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Characterization of a novel bioflocculant
from a marine bacterium and its
application in dye wastewater treatment
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Abstract

Background: The identification of microorganisms with excellent flocculant-producing capability and optimization
of the fermentation process are necessary for the wide-scale application of bioflocculants. Thus, we evaluated the
flocculant-producing ability of a novel strain identified by the screening of marine bacteria, and we report for the
first time the properties of the bioflocculant produced by Alteromonas sp. in the treatment of dye wastewater.

Results: A bioflocculant-producing bacterium was isolated from seawater and identified as Alteromonas sp. CGMCC
10612. The optimal carbon and nitrogen sources for the strain were 30 g/L glucose and 1.5 g/L wheat flour. In a 2-L
fermenter, the flocculating activity and bioflocculant yield reached maximum values of 25754 U/mL and 11.18 g/L,
respectively. The bioflocculant was separated and showed good heat and pH stability. The purified bioflocculant was a
proteoglycan consisting of 69.61% carbohydrate and 21.56% protein (wt/wt). Infrared spectrometry further indicated
the presence of hydroxyl, carboxyl and amino groups preferred for flocculation. The bioflocculant was a nanoparticle
polymer with an average mass of 394,000 Da. The purified bioflocculant was able to remove Congo Red, Direct Black

and Methylene Blue at efficiencies of 98.5%, 97.9% and 72.3% respectively.

Conclusions: The results of this study indicated that the marine strain Alteromonas sp. is a good candidate for the
production of a novel bioflocculant and suggested its potential industrial utility for biotechnological processes.
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Background

Flocculation is considered an easy, low-cost and eco-friendly
separation process [1] and is carried out in a variety of
industrial processes, including wastewater refinement, pro-
cesses in the food-related and fermentation industries, and
drinking water purification [2, 3]. Bioflocculants are natural
macromolecular polymers produced by microorganisms
that are capable of flocculating various suspended solids,
such as cells and colloidal solids, with the character of
harmless and biodegradable [4]. Therefore, bioflocculants
have been extensively employed in removing pollutants
(such as dye particles [5], heavy metal ions [6] and arsenite
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[7]) from wastewater, for sludge thickening and dewatering
[8, 9] and for the harvesting of microbial biomass [10].
Bioflocculant-producing microorganisms have been isolated
from a wide variety of ecosystems such as wastewater, rivers,
soil and activated sludge [11]. In general, biological floccula-
tion is a dynamic process, which often occurs in the aerobic
treatment of activated sludge. Thus, activated sludge is
considered one of the best and most favoured sources of
bioflocculant-producing strains. A variety of microorganisms
including Chryseobacterium daeguense [12], Rhodococcus
erythropolis [13] and Solibacillus silvestris [14] have been
isolated from activated sludge. Recently, some microor-
ganisms that produce bioflocculants have also been
isolated from unusual environments such as sputum
[15] and human saliva [16].

Although many bioflocculants have been idntified, their
large-scale production is still limited by low vyield, high
production cost, and week activity [3]. Thus, the search
for microorganisms with better bioflocculant-producing
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capacities and the optimization of medium constituents
and fermentation conditions are still effective strategies to
improve bioflocculant yields and flocculating activity.
Recent efforts to reduce the production cost of biofloccu-
lants have been effective but not sufficient. The utilization
of inexpensive substrates for bioflocculant production has
been investigated. Pseudomonas veronii can produce a
bioflocculant from the hydrolyzate of peanut hull, which
can effectively save the production cost of bioflocculant
[17]. Other agricultural wastes, such as rice stover and
corn stover, have also been applied as inexpensive carbon
sources to produce bioflocculants [18, 19]. Various
wastewaters, including potato starch wastewater and
chromotropic acid wastewater, have been used as cheap
carbon sources to reduce the production cost [9, 20].
Other reports focus on the optimization of the culture
media and conditions for bioflocculant production [7, 21].
Marine habitats, that support a rich biodiversity of marine
bacteria, remain underexplored for industrial utilization
and yet possess enormous potentials for screening
novel bioflocculant-producing microorganisms. Due to
their species diversity, marine microorganisms can pro-
duce a wide variety of metabolites with various structures
[22]. In recent years, research on the abilities of marine
microbes to secrete bioflocculant is receiving increasing
attention [23, 24].

In this study, a marine bacterium, Alteromonas sp.
CGMCC 10612, with excellent bioflocculant-producing
capability was isolated, and a novel proteoglycan biofloc-
culant was identified. Subsequently, the actual applications
of this bioflocculant in the treatment of various dye waste-
waters were investigated under a variety of conditions.
According to our literature search, no previous report has
documented the use of Alteromonas sp. in the production
of bioflocculant.

