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phenyl-L-cysteine with tryptophan synthase
using a chemoenzymatic method
Lisheng Xu*, Xingtao Zhang, Guizhen Gao and Sun Yue

Abstract

Background: S-Phenyl-L-cysteine is regarded as having potential applicability as an antiretroviral/protease inhibitor
for human immunodeficiency virus (HIV). In the present study, optically active S-phenyl-L-cysteine was prepared in a
highly efficient manner from inexpensive bromobenzene using tryptophan synthase through a chemoenzymatic method.

Results: The chemoenzymatic method used a four-step reaction sequence. The process started with the reaction of
magnesium and bromobenzene, followed by a Grignard reaction, and then hydrolysis and enzymatic synthesis using
tryptophan synthase. Through this approach, S-phenyl-L-cysteine was chemoenzymatically synthesized using tryptophan
synthase from thiophenol and L-serine as the starting material.

Conclusions: High-purity, optically active S-phenyl-L-cysteine was efficiently and inexpensively obtained in a total yield of
81.3% (> 99.9% purity).
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Background
S-Phenyl-L-cysteine exhibits the dual advantages of show-
ing long-term effects and having a chemical configuration
that is comparable to the anti-AIDS drug nelfinavir. The
possibility that S-phenyl-L-cysteine can, like nelfinavir, act
as an effective suppressant of HIV protease [1], has
increased the importance of developing more tractable
approaches for producing these chemical compounds. This
is further underscored by the potential for the synthesis of
phenyl-L-cysteine and its use in multiple biological activa-
tion mechanisms [2–4].
The potential utility of optically active S-phenyl-L-cyst-

eine has inspired pharmaceutical chemical scientists to ex-
plore new and effective routes to its synthesis. To date,
however, only a few synthetic methods have emerged for
the preparation of S-phenyl-L-cysteine. Previously, S-
phenyl-L-cysteine was prepared using tryptophan synthase

in Escherichia coli MT-10242 and Neurospora crassa
ATCC 14692. The reaction time for preparing S-phenyl-
L-cysteine using these strategies was 15 h [5, 6], and thus,
they were inefficient based on their reaction time require-
ments. In another case, S-phenyl-L-cysteine was prepared
by reacting L-cysteine hydrochloride and a soluble single-
valent copper (Cu) salt with the diazonium salt of pheny-
lamine [7, 8]. The yields of S-bromo phenyl-L-cysteine
from this copper-mediated reaction, however, were not
impressive (37%). A subsequent effort to synthesize S-
phenyl-L-cysteine from S-bromo phenyl-L-cysteine and
mercapturic acid was successful [9, 10].
In the present study, S-phenyl-L-cysteine was synthesized

from thiophenol and L-serine using a recombinant trypto-
phan synthase (E.C. 4.2.1.20) obtained from E. coli k-12
MG1655. This approach resulted in high yields of optically
active S-phenyl-L-cysteine (5) (Fig. 1). The products from
the reaction of thiobenzyl alcohol and ethanethiol were
then isolated to demonstrate the enzymatic synthesis of the
corresponding S-substituted L-cysteines [11]. Our findings
indicate that the tryptophan synthase from E. coli k-12
MG1655 effectively catalyses the synthesis of L-cysteine
from L-serine and sodium hydrosulfide [12].
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Results
Preparation of phenylmagnesium bromide (2)
Phenylmagnesium bromide was prepared using magne-
sium and bromobenzene. Phenyl magnesium bromide was
separated through filtration (2) (yield: 97%). 1H NMR
(400MHz, CDCl3): δ 7.01~7.66 (m, 5H) Combustion
elemental analysis calculated (Anal. Calcd) for C6H5MgBr:
C, 39.99; H, 2.78; Br, 43.88. Found: C, 39.96; H, 2.77; Br,
43.89. ESI-MS (m/z): 181.0121 [M+H]+. The calculated
mass of phenyl magnesium bromide: 180.1141.

