic bacteria were screened and identified from the rotten wood of Qinling
Mountains. Based on the investigation of cellulase activitiesand degradation effect on different cellulose substrates,
Bacillus methylotrophicus1EJ7,Bacillus subtilis1AJ3 andBacillus subtilis3BJ4 were further applied to hydrolyze wheat straw,
corn stover and switchgrass, and the results suggested thatB. methylotrophicus1EJ7 was the most preponderant
bacterium, and which also indicated thatBacilluswas the main cellulolytic bacteria in rotten wood. Furthermore,
scanning electron microscopy (SEM) and X-ray diffractionanalysis of micromorphology and crystallinity of wheat
straw also verified the significant hydrolyzation. With ascertaining the target sequence of cellulase� -glucosidase
(243 aa) and endoglucanase (499 aa) were successfully heterogeneously cloned and expressed fromB. methylotrophicus
1EJ7, and which performed a good effect on cellulose degradation with enzyme activity of 1670.15 ± 18.94 U/mL and
0.130 ± 0.002 U/mL, respectively. In addition, basedon analysis of amino acid sequence, it found that� -glucosidase were
belonged to GH16 family, and endoglucanase was composed ofGH5 family catalytic domainand a carbohydrate-binding
module of CBM3 family.

Conclusions:Based on the screening, identification and cellulose degradation effect evaluation of cellulolytic bacteria
from rotten wood of Qinling Mountains, it found thatBacilluswere the predominant species among the isolated strains,
andB. methylotrophicus1EJ7 performed best on cellulose degradation. Meanwhile, the� -glucosidase and endoglucanase
were successfully cloned and expressed fromB. methylotrophicusfor the first time, which provided new materials of both
strain and the recombinant enzymes for the study of cellulose degradation and its application in industry.
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Background
Cellulosic biomass (composed of cellulose, lignin and hemi-
cellulose) is one of the most abundant renewable resources,
which is also considered as apotential and promising raw
material for future energy production [1]. Cellulose has
been reported as the critical component that can be
converted into various value-added products: e.g. ethanol,
5-hydroxymethylfurfural (HMF), levulinic acid, butanol,
alkanes, hexane, succinic acid, ethyl lactate, and other che-
micals [2–4], and no matter which procedure conducted,
cellulose should be firstly hydrolyzed to glucose, and then
various bio- or chemical processes can be really carried out.
Therefore, the degradation of cellulosic material has
attracted huge attentions for the improvement of the effi-
ciency and cleaning process.

There were various methods proposed to hydrolyze cel-
lulose, including acid-activated montmorillonite catalysts,
steam explosion, acid, alkaline, enzymatic hydrolysis and
microbiological methods [5–7]. In view of protecting of
environment and saving energy, the enzymatic and micro-
biological methods were prioritized to be practically ap-
plied, and what’s more, both of which were associated
with microorganisms, such as fungi and bacteria [5]. In-
deed, fungi exhibit a strong ability to secret considerable
extracellular enzymes including multi-cellulases, which
was the main reason why numerous studies had been con-
ducted on fungi producing cellulases, such asTricho-
derma reeseiRUT-C30 [8], Trichoderma koningiopsis
FCD3–1 [9], and Melanoporia sp. CCT 7736 [10]. How-
ever, it has also been found that the culture and genetic-
ally modification of fungi were relatively more difficult to
achieve than bacteria, which seriously hindered the prac-
tical application of fungi and fungi-producing cellulases to
celluloses hydrolyzation [11, 12]. In general, bacteria were
commonly considered as a powerful tool for functional
modification or genomic operation, for instance, the het-
erogeneous cloning and expressing of single cellulase or
recombinant cellulases. Unfortunately, the library of bac-
teria that possessed powerful activity to hydrolyze cellu-
lose was not sufficient, which partly limited the study and
application of the cellulolytic bacteria. Therefore, lots of
researches about screening of cellulolytic bacteria had
been conducted and reported, such asBacillus sp. BS-5
[13], Bacillus licheniformis2D55 [14], Bacillus subtilisBY-
4 [15], Paenibacillus chitinolyticusCKS1 [16], Ochrobac-
trum sp K38 [17], and Clostridium thermocellum[18],
which also suggested that various species of bacteria from
different origins should be screened and highlighted.

