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Laser-fabricated cell patterning stencil for
single cell analysis
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Abstract: Precise spatial positioning and isolation of mammalian cells is a critical component of many single cell
experimental methods and biological engineering applications. Although a variety of cell patterning methods have
been demonstrated, many of these methods subject cells to high stress environments, discriminate against certain
phenotypes, or are a challenge to implement. Here, we demonstrate a rapid, simple, indiscriminate, and minimally
perturbing cell patterning method using a laser fabricated polymer stencil. The stencil fabrication process requires
no stencil-substrate alignment, and is readily adaptable to various substrate geometries and experiments.

Keywords: Single-cell, Microwell, Cell patterning, Adhesion, Cell culture

Background
The ability to manipulate and selectively localize cells into
patterns or distinct microenvironments is critical for single
cell analysis [1–4], tissue engineering [5, 6], cell signaling
studies [7–9], drug screening [10–12], and cell migration
assays [13, 14]. Exploring the population dynamics and
communal contributions within heterogeneous cell popula-
tions is fundamental to furthering our understanding of
disease pathology [15–18]. In recent years, much effort has
been focused on developing innovative, active and passive
cell patterning methods and applications thereof. Many ac-
tive cell patterning and isolation methods utilize microflui-
dic systems, in which cells are manipulated and transported
using fluidic forces. Inkjet-based cell ‘printing’ and depos-
ition methods have proven effective at sorting and pattern-
ing cells at the bulk and single cell level, but are typically
low throughput and raise concerns about cell stress re-
sponses [19–22]. A variety of microfluidic geometries have
been used to pattern cells into hydrodynamic traps at single
cell capture efficiencies nearing 100% for capture rates on
the order of thousands of cells per minute [23–29]. While
trap-based approaches are very high throughput, they may
discriminate against particular cell morphologies or sizes
with relevance for human disease [30]. Microfluidic trap en-
vironments also impose difficulties in delivering single cells
to isolated microenvironments for further experimentation.

Droplet based microfluidics, which encapsulate single cells
within medium-oil emulsion droplets, are highly effective at
isolating cells at hundreds of droplets per second [31–33]
and are cost-effective for biomolecular analysis of single cells.
However, these approaches are poorly suited for studying
temporal processes in live cells due to the limited supply of
gas and nutrients in the droplet environment. It is also un-
clear how droplet technology can be integrated with on-chip
analysis that require multistep processes such as single cell
PCR [34]. An additional shortcoming of all microfluidic pat-
terning and isolation approaches is that they subject cells to
shear stress that can effect cell health, function, and gene ex-
pression [35].
Several non-hydrodynamic methods have also proven

effective at actively patterning cells. Magnetic spot mi-
croarrays can localize magnetically labelled cells onto
complementary features of cell patterning substrates [36,
37]. Non-uniform electric fields have been demonstrated
to polarize single cells thus creating a mechanism by
which they can be patterned or even rotated in the
absence of a label [38–40]. Laser and optical fiber based
systems have been used to assemble, sort, and pattern
live cells [41–43]. A prominent concern with these
optical approaches is the large power output required to
trap cells and the physiological damage that cells may
incur due to heating [44]. Recently, fluidic devices utiliz-
ing acoustic fields have proven effective at spatially
patterning [45, 46], and rotating [47] cells with 5 × 105

times lower power exposure than optical systems [48].
However, all of these approaches require specialized
equipment and expertise at the implementation step.
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Many passive cell patterning methods achieve
localization through chemical [49–52] or topograph-
ical [53, 54] surface modifications, deterring adhesion
to undesired regions and/or promoting adhesion to
desired regions. This preferential adhesion patterning
strategy has also been demonstrated with dynamic
substrates, where surface properties can be modulated
in real-time to alter adhesion susceptibility [55]. How-
ever, substrate surface modification is prone to select
for cells with a particular adhesive behavior, and may
discriminate against certain phenotypes [56]. A large
body of evidence suggests that the distribution of ad-
hesive phenotypes within cell populations has pro-
found implications in biological development and
disease pathology [57, 58]. The biased nature of sur-
face modification cell patterning suggests it may be ill
suited for high throughput single cell analysis
methods where isolation of representative populations
is desirable. Further, it is well understood that extra-
cellular matrix components that promote cell adhe-
sion also profoundly influence cell physiology [59,
60]. Other passive patterning strategies utilize trad-
itional random seeding approaches but with physical
barriers (stencils) to pattern cells onto accessible re-
gions of substrates [61–65]. Because stencil patterning
relies upon physical barriers, there is little to no
phenotypic discrimination imposed upon the seeded
population, so long as the stencil through-holes are
large enough to be cell-size indiscriminate. However,
the use of a cell patterning stencil to seed cells into
predefined features of a substrate typically requires
microscale stencil-substrate alignment, presenting a
challenge in the utilization of typical stencils.
Therefore, despite significant recent advances, major