Methods

Isolation and identification of Bioflocculant-producing strains
Bioflocculant-producing strains were isolated from the
surface seawater collected from the SEATS station in the
South China Sea (18°N, 116°E). The enrichment culture
was set up with 2% (v/v) seawater in a medium containing
(g/L) tryptone 10.0, yeast extract 5.0, nutrient broth 0.5,
sea salt 34.0, sodium citrate 0.5, sodium acetate 1.0 and
NH4NO; 0.2 (pH 7.5). The enrichment test was per-
formed under aerobic conditions on a rotary shaker at
30 °C and 150 rpm. After a 24-h incubation, 1 mL of
culture broth was inoculated to the same medium three
times to enrich the microbial culture.

The enrichment culture was diluted and spread onto
agar plates containing the following sterilized medium
(g/L): glucose 10.0, urea 1.0, yeast extract 1.0, sea salt
34.0, KH,PO, 0.1 and K,HPO, 0.1 (pH 7.5). After culti-
vation for 2 days at 30 °C, single colonies with mucoid
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and ropy morphology were picked and inoculated into
liquid for 48 h at 30 °C and 150 rpm. The strains with
the ability to produce bioflocculant were selected and
spread onto agar plates for 48 h at 30 °C, followed with
5 cycles of agar plate coating to ensure the purities of
the strains with the highest flocculating activity.

The bioflocculant-producing strains were identified
on the basis of the 16S rRNA gene according to the
method in a previous study [17]. The genomic DNA
from Alteromonas sp. CGMCC 10612 was extracted using
an E.ZN.A. Bacterial DNA Kit (OMEGA, Norcross, GA).
The 16S rRNA gene was sequenced by Sangon (China) and
analysed by blast in the National Center for Biotechnology
Information (NCBI) Database.

Determination of flocculating activity

Flocculating activity was determined using kaolin-clay
suspensions as an indicator as described previously [25].
Each sample was analysed in triplicate. A control was per-
formed with uninoculated culture medium substituted for
the sample.

Effects of initial pH, temperature, sources of carbon and
nitrogen and metal ions on the Bioflocculant production
Alteromonas sp. CGMCC 10612 was selected for further
experimental investigation to optimize the process param-
eters. Except as otherwise noted, all liquid cultures were
grown in triplicate in 250-mL flasks containing 50 mL of
medium on a rotary shaker at 30 °C and 150 rpm. To
obtain the optimum fermentation temperature, the bacteria
were cultured at 20, 25, 30, 37 and 42 °C, and then the
flocculating activity and ODgoy of the 48-h broth were
determined. The effects of pH variation in the range of
4.0-10.0 on the cell growth and bioflocculant production
were also analysed. Bioflocculant production was also
monitored using various carbon sources such as glucose,
sucrose, starch, fructose, glycerol, lactose and sodium
citrate at 10 g/L. The impact of various organic and inor-
ganic nitrogen sources such as yeast extract, tryptone, beef
extract, soy flour, wheat flour, urea, NaNO; and NH,Cl
was also explored when the medium contained glucose as
the carbon source and the initial pH was 7.5. Furthermore,
the effects of different proportions of phosphate as well
as different concentrations of sea salt, glucose and
wheat flour on the production of the bioflocculant from
Alteromonas sp. CGMCC 10612 were investigated.

Culture process in a 2-L fermenter

Fermentation was carried out in a 2-L fermenter
(ez-Control, made in Holland) containing 1.5 L of
fermentation medium with an inoculum of 50 mL. The
culture was carried out at 37 °C, and DO was automatically
controlled to remain no lower than 30%. Samples were
taken every 4 h and then subjected to further analysis.
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Purification of the Bioflocculant

The fermentation broth was centrifuged at 12,000 rpm
for 10 min to remove bacteria. The supernatant was
then mixed with 3 volumes of chilled ethanol and left to
stand at 4 °C overnight. The resultant precipitate was
collected by centrifugation at 8000 rpm for 15 min, and
the crude bioflocculant was obtained. The crude biofloc-
culant was redissolved in distilled water, followed by
dialysis using a membrane with a 7000-14,000 MWCO
at 4 °C for 12 h. Three volumes of cold ethanol were
then added. After 2 h, the resulting precipitate was
collected by centrifugation at 8000 rpm for 15 min and
finally lyophilized to collect the purified bioflocculant.