Preparation of thiophenyl magnesium bromide (3)
Thiophenyl magnesium bromide was prepared by using
sulfur and phenyl magnesium bromide. Thiophenyl mag-
nesium bromide (3) was formed after cooling (yield:
92%). 1H NMR (400MHz, CDCl3): δ 7.29–7.32 (m, 5H).
Anal. Calcd for C6H5SMgBr: C, 33.96; H, 2.35; S, 15.09;
Br, 37.27. Found: C, 33.94; H, 2.34; S, 15.11; Br, 37.26.
ESI-MS (m/z): 213.0311 [M +H]+. The calculated mass
of phenyl magnesium bromide: 212.7812.

Preparation of thiophenol (4)
Thiophenol (4) was isolated by distillation of the upper
layer of the solution. Thiophenol (4) was obtained in
95% yield. 1H NMR (400MHz, CDCl3): δ 6.97~7.42 (m,
5H), 3.40 (s, 1H) Anal. Calcd for C6H6S: C, 65.45; H,
5.45; S, 29.10. Found: C, 65.44; H, 5.49; S, 29.07. ESI-MS

(m/z): 111.1821 [M +H]+. The calculated mass of thio-
phenol: 111.0172.

Preparation of S-phenyl-L-cysteine (5)
The activity of tryptophan synthase is dependent on
factors such as substrate concentration, temperature,
and pH. Tryptophan synthase was directly mixed with
substrate (180 mmol/L) at pH values from 6 to 11 at
40 °C, and the reactions were allowed to proceed for 14
h. We found the optimal initial pH for the synthesis of
S-phenyl-L-cysteine was 9.0 (Fig. 2). The effect of tem-
peratures from 10 °C to 60 °C on S-phenyl-L-cysteine
synthesis was investigated. The best yield of S-phenyl-
L-cysteine was achieved at 40 °C (Fig. 3). The effect of
substrate concentrations from 50 mmol/L to 400 mmol/
L on S-phenyl-L-cysteine synthesis was investigated.
The optimal substrate concentration was 180 mmol/L
(Fig. 4). Tryptophan synthase was directly mixed with
thiophenol and L-serine under the optimum reaction
conditions of pH 9.0, 40 °C, using Trion X-100 at 0.02%
(Fig. 5). After drying the crystals, 16.04 g of S-phenyl-L-
cysteine was obtained (yield: 96%). The purity of S-
phenyl-L-cysteine was 99.9% as verified by HPLC
(Fig. 6). Specific rotation [α] D20 = + 73~ + 75 ° (c = 1,
1.5 M H2SO4).

1H NMR (400MHz, D2O): δ 2.81 (dd,
J = 7.82, 3.13 Hz, H), 2.88 (d, J = 3.13 Hz, H), 3.13(d, J =
7.82 Hz, H), 7.21~7.39 (m, PhH, 5H) (Fig. 7). Anal.
Calcd for C9H11NO2S: C, 54.75; H, 5.57; N, 7.09.

Fig. 1 Chemoenzymatic preparation of optically active S-phenyl-L-cysteine
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Found: C, 54.72; H, 5.52; N, 7.05. ESI-MS (m/z):
198.254 [M +H]+ (Fig. 8). The calculated mass of S-
phenyl-L-cysteine: 197.2312.

Discussion
Tryptophan is a naturally occurring amino acid that is syn-
thesized by tryptophan synthase in plants and microorgan-
isms. While indole-3-glycerol phosphate has been
synthesized by the α-subunit of tryptophan synthase, it has
not been used for the synthesis of tryptophan analogues. A

series of analogues of L-tryptophan were synthesized
through a β-reaction using tryptophan synthase [13]. Like-
wise, we reported the synthesis of S-phenyl-L-cysteine
using tryptophan synthase from L-serine derived from the
hydrolysis of keratin from industrial wastewater and thio-
phenol [14]. High-purity tryptophan was produced in excel-
lent yield.
Thiophenols are synthesized from phenols through a

reaction with thiophosgene to form an aryl chlorothio-
noformate [15] that is then reacted with hydrogen sulfide