challenges remain in obtaining large, representative
quantities of isolated single cells. Here, we demon-
strate the use of a rapidly produced laser-fabricated
polymer stencil to pattern cells into wells of microar-
rays without the need for stencil-substrate alignment.
Laser ablation is used to create holes in the polymer
film, while it is immobilized and stretched across the
microwell array. The stencil remains fixed relative to
the underlying substrate during cell seeding. Seeded
cells can only access the microwell array by settling
through the holes, and are blocked by the film from
accessing other areas of the substrate. In our geom-
etry, this results in cells being restricted to the inside
of the microwells. After cell adhesion, the stencil is
removed and the patterned cells are ready for experi-
mental treatments and analysis. This approach does not
require specialized expertise or equipment for the imple-
mentation steps. Further, it does not introduce any add-
itional stress to the cells relative to normal cell culture
and does not decrease cell viability. We demonstrate that

this method greatly increases efficiency of seeding cells
into defined locations on a substrate.

Methods
Device fabrication
Fused silica wafers (4 in. diameter, 500 μm thickness)
were etched using standard photolithography to create
37 arrays of 2980 microwells (20 μm deep, 80 μm
inner diameter, 120 μm outer diameter) hexagonally
packed within 9 mm by 9 mm footprints. The wafer
was partitioned into the 37 individual microwell array
cell-seeding substrates using a dicing saw. The sub-
strates were sonicated for 30 min in 1X alkaline de-
tergent to remove particles and fibers, followed by
rinsing and sonicating in deionized water for an add-
itional 30 min. Substrates were then dried in a 105 °
C oven and stored for later use.
X-Ray Fluorescence (XRF) film (3090, Chemplex, Palm

City, FL) was stretched using an XRF sample cup, rinsed
with ethanol, dried with nitrogen, and secured to the sur-
face of the microwell array substrate. A purpose-built fix-
ture was used to clamp the polymer film onto the
microwell array substrate and also provide a reservoir for
holding cell culture medium during equilibration and cell
seeding (Fig. 1a, b). The area of the reservoir footprint that
cells are seeded onto was 236 mm2. The fixture ensures
that the position of the film and underlying substrate are
fixed relative to one another through the fabrication and
cell seeding process. The fixture was secured to the mech-
anical stage (ATS250, Aerotech, Pittsburgh, PA) of a laser
fabrication environment where a 355 nm UV laser (AVIA
355–3000, Coherent, Santa Clara, California) was focused
through the substrate and onto the surface of the polyester
XRF film (Fig. 1c). The laser was tuned to output radiation
below the ablation threshold of fused silica (48 μJ/pulse,
40 ns pulse width, 6 kHz repetition rate, defocused to
30 μm) to avoid substrate ablation, while still having suffi-
cient energy to form a pore in the XRF film. Poration is
achieved through the redistribution of film away from the
site of exposure (through ablation or heat induced polymer
restructuring) leaving a pore slightly larger than the irradi-
ated area (~35 μm) (Fig. 1d).
The fabrication environment was programmed to traverse

the geometry of the cell seeding substrate, aligning to the
center of each well and perforating the film through 500 ms
UV exposures. The porated substrate assembly was then
placed into a 35 mm petri dish and plasma treated to hy-
droxylate the surface of the substrate and XRF film, sterilize
the cell seeding surface, and promote cell adhesion [66].