Characterization of purified bioflocculant

Compositional analysis of purified bioflocculant

The total protein content and sugar content of the purified
bioflocculant were determined by the Lowry method using
bovine serum albumin as the standard solution and the
phenol-sulfuric acid method using glucose as the standard
solution, respectively. The purified bioflocculant was
hydrolyzed with trifluoroacetic acid at 121 °C for 2 h to
obtain the component sugars. The resultant amino sugars,
neutral sugars and uronic acid content were determined
using the Elson-Morgan method, the anthrone reaction
method and the carbazole-sulfuric acid method [26].

Elementary analysis

Carbon, hydrogen and nitrogen were analysed using an
Elemental Analyzer (Vario EL III). For this purpose, 10 mg
of freeze-dried bioflocculant was placed in tin cups, and
the mode of operation was selected as CHN.

FTIR spectroscopy of purified bioflocculant

The functional groups of purified bioflocculant were
determined using a Fourier transform infra-red (FT-IR)
spectrophotometer (Thermo Electron Corporation, USA)

over a wavenumber range of 4000-500 cm ™.

Molecular weight determination of purified bioflocculant
The molecular weight of the bioflocculant was determined
by high-performance gel permeation chromatography
(HPGPC) coupled to refractive index (RI) detection as
described previously [25].

Scanning electron microscopy (SEM) imaging

The purified bioflocculant was re-dissolved in the purified
water as the samples. The samples were placed on a silicon
wafer and gold coated in a gold-coating chamber using
an Eiko IB.3 ION coater. Scanning electron microscopy
(SEM) images of the bioflocculant were obtained using
an FEI XL30 (FEI; Netherlands).
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Stability analysis of purified bioflocculant

To examine the thermal stability of the bioflocculant,
the purified bioflocculant was incubated at 100 °C for
different times (15, 30, 45 and 60 min). To investigate
the effect of pH on flocculating activity, the pH of the
kaolin-clay suspensions were adjusted to the pH range
of 3-11 using HCl or NaOH.

Coagulation-flocculation experiments
First, 1.0 mL of bioflocculant was added to 99 mL of dye
solution (100 mg/L). The coagulation procedure was as
follows: rapid mixing (200 rpm) for 1.0 min followed by
slow mixing (100 rpm) for 10 min and then a transfer
into a 100-mL measuring cylinder and sedimentation for
60 min. After flocculation, the supernatants were collected
at 1 cm below the wastewater surface and filtered through
a slow Whatman filtration membrane, then analysed
by a UV-visible spectrophotometer at the maximum
adsorption wavelength. The colour removal efficiency
was calculated as follows:

Dye removal efficiency (%) = (Co-Ce)/Co x 100%.
where C, and Ce were the initial and final concentrations
of the dye solution, respectively.

Results and discussion

Isolation of Bioflocculant-producing bacterium
Approximately 285 bacterial isolates were obtained from
seawater samples, and 32 isolates were selected to be
screened for bioflocculant production. After three sub-
cultures, only 4 strains were able to actively flocculate
kaolin suspension, as measured. Among them, the bac-
terium named H-6 with the highest flocculating activity
(259.21 U/mL) was selected as the bioflocculant-producing
bacterium for further study and is currently preserved at
the China General Microbiological Culture Collection
Centre (registration number is CGMCC 10612). The floc-
culating efficiency of strain H-6 against kaolin suspension
before medium optimization could be up to 96%, which is
much higher than that of recently reported strains such as
Achromobacter xylosoxidans strain TERIL1 (83.3%) [27]
and Arthrobacter humicola strain R1 (85%) [28].

Identification and characterization of Bioflocculant-
producing bacterium

The colonies of strain CGMCC 10612 were round in shape
with a neat edge and a central uplift. The surface was
smooth and translucent with a greyish-yellow colour. Cells
of strain CGMCC 10612 were gram-negative, non-spore
forming, short rod shaped and small in size. The physio-
logical and biochemical characteristics of strain CGMCC
10612 are summarized in Table 1 and were basically
consistent with Alteromonas macleodii [29]. Compared
to the 16S rDNA sequences deposited in the NCBI
GenBank database, the 16S rDNA Sequence of strain
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Table 1 Biophysiological and biochemical properties of strain

H-6

Test Strain H-6 Alteromonas macleodii
Starch hydrolysis + +
Catalase + +
H,S production + +
Gelatin hydrolysis + +
Indole test - 0
Methyl-red test - +
Voges-Proskauer test - -
Citrate utilization - 0
Arginine utilization + 0
Phenylalanine utilization - 0
Glucose utilization + +
Lactose utilization + +
Sucrose utilization + +
Gram reaction G G