The Qinling Mountains (32°30�N-34°45�N and 104°30�E-
112°45�E) are located in the center of China and has 1500
km in length, which act as a crucial geographic demarcation
line separating semi-arid area and humid regions in China
[19]. It is well known that Qinling Mountains possess the
unique climate, plants, and microorganism resource. Hence,

rotten woods originating from Qinling Mountains contains
various of biomass degrading microorganisms, which pro-
vides good materials for the screening of valuable bacteria
for lignocellulose degradation.Consequently, in the present
study, bacteria with the capability of cellulose degradation
were screened and identified from rotten woods of Qinling
Mountains. Subsequently, cellulase activities were assayed
and the strains were inoculated with the wheat straw, corn
stover and switchgrass to investigate the degradation effect
on lignocellulosic biomass. Furthermore, for the purpose to
verify the possibility of the heterologous expression for the
cellulase fromB. methylotrophicus1EJ7, the cloning and ex-
pression of the proposed enzymes were conducted. Based
on the target sequence exploring in National Center for Bio-
technology Information (NCBI) database,β-glucosidase and
endoglucanase with food cellulase activity were successfully
cloned and expressed on the pET-28a(+) plasmid inE.coli
BL21 (DE3), which provide valuable materials for the further
study about cellulase in engineering modifications and appli-
cation to industry.

Results
Isolation and identification of cellulolytic bacteria
A total of 81 strains were isolated from five rotten wood
samples, in which 8, 17, 19, 15 and 22 isolates were ob-
tained from weed tree, red birch, poplar, alpine rhodo-
dendron and willow, respectively. Meanwhile, based on
•diameters ratio between clear zone and strainŽ during
the investigation by Congo red method (Additional file1:
Figure S1) and the growth of strains in the process of sub-
culture, 55 cellulolytic strains were finally selected for the
further study. In addition, it needed to be mentioned that
strains named asB. subtilis 1CJ1 andBacillus sp. 1CJ4
had the largest diameters of clear zone more than 25 mm,
and the largest value of•diameters ratio between clear
zone and strainŽ was 3.71 belonged toBacillus sp.3AJ7
(Additional file 2: Table S2).

The isolated strains were identified according to
their 16S rRNA gene, after which phylogenetic tree
was established as shown in Fig.1. Results indicated
that the strains could be classified intoBacillus subti-
lis, Bacillus sp., Pseudomonas aeruginosa, Bacillus
licheniformis, Bacillus methylotrophicusand Bacillus
megaterium, which suggested that theBacillus might
be the predominant strains possessing the cellulose
degradation activity in the rotten wood.

Cellulase activities and hydrolysis capability
The isolated strains were inoculated into sole carbon
source medium for 48 h at 37 °C under 120 rpm. Redu-
cing sugar concentration and cellulase activities were
investigated and shown in Fig.2 as a heat map which
obviously indicated the relationship between bacteria
and the cellulase activity as well as the production of
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Each strain was separately inoculated into the medium
with five different carbon sources (wheat straw, corn
stover, switchgrass, Avicel, and CMC-Na) for 48 h with
6% seed inoculation. Figure3a shows the reducing sugar
concentration obtained from different carbon sources by
the treatment with each strain.B. subtilis 1AJ3 andB.
methylotrophicus1EJ7 showed strong potential in the
producing of reducing sugar, even in the lignocellulosic
biomass without any other pretreatments (wheat straw,
corn stover, and switchgrass), which then followed byB.
subtilis 3BJ4 andB. subtilis1AJ2. It also found that the
strains showed similar FPase and CMCase activities (Fig.
3b and Fig.3c) in different carbon sources. Specifically,
only B. subtilis1AJ3 andB. subtilis3BJ4 produced Avi-
celase in all medium, andB. subtilis1AJ2 only produced

Avicelase in CMC-Na medium. Meanwhile, other strains
produced Avicelase in three or more carbon sources.
Accordingly, based on the reducing sugar content, cellu-
lase activities and carbon source type, three strains (B.
subtilis 1AJ3, B. methylotrophicus1EJ7, andB. subtilis
3BJ4) were selected for the further study.

Pretreatment of lignocellulosic biomass
Three strains of B. subtilis 1AJ3, B. methylotrophicus
1EJ7 andB. subtilis 3BJ4 were used to pretreat wheat
straw, switchgrass and corn stover separately or mixed-
up. After sterilization at 121 °C for 20 min, the initial re-
ducing sugars concentration were 136.34 mg/100 mL,
109.46 mg/100 mL, and 39.16 mg/100 mL in the medium
of corn stover, switchgrass and wheat straw, respectively.