Cell culture
Cells were purchased from ATCC (Manassas, VA).
MDA-MB-231 (triple negative, metastatic breast cancer,
HTB-26) were grown in DMEM supplemented with 10%
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FBS, 100 units/mL penicillin, and 100 μg/mL strepto-
mycin, HME1 (derived from non-cancerous human
breast epithelium, CRL-4010) were grown in MEBM
supplemented with 100 units/mL penicillin, 100 μg/mL
streptomycin, and supplement and growth factor kit
supplied by the manufacturer (CC-3151, CC-4136,
Lonza Basel, Switzerland), K562 (chronic myelogenous
leukemia, CCL-243) were grown in RPMI supplemented
with 10% FBS, 100 units/mL penicillin, and 100 μg/mL
streptomycin. All cultures were maintained in a 37 °C,
humidified incubator. Adherent cells were collected by
trypsinization and all cells were counted and viability
assessed with a Countess® Automated Cell Counter (Life
Technologies, Carlsbad, CA) using the Trypan Blue dye
exclusion assay. Cells were only used if initial viability
was >95%.

Cell seeding
Prior to use, plasma treated fixtures were equilibrated with
cell culture medium at 37 °C for 4–18 h. Medium was
then removed by pipetting and 600 μL of cell suspension
at the indicated concentration was added to the reservoir

(Fig. 1e). Cells were allowed to adhere to the substrate for
18 h under normal culture conditions. Then the fixtures
were disassembled and the stencil film was peeled off with
forceps, effectively removing cells not localized to well-
interiors (Fig. 1f). The disassembled fixtures were disin-
fected with 70% ethanol, rinsed 3× with dH2O, then air
dried for reuse. The stencil films were discarded after a
single use. Substrates were visually inspected prior to cell
seeding to verify that the stencil and microwell array were
well aligned (Fig. 1g). A second visual inspection was per-
formed prior to removing the stencil film to qualitatively
evaluate cell health and morphology on the stencil film,
and within the wells (Fig. 1h). A similar procedure was
used to assemble the no-stencil control assays wherein the
microwell array substrate was placed atop the polymer film
inside the fixture. Cells were then seeded into the reservoir
onto the uncovered substrate.

Cell labeling and imaging
Cell viability was evaluated by LIVE/DEAD® Cell Imaging
Kit (488/570) (R37601, Thermo Scientific, Waltham, MA)
according to the manufacturer’s protocol. Cells were

Fig. 1 Fabrication process and application of cell patterning stencil. a Photograph of the purpose-built fixture (shown inside a 35 mm petri dish)
used to secure the polymer thin-film to the microwell array substrate. The microwell array is inside the central reservoir under the polymer film
(arrow). b Enlarged cross-sectional diagram of a single microwell (80 μm inner diameter) from the microwell array substrate. The polymer thin-film
(blue) is secured across the top of the microwells. c Laser is focused onto the surface of the thin-film and aligned with the center of
each microwell. d Thin-film stencil with 35 μm laser fabricated pore aligned with underlying microwell. e Traditional random seeding is
used; cell suspension is deposited onto the thin-film polymer stencil. Cells (blue ovals) settle onto the stencil surface and through the
pores into the microwells below. f After cell attachment and spreading, the stencil is removed from the substrate revealing spatially-
patterned cells. g Phase-contrast image of the stencil substrate prior to cell seeding (equivalent to panel d diagram). h Phase-contrast
image of the stencil and substrate after cell seeding (equivalent to panel e). Arrows indicate cells inside microwells, arrowheads indicate
cells adhered to the stencil. i Composite fluorescent image of cell nuclei and phase-contrast image of the microwell array substrate after
removal of the stencil (equivalent to panel f)
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labeled after the 18 h adhesion period and prior to re-
moval of the seeding stencil. In order to evaluate the dis-
tribution of cells on the microwell array substrate, cell
nuclei were labeled with the NucBlue® Live ReadyProbes®
Reagent (R37605Thermo Scientific). The fixtures were
disassembled and the stencil film removed as described,
then the microwell array substrates were transferred to a
six well plate containing fresh cell culture medium and
the nuclear label. Cells were incubated for 10 min and
then imaged via wide-field microscopy (Fig. 1i). The
microwell array was imaged by phase contrast and the nu-
clear and viability stains were imaged via wide-field epi-
fluorescence. The excitation and emission wavelengths in
nm were: 360/460 to detect nuclei (blue), 485/540 to de-
tect live cells (green), and 540/600 to detect dead and
dying cells (red). All images were collected using an
inverted, Nikon TE2000-U fluorescence microscope with
a 4× plan apo lens, NA= 0.2, and a Hamamatsu Orca
Flash 4.0 digital CMOS camera. The entire microarray
was imaged in each channel by stitching individual image
fields. Image acquisition was automated using NIS-
Elements software.