(+) Positive reaction, (-) Negative reaction, (0) No test

CGMCC 10612 is most similar to that of Alteromonas sp.,
sharing 99% similarity. A phylogenetic tree was con-
structed according to the neighbour-joining algorithm
(see Additional file 1). Therefore, strain CGMCC 10612 was
identified as Alteromonas sp. by both its morphological/
physiological and its phylogenetic characteristics. The
Alteromonas genus is widely distributed in marine envi-
ronments. Related research has suggested that Alteromonas
strains can disproportionately alter the fate of carbon in the
mesotrophic ocean and act functionally in ecosystem [30].
There have been many reports that Alteromonas strains can
produce extracellular polysaccharides [31-33]. However,
Alteromonas sp. has not been reported as a bioflocculant-
producing strain in previous studies.

Optimization of culture conditions for Bioflocculant
production

Effect of temperature and initial medium pH on
Bioflocculant production

Temperature and pH play important roles in the bacter-
ial growth rate and enzymatic activity and thus impact
the production of bioflocculants [34]. The effects of
temperature and variation of the initial pH in the range
of 4-10 on bioflocculant production by strain CGMCC
10612 were investigated (see Additional file 2). The opti-
mal temperature for the bioflocculant production of strain
CGMCC 10612 was found to be 25 °C, at which point
ODyggo reached its highest value. The flocculation activity
decreased sharply to approximately 200 U/mL at 30 °C.
The lower flocculation activity of strain CGMCC 10612 at
high temperature could be attributed to decreased enzyme
activity and biomass. In the initial pH range of 7-8,
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considerable flocculating activity was observed, which
indicated that production of this bioflocculant is appropriate
to neutral and moderately alkaline conditions. The optimal
initial pH was 7.5, at which the flocculating activity reached
600 U/mL.

Effect of carbon and nitrogen sources on Bioflocculant
production

The importance of carbon and nitrogen sources for
bioflocculant production has been emphasized [35, 36].
Carbon source plays a significant role in the growth of
cells and the synthesis of varied metabolites during cultiva-
tion. Among the various carbon sources utilized, glucose
exhibited the most prominent effect on the flocculating
activity (1515 U/mL) followed by fructose (1120 U/mL).
Starch and glycerol were conducive to the biomass
accumulation of Alteromonas sp. but did not favour the
production of bioflocculant. The carbon source require-
ments differ for different bacteria; for instance, glucose was
preferred by Proteus mirabilis T]-1 [37], while lactose was
preferred by S. ficaria [38].

The effect of different nitrogen sources on the biofloccu-
lant production of strain CGMCC 10612 was investigated
by employing glucose as the carbon source and is illustrated
in Fig. 1b. It was observed that the flocculating activity
obtained with inorganic nitrogen sources was comparatively
low. The addition of organic nitrogen sources, such as soy
flour, wheat flour and yeast extract, is essential for optimum
bioflocculant production. These results were consistent
with the conclusion reported by Sekelwa et al. that organic
nitrogen sources were more conducive to produce biofloc-
culant than inorganic nitrogen sources [39]. Strain CGMCC
10612 could grow well and produce considerable biofloccu-
lant with high flocculating activities when yeast extract
mixed with urea, soy flour and wheat flour was used as a
nitrogen source. Considering the flocculating activity and
economic factors, wheat flour was selected as the optimum
nitrogen source.

Effect of different proportions of phosphate on
Bioflocculant production

Phosphate can form a good buffer system, which plays
an important role in the regulation of pH during fer-
mentation. The properties of bioflocculant production
by strain CGMCC 10612 were investigated. As shown
in Fig. 2a, considerable bioflocculant could be produced
by strain CGMCC 10612 when the proportion of phos-
phate ranged from 5:0 to 2:3. The biomass reached its
highest value when the proportion of phosphate was
1:1. Considering the flocculating activity and microbial
growth, a 1:1 proportion of phosphate was selected for
further studies.
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Fig. 1 Effects of different carbon sources (a) and nitrogen sources

(b) on bioflocculant production

Effect of different concentrations of sea salt on
Bioflocculant production

Sea salt not only provides the necessary salt-rich environ-
ment for marine bacteria to maintain osmotic pressure
but also supplies the trace elements to promote microbial
growth and bioflocculant production. Strain CGMCC
10612 was able to grow well in all salt concentration
ranges tested, indicating that the strain possessed the
property of adaptation to salinity variation (Fig. 2b). The
highest flocculating activity was observed at the sea salt
concentration of 30-40 g/L. Higher concentrations
resulted in significant decreases in flocculating activity,
which may be because microbial activity was inhibited
by the hypersaline conditions.