The reducing sugar content in all samples tended to
be stable (Fig.4) after culturing 36 h, and the highest
sugar content of 95 mg/100 mL was obtained byB.
methylotrophicus 1EJ7 in switchgrass. Meanwhile, 73
mg/100 mL in wheat straw and 72 mg/mL in corn stover
were also obtained byB. methylotrophicus1EJ7, which
also indicated that no synergistic effect was observed in
the pretreatment of the mixture.

SEM test was benefit for understanding the process of
the straw degradation caused by the proposed strains. As
one of the major agricultural waste in China, wheat straw
has a relatively denser lignocellulosic structure, and which
was selected as the sample to be investigated after the hy-
drolyzation byB. methylotrophicus1EJ7. It was found that
the surface (Fig.4a) of the wheat straw particles was dra-
matically changed (Fig.4b) after bacteria pretreatment. Spe-
cifically, it was obviously found that the smooth surface of
wheat straw particles was destroyed to form numerous
holes and lots of bacteria were observed as adhering on the
surface. Therefore, the sunken tiny holes suggested that the
bacteria processed the cellulase activity and which initially
destroyed the surface structure of wheat straw. In addition,
the similar phenomenon was also observed in corn stover
hydrolysis [21].

As the cellulose content affected the degree of crystallin-
ity in various of plant biomass, the decrease of crystallinity
is also an index of the decrease of cellulose content or the
destruction of the cellulose structure, therefore, which was
also used to evaluate the efficiency of the pretreatment
[22]. Hence, X-ray diffraction was used to analyze crystal-
linity of wheat straw samples in the present study. The re-
sults indicated that the CrI of wheat straw decreased
from 41.57 to 40.52 (Fig.4c) after the pretreatment, which
also verified the degradation of wheat straw caused by the
pretreatment ofB. methylotrophicus1EJ7.

Cellulases clone and expression
The target genes ofβ-glucosidase and endoglucanase
were 732 bp and 1500 bp, respectively, and which were

Fig. 2 Heat map of reducing sugar production and enzyme activities
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successfully cloned. In addition, universal primer T7/
T7er was utilized to amplify the two recombinant plas-
mids (pET-28a-Bgl and pET-28a-Egl), and then PCR
products were tested for the complete sequences. There-
after, heterologous expressions of the proposed two
genes inE. coli BL21 (DE3) were carried out to obtain
the enzymes. As shown in SDS-PAGE, two cellulases

were both successfully expressed inE.coli BL21 (DE3),
and the Mws were tested as 28.5 kDa and 56.3 kDa (Fig.
5), respectively. Bgl and Egl crude cellulase activities
were 1670.15 ± 18.94 U/mL and 0.130 ± 0.002 U/mL, re-
spectively (Additional file4: Table S4).

The results of domains analysis showed that Bgl
belonged to GH16 family (Additional file5: Figure S5),

Fig. 3 Reducing sugar and cellulase activities of eight strains in different carbon source medium.a Reducing sugar content;b FPase;c CMCase;
d Avicelase
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glucosidase enzyme was defined as the amount of enzyme
required to release 1μmol of p-NP per minute.

Cultivation in different carbon sources
Different carbon source of wheat straw (4.0 g/L), corn
stover (4.0 g/L), switchgrass (4.0 g/L), Avicel (2.0 g /L) or
CMC-Na (2.0 g/L) was used as sole carbon source. Re-
ducing sugar and cellulase activity were measured.

Single and mixed strain cultivation of cellulosic materials
without pretreatment
Three bacteria strains (B. methylotrophicus1EJ7,B. sub-
tilis 1AJ3 andB. subtilis3BJ4) were selected to degrade
wheat straw, corn stover or switchgrass by single and
mixture owing to their higher cellulolytic activity. Mix-
ture of the three strains (1:1:1) had the same inoculum
size as the single strain. The inoculum size of the single
strain or mixed strains was 6%. The concentrations of
wheat straw, corn stover, and switchgrass were 7% (w/v),
after which they were grown at 37 °C, 120 rpm for 72 h.
Reducing sugar was determined at intervals of 12 h.

Scanning electron microscopy (SEM) and X-ray diffraction
B. methylotrophicus1EJ7 was utilized to hydrolyze wheat
straw without pretreatment as an example to show
morphology changes before and after hydrolysis by SEM
method [64].