Image analysis
Cell viability and localization were evaluated by
counting cells from 400 wells from each microwell
array. The 400 wells are a randomly sampled subset
from the total of ~2980 well detections provided by a
normalized 2D cross correlation algorithm imple-
mented in National Instruments LabVIEW software.
For cell distribution, labeled nuclei were identified as
localized to the interior or the exterior of each well.
The exterior of the well was defined as the outside of
the well or the lip of the well. Cells located outside
of wells were automatically assigned to the nearest
well by comparing the Euclidean distances between
the cell and the centroids of the 400 sampled wells.
The efficacy of the cell patterning stencil was evalu-
ated by calculating the localization efficiency, which
was defined as the percentage of cells localized to the
interior of wells relative to the total cell count. The
biocompatibility of the polymer stencil and the stencil
removal process was evaluated by examining the via-
bility of cells in wells, seeded with or without a sten-
cil. Dead (or dying cells) were determined as the
percent of red-labeled cells relative to total (blue) nu-
clei. Live cells were visually confirmed by the pres-
ence of green-labeled cytoplasm, however, this label
was not used for quantification.

Statistical analysis
Data were pooled from a minimum of three independent
experiments. Data were analyzed by Student’s t-test and
Mann-Whitney U test using the R statistical computing

environment. P-values of <0.05 were considered
significant.

Results
Biocompatibility of polymer film stencil
We used a commercially available cell viability assay to
investigate the biocompatibility of the laser fabricated
polymer stencil. We compared viability of cells seeded
through the stencil to cells seeded directly onto an un-
covered microwell array. Biocompatibility was measured
in terms of cell viability, defined as the percentage of
cells within wells that were neither dead nor dying, as
indicated by absence of red labeling of the nuclei. Cells
were manually counted in the blue (all nuclei) and red
fluorescent images. The red, dead cell, channel was used
for counting since this signal is confined to the nucleus,
and thus there is negligible overlap or contact between
individual cells, allowing greater accuracy in counting.
Figs. 2a and b show representative images of nuclei and
LIVE/DEAD labeled HME1 and MDA-MB-231 cells re-
spectively. The stencil reduced the total number cells be-
cause it blocks the majority of cells from adhering to the
substrate. Use of the stencil did not reduce cell viability
in either cell line; in fact, the stencil seeded cells had a
very slight increase in survival. For both the stencil and
no-stencil seeding environments, cell viabilities were
found to be in excess of 95% on average across all ex-
perimental seeding densities (Fig. 2c).

Cell patterning localization efficiency
To evaluate the effectiveness of the cell patterning
stencil for localizing cells, localization efficiencies
were compared between stencil-seeded and directly-
seeded substrates. Cells seeded at 100 K cells/mL
through a stencil were highly localized to well-
interiors (Fig. 3a) with localization efficiencies of 97%
for K562 cells, 82% for HME1 cells, and 92% for
MDA-MB-231 cells. The stencils increased the per-
centage of cell in microwells by approximately 3-fold
and 4-fold for HME1 and MDA-MB-231 cells, re-
spectively. This represents a significant increase in
localization efficiency (p < 0.01) relative to controls
seeded without stencils (Fig. 3b). Seeding through the
stencil had an even more profound effect on the cell
distribution of K562 cells. This cell line is generally
considered non-adherent and is grown in suspension
culture. As expected, when these cells were seeded
onto bare microwell array substrates, few cells were
observed after the substrate was removed from the
fixture and placed in fresh medium in a petri dish.
Generally, 0–5 cells were observed across the entire
array. Interestingly, when these cells were seeded
through the stencil, many cells were retained in the
microwells after removal of the stencil and transfer to
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fresh medium. The mechanism for this is not com-
pletely clear, but one possibility is that the stencil re-
duces turbulence of the medium close to the
substrate surface. With this reduction in fluid motion,
some very low level of adhesion to the substrate is
sufficient to immobilize these cells in the microwells.
It should be noted that though they are retained
through the disassembly of the fixture and transfer to
fresh medium, rinsing these cells with moderate force,
or multiple medium changes will dislodge them.