Fig. 2 Effect of pH on the tryptophan synthase-catalysed synthesis of S-phenyl-L-cysteine. Tryptophan synthase was directly mixed with the
substrate (180mmol/L) at 40 °C for 14 h using Trion X-100 at 0.02%

Fig. 3 Effect of temperature on the tryptophan synthase-catalysed synthesis of S-phenyl-L-cysteine. Tryptophan synthase was directly mixed with
the substrate (180mmol/L) at pH 9.0 for 14 h using Trion X-100 at 0.02%
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over an absorptive catalyst, such as activated carbon or
calcined petroleum coke [16]. The production of a thio-
phenol involves the reaction of hydrogen sulfide and a
source of hydrogen with a halogenated aromatic com-
pound [17]. All of the above methods require heating at a
high temperature and have high production costs.
In this study, thiophenol was formed by a simple, 4-step

sequence involving the reaction of magnesium and bro-
mobenzene (1) to form phenylmagnesium bromide (2), a
Grignard reaction with sulfur to form thiophenyl

magnesium bromide (3), and hydrolysis using sulfuric acid
to form the resulting thiophenol (4).

Conclusions
Optically active S-phenyl-L-cysteine (5) was synthesized
using tryptophan synthase from low-cost bromobenzene
(1). Tryptophan synthase was successfully applied for
the preparation of optically active S-phenyl-L-cysteine in
excellent purity (> 99.9%) and high yield (81.3%).

Fig. 4 Effect of substrate concentration on the tryptophan synthase-catalysed synthesis of S-phenyl-L-cysteine. Tryptophan synthase was directly
mixed with the substrate at 40 °C and pH 9.0 for 14 h using Trion X-100 at 0.02%

Fig. 5 Changes in the concentrations of S-phenyl-L-cysteine and thiophenol. The concentrations of S-phenyl-L-cysteine (o) and phenylthiol
alcohol (■) were measured at different times
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Methods
Reagents and instruments
All chemical reagents were of analytical grade and
were purchased from Aladdin Reagent Corporation
(Shanghai, China). The chemical compositions of S-
phenyl-L-cysteine and thiophenol were verified using
HPLC (Shimadzu High-Performance Liquid Chro-
matograph, Kyoto, Japan). 1H NMR spectra were re-
corded on a Bruker DRX500 (500MHz; Tokyo, Japan).
Optical rotations were recorded using a WZZ-2B po-
larimeter (Hinotek, Ningbo, China). Mass spectra were
recorded on a Mariner ESI-TOF mass spectrometer
(Applied Biosystems, Foster City, CA). The enantio-
meric purities of the residual substrate were deter-
mined as described by Zheng [18]. Elemental
compositions were measured using a trace element
auto analyser (EA3000 type).

Enzymes
The gene encoding tryptophan synthase was cloned
from E. coli k-12 MG1655. The E. coli strain BL21(DE3)
carrying the recombinant plasmid Duet-trpBA (DM206)
was constructed in our laboratory (Fig. 9). Tryptophan
synthase appeared as an intense protein band with an
apparent molecular mass of approximately 45 kDa. The
amplified PCR product was separated by agarose gel
electrophoresis. The gene encoding tryptophan synthase
was 2 kb. A loopful of strain culture was used to inocu-
late 40 ml of LB broth in a 200 ml Erlenmeyer flask. The
flask was incubated at 30 °C for 12 h on a rotary shaker
at 170 rpm. Tryptophan synthase was purified according
to the protocol described by Tsunehiko et al. [19]. The
cells containing tryptophan synthase were placed in 40
ml of 40 mM Tris-HCl (pH 7.5) and then ultrasonicated
at 4 °C. The cell-free extracts of tryptophan synthase