X-ray diffraction (Xian Asn Tech) was used to show
wheat straw physical structures with diffraction angles
spanned from 2θ = 5–50°. The radiation was generated
at a voltage of 40 kV with a current of 35 mA, and by a
scan step size of 0.033° [22]. Crystallinity Index CrI
(%) = [(I002 - Iam)/I002] × 100 (I002 is the intensity of crys-
talline portion of cellulose at 2θ = 22°, andIam is the
peak intensity of the amorphous portion at 2θ = 18°).

Cloning and expression of cellulase gene fromB.
methylotrophicus 1EJ7 inE. coli
B. methylotrophicus1EJ7 was cultured in LB medium at
37 °C for 24 h under 150 rpm. The cells were collected
by centrifugation (10,000 rpm, 4 °C, and 10 min) and the
genomic DNA was extracted using an Ezup column bac-
teria genomic DNA purification kit (Shanghai Sangon Bio-
tech Co., Ltd.). The extracted DNA was used as a template
for PCR amplification. The genes encodingβ-glucosidase
and endoglucanase were amplified by using primers based
on the gene sequences of theβ-glucosidase ofBacillus vele-
zensisAS43.3 (CP003838.1) and endoglucanase ofBacillus
velezensisstrain JTYP2 (CP020375.1). The gene encoding
the β-glucosidase was amplified by PCR (94 °C for 5 min,
and then 35 cycles of 94 °C for 1 min, 65 °C for 1 min
(� 0.5 °C/c), 72 °C 3 min, and 72 °C for 10 min) with a
forward primer of 5� - CATGCCATGGGCATGTTTTA
TCGTATGAAACGAGTG (NcoI site was underlined) and

a reverse primer 5� -CCGCTCGAGTTTTTTTGTATAGC
GCACCCA (XhoI site was underlined) using a Takara
ExTaqHS (Takara Bio, Shiga, Japan). The gene encoding
the endoglucanase was amplified under the same PCR
condition described above with a forward primer of
5� -CATGCCATGGGCATGAAACGGTCAATTTCTA
TTTTT ( NcoI site was underlined) and a reverse
primer of 5� -CCGCTCGAGATTGGGTTCTGTTC
CCCAAA (XhoI site was underlined). The amplified
genes were double digested withNcoI and XhoI, and
inserted into the corresponding site of the pET-28a(+)
vector (Novagen) by T4 ligase.

Then, the constructed plasmid was transformed into
E.coli BL21 (DE3) by hot hit under 42 °C for 90s and
correct transformants were identified by PCR amplifica-
tion and sequencing. The transformant was cultured in
1 L LB medium containing 1 mg/mL kanamycin at
37 °C until the absorbance at 600 nm reached 0.6. After
that, expression was induced by adding a final density
of 0.2 mM IPTG, and the transformant was further
cultured at 25 °C for 16 h. The cells were collected by
centrifuging (8000×g, 4 °C, 10 min), and then suspended
in PBS buffer (pH 7.2). Cells were disrupted by ultrasoni-
cation under 300 W output power, a repeating cycle of 1 s
ultrasonic treatment and 5 s shutdown, for 60 min on a
SCIENTZ-IID ultrasonic homogenizer (Ningbo Scientz
Biotechnology Polytron Technologies Inc. Zhejiang
province, China). The resulting cell lysates were centrifuged
(8000×g, 4 °C, 30 min). A 15% SDS-PAGE was performed
to analyze the supernatant and the insoluble fraction of the
sonicated whole cell lysate.

Bioinformatic analysis and homology modeling
The plasmids of pET-28a-Bgl and pET-28a-Egl were
sequenced. The primary sequences of Bgl and Egl protein
were obtained by amino acid translation software, and the
homology templates were obtained through retrieving in
the protein database PDB. Physiochemical characteristics
were predicted on ExPASy (http://web.expasy.org/
protparam/). Conserved domain was analyzed by CDD of
NCBI (https://www.ncbi.nlm.nih.gov/cdd). Clustal Omega
(https://www.ebi.ac.uk/Tools/msa/clustalo/) was used for
sequence alignments. Secondary structure and 3D struc-
ture were predicted by PSIPRED (http://bioinf.cs.ucl.ac.
uk/psipred/) and I-TASSER (https://zhanglab.ccmb.med.
umich.edu/I-TASSER/).

Supplementary information
Supplementary information accompanies this paper athttps://doi.org/10.
1186/s12896-019-0593-8.

Additional file 1: Figure S1. Hydrolyzed circle of isolates on the Congo
red agar plate. (a) Plates with CMC-Na as the sole carbon source. (b)
Plates with Avicel as the sole carbon source
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