Effects of seeding density
We found that the enhanced localization efficiency pro-
vided by the seeding stencil was relatively independent of
seeding density with a 4-fold average increase in
localization across all seeding densities for MDA-MB-231
cells and 3-fold increase for HME1 cells (t-test; p < 0.0001)
(Fig. 4). These findings confirm that the stencil is highly
effective at controlling the localization of cells using vari-
ous cell lines and across a wide range of seeding densities.
The ability to efficiently pattern cells to defined loca-

tions is of significant value in single cell analysis. With
this in mind, we next sought to investigate the frequency
of single cell occupancy in microwells seeded through
our stencil. The relationship between the seeding density
and the percentage of sampled wells containing single
cells (single cell occupancy) was found to exhibit differ-
ent trends for each cell line. The K562 cell line, which
requires the use of a stencil to achieve successful adhe-
sion, exhibited very little correlation between seeding
density and single cell occupancy, which remained at ap-
proximately 17% through all experimental densities

Nuclei                    Live                      Dead

100 µm

100 µm

Nuclei                    Live                      Dead

a

b

c

Fig. 2 Viability of cells seeded through stencil. a Fluorescent
micrograph of HME1 cell nuclei (blue), live cells (green), and dead/
dying cells (red) seeded onto a microwell array substrate with and
without a stencil. Cells were imaged after cell adhesion and removal
of the stencil film. Arrows indicate equivalent positions in each color
channel. b Fluorescent micrograph of MDA-MB-231 cell nuclei (blue),
live cells (green), and dead/dying cells (red) seeded onto a microwell
array substrate with (top) and without (bottom) a stencil. Arrows
indicate equivalent positions in each color channel. c Cell viability of
HME and MDA-MB-231 cells seeded with and without stencil. Data
pooled from 12 independent experiments. Error bars indicate
the SEM

Fig. 3 Cell seeding localization efficiency. a Composite fluorescent
(nuclei, blue) and phase contrast (microwells) micrographs of K562,
HME1, and MDA-MB-231 cells seeded with (top) and without (bot-
tom) a polymer stencil. Cells were imaged after cell adhesion and
removal of the stencil film. b Mean and standard error of localization
efficiency for substrates seeded at 100 K cells/mL with and without
a polymer stencil. Exclamation point (!) indicates a lack of reliable
data due to cells being non-adherent in the absence of the stencil.
Data were pooled from four independent experiments. P-values
determined by Mann-Whitney test
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(Fig. 5). Single cell occupancies of HME1 cells trended
toward a loosely parabolic dependence on seeding dens-
ity, with densities near 50 K cells/mL yielding the largest
fraction of single-cell wells for both stencil seeded and
control cells. Stencil-seeded and directly-seeded HME1

cells did not differ significantly in single cell occupancy
(Mann-Whitney U test: p > 0.1) (Fig. 5). In contrast, sin-
gle cell occupancies of MDA-MB-231 were positively
impacted by stencil-seeding. MDA-MB-231 stencil-
seeded substrates with seeding densities above 50 K
cells/mL were found to be significantly higher (Mann-
Whitney U test: p < 0.05) than directly-seeded controls,
averaging at about 31% single cell occupancy. We ob-
served that at high concentrations, these cells tend to
clump together into loosely adherent aggregates. We
therefore speculate that the stencil acts as a cellular
sieve, favoring single cells or doublets, while inhibiting
the passage of larger aggregates. The exhaustive distribu-
tions of empty, single, double, triple, and quadruple oc-
cupied wells under various seeding conditions was also
investigated (Fig. 6). These data support the idea that
the stencil shifts the balance of cell distribution in wells
toward single cells at the expense of wells containing
four cells in the MDA -MB-231 cell line.

Discussion
Cell patterning has broad applications, particularly in
the field of single cell analysis. Though many approaches
have been described, limitations remain such as expense,
difficulty of use, and cell stress. The stencil method pre-
sented here resolves these challenges. We have imple-
mented this approach in conjunction with single cell
metabolic analysis. In related work, our group has devel-
oped a platform for high throughput analysis of single

Fig. 4 Localization efficiency variation across cell line and seeding
density. Localization efficiency was calculated as the percent of cells
in microwells relative to total cells on the substrate after removal of
the stencil film. Four hundred random wells with surrounding area
were sampled from each array. No data were collected for K562 cells
in the No Stencil condition, because few or no K562 cells adhered
to the substrate without the stencil. Data were pooled from four
independent experiments. Error bars indicate SEM