Fig. 6 HPLC chromatograms of S-phenyl-L-cysteine. (Reaction times a: 0 h, b: 6 h, and c: 8 h)
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were then fractionated using (NH4)2SO4 (20–60%). The
active fractions of tryptophan synthase were collected by
(NH4)2SO4 sedimentation; they were then applied to a
DEAE-Sepharose CL-6B column (4.5× 85 cm; Seikagaku
Kogyo, Japan) and equilibrated with 45 mM Tris-HCl
(pH 7.5) containing 1mM manganese sulfate. The tryp-
tophan synthase was eluted using 45 mM Tris-HCl (pH
7.5) containing 1mM manganese sulfate. The final tryp-
tophan synthase sample was found to be homogeneous

based on SDS-polyacrylamide gel electrophoresis. Fol-
lowing the addition of (NH4)2SO4 to the final tryptophan
synthase sample, it was stored at 4 °C in buffer contain-
ing 45 mM Tris-HCl (pH 7.5) with 1 mM manganese
sulfate, which is the buffer system that had been used
throughout the tryptophan synthase purification proced-
ure. The activity of tryptophan synthase was determined
by the conversion rate of S-phenyl-L-cysteine. Trypto-
phan synthase was directly mixed with the substrate

Fig. 7 1H NMR spectrum of S-phenyl-L-cysteine (400 MHz, D2O)

Fig. 8 Mass spectrum of S-phenyl-L-cysteine
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(100 mmol/L) at 40 °C and pH 9.0 for 14 h using Trion
X-100 at 0.02%.

Preparation of thiophenol (4)
The preparation of thiophenol included three steps: (1) the
reaction of magnesium and bromobenzene, which formed
phenyl magnesium bromide; (2) a Grignard reaction with
sulfur, which formed thiophenyl magnesium bromide; and
(3) the hydrolysation of thiophenyl magnesium bromide by
sulfuric acid, which afforded thiophenol (4).
For the first step, bromobenzene was dissolved in

THF. Bromobenzene (25%) was added to the reactor
containing magnesium. Bromobenzene (15.6 g) was dis-
solved in tetrahydrofuran (THF, 50 mL). A quarter of the
bromobenzene solution and the magnesium (3.07 g)
were added to the reactor. The reactor was stirred at
170 rpm under N2. Bromoethane (1.66 g) in THF (5 mL)
was added into the reactor. The mixture was heated at
75 °C. The remaining bromobenzene in THF was
dropped into the reactor after cooling. The reactor was
stirred at 75 °C for 150 min. After cooling the filtrate to
30 °C, the formed phenyl magnesium bromide (2) was
separated by filtration.
For the second step, sulfur (4.05 g) was dropped into

the reactor with phenyl magnesium bromide (2). The re-
actor was stirred at 50 °C. Thereafter, the mixture was
heated at reflux for 1 h. Thiophenyl magnesium bromide
(3) was formed upon cooling.

In the third step, thiophenyl magnesium bromide was
hydrolysed by sulfuric acid. Sulfuric acid (44ml; 2.27M) was
dropped into the reactor over 20min at 60 °C. The reactor
was stirred at 75 °C for an additional 60min. Another
portion of sulfuric acid (14.4ml; 6.93M) was dropped into
the reactor over 20min. The resulting solution formed two
layers.

The enzymatic step
In this study, thiophenol (4) was prepared through three
simple steps (Fig. 1). S-Phenyl-L-cysteine (5) was synthe-
sized using tryptophan synthase. In the biosynthetic reac-
tion, the reactor was stirred at 170 rpm under N2. The
content of thiophenol gradually decreased as S-phenyl-L-
cysteine was formed over 14 h. After 14 h, HCl was added
to the enzymatic reaction to adjust its pH to 0.5, generat-
ing S-phenyl-L-cysteine. The enzymatic reaction mixture
was filtered, and the filtrated was adjusted to pH 2.5 using
sodium hydroxide. After cooling the filtrate to 10 °C, the
target product (S-phenyl-L-cysteine) was obtained.
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