Fig. 5 Frequency of single-cell occupancy. Single cell occupancy is presented as the percentage of microwells containing a single cell. Exclamation point
(!) indicates a lack of reliable data due to cells being non-adherent in the absence of the stencil. For MDA-MB-231 cells, the stencil significantly increased
single-cell occupancy, as indicated by an asterisk, at seeding densities of 100 K cells/mL (p= 0.032), 200 K cells/mL (p= 0.0095), and 400 K cells/mL (0.019).
Four hundred random wells were sampled from each array. Error bars indicate SEM
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cell oxygen consumption rate and extra cellular acidifica-
tion [67]. In this approach a microwell array, as described
here, is seeded with cells, then sealed with a lid coated
with an oxygen and pH sensitive, fluorescent sensor film
[68–71]. Each well is temporarily, hermetically sealed with
the sensor lid, allowing measurement of metabolic output
from individual cells or small groups of interacting cells.
For this particular application, exclusion of cells from the
microwell lips is critical for effective sealing of the array as
well as reducing cellular responses to components re-
leased from damaged cells caught between the sealing sur-
faces. After random seeding through the stencil, we
employ automated image analysis to determine the num-
ber of cells in each well and correlate the number of cells
with metabolic readouts.
While higher single cell occupancy, approaching 100%,

can be achieved by modern microfluidic methods [72],
the use of a stencil has the benefit of not subjecting the
cells to the high shear stress environments or impacts
characteristic of high-throughput microfluidic devices.
Biocompatibility of the stencil was demonstrated using a
LIVE/DEAD assay, which indicated no increase in cell
death. Cell viability was comparable to what has been
previously reported for surface affinity patterning at 95%
[50], micro-trap patterning at 94% [25], cell deposition
patterning at 90% [19], and block-cell patterning at 95%
[23] for various cell lines.
An additional advantage of our stencil approach is that

it separates the cell patterning function from downstream
analysis or additional experimental manipulations. For ex-
ample, the design of our metabolic analysis platform [67],
is optimized for sealing the microwells for efficient metab-
olite measurements. Engineering additional functionality

for cell trapping such as a microfluidic component, would
complicate both the device fabrication and experimental
protocol, as well as likely compromise the analytic func-
tionality. The stencil design also dramatically simplifies
the cell loading procedure for the end user. Microfluidic-
based cell patterning requires specialized equipment, ex-
pertise, and relatively demanding optimization. Use of the
patterning stencil described here, requires only standard
cell culture skills and no specialized or costly equipment.
Though we describe a specific application, this general

approach, a removable stencil fabricated in situ on a
functional substrate, is extensible to a wide range of ap-
plications and geometries. In recent years there have
been remarkable advances in lab-on-chip and high
throughput single cell analytic technologies [73]. Many
of these platforms require precise localization of individ-
ual cells prior to cell lysis [74] or on-chip analyses such
as qPCR [75, 76], proteomics [77], genome sequencing
[78] or cell signaling [79]. Integrating stencil-assisted cell
seeding into these emerging technologies has the poten-
tial to simplify device fabrication and dramatically re-
duce the complexity of experimental protocols. This
method retains the ease of random cell seeding, with
equivalent or increased single cell deposition, while dra-
matically reducing the occurrence of “off-target” cells.

Conclusions
We demonstrate a laser-fabricated cell seeding stencil to
be highly effective at patterning cells into features of
microfabricated substrates. Stencils are readily adaptable
to specific substrates or experimentally desirable geom-
etries and multiple cell types. This approach does not
expose cells to any physical stresses beyond those of

Fig. 6 Well occupancy distributions. The occurrence (y-axis) represents the percentage of wells containing a specified number of cells (0–4, x-axis)
at each seeding density. Note that K562 cells were non-adherent on the microwell array in the absence of a stencil. The data were pooled from
three independent experiments. Error bars indicate SEM

Messner et al. BMC Biotechnology  (2017) 17:89 Page 7 of 9



standard cell culture. Since the cell stencil approach re-
lies on a physical barrier instead of differential cell adhe-
sion to achieve isolation, it does not select
subpopulations of cells based on adhesion properties or
expose cells to reactive substrates that may alter cellular
physiology. Preparation of the stencil is simple and high
throughput; stencils for 2980-microwell arrays can be
prepared in less than an hour. Because the stencil is fab-
ricated while affixed to the cell seeding substrate, there
is no need for microscale stencil-substrate alignment,
dramatically simplifying its usage. Since the specificity of
cell localization is based on the design of the stencil and
not the cell seeding technique, this approach is readily
accessible to researchers in biological fields using stand-
ard cell culture techniques.
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