Effect of different concentrations of glucose on
Bioflocculant production

As a carbon source, glucose is an important factor for
bacterial growth and the accumulation of secondary
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metabolites. As shown in Fig. 2c, the biomass and biofloc-
culant activity of strain CGMCC 10612 varied greatly at
different concentrations of glucose. With increasing glu-
cose concentration, the biomass increased to its highest
value when the glucose concentration was 10 g/L, which
was not sufficient to enhance the bioflocculant produc-
tion. When the glucose concentration reached 30 g/L, the
highest flocculating activity was obtained. Higher concen-
trations resulted in a significant decrease in flocculating
activity, which may be due to the decline in biomass or to
the accumulation of inactive by-products.

Effect of different concentrations of wheat flour on
Bioflocculant production

The carbon/nitrogen source ratio can significantly influence
the yield of bioflocculant because the C/N ratio greatly
affects microbial metabolism [34]. Therefore, the effect of
the concentration of wheat flour on flocculating activity
was determined when the carbon source was 30 g/L
glucose (Fig. 2d). The biomass increased gradually with
increasing wheat flour concentration. The maximum
bioflocculant production was achieved when the wheat
flour concentration was 1.5 g/L. However, a further in-
crease in wheat flour concentration caused a decline in
bioflocculant production, indicating that the decline in the
C/N ratio was not conducive to bioflocculant production.

Scale-up of Bioflocculant production in a 2-L Fermenter
After optimization of the fermentation conditions and
medium, the ability of Alteromonas sp. CGMCC 10612
to produce bioflocculant during large-scale fermentation
was investigated in a 2-L fermenter. A typical fermenta-
tion profile in terms of DO, pH, ODggo and flocculating
activity is shown in Fig. 3. During the fermentation
process, the agitation speed was kept at 150 rpm and the
temperature at 25 °C, while the pH of the fermentation
was not controlled but was monitored. The initial pH
was approximately 6.8 to 7.0, and the pH to 5.3 at the
end of the fermentation. The decrease in pH is thought
to be attributable to the oxidation of glucose to gluconic
acid. After inoculation, the dissolved oxygen gradually
decreased, and after 4 h, ODgyo appeared to undergo a
sharp increase corresponding to rapid bacteria growth. It
was observed that the flocculating activity increased pro-
gressively with increasing optical density of the culture,
which signalled that the production of bioflocculant was
positively associated with cell growth. The flocculating
activity reached 2575.4 U/mL after 56 h of fermentation,
which was 93.3% higher than the activity obtained during
shake flask cultivation. The yield finally reached 11.18 g/L,
which was 83.9% greater than the yield seen during shake
flask cultivation.

In the shake flask, the bioflocculant production of most
of the bioflocculant-produced strains, such as Aspergillus
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flavus [40], Bacillus clausii [41] and Serratia ficaria [38],
was lower than 3 g/L. In this study, it was reported to be
6.08 g/L, which was much higher than the yields described
in previous studies. Although bioflocculant production
has been investigated in prior studies, the yields have been
relatively low. By scaling up fermentation from a flask to a
10-L fermenter, HBF-3 bioflocculant production was
increased to 5.58 g/L [42]. Patil S V et al. reported that the
maximum EPS bioflocculant production was 6.10 g/L in a
2.5-L fermenter using optimized medium [43]. This result
demonstrates that Alteromonas sp. CGMCC 10612 has
great potential in the industrial production of biofloccu-
lant. The bioflocculant production of strain CGMCC
10612 during scale-up may be further improved by opti-
mizing the feeding strategy.

Characterization of Bioflocculant

Composition analysis

Elemental analysis showed that the bioflocculant from
Alteromonas sp. CGMCC 10612 had a C content of
20.49%, a H content of 4.48% and a N content of 5.54%.
The Folin-Lowry results revealed that the purified biofloc-
culant consisted of 21.56% proteins. The phenol-sulfuric
acid analysis to determine the total sugar showed that the
bioflocculant consisted of 69.61% sugars, indicating that
polysaccharides were the major component of the biofloc-
culant. Further analysis indicated that the mass proportion
of neutral sugar, uronic acid and amino sugar was 2:1:1.
Sufficient content of uronic acid in a bioflocculant
molecule can provide carboxyl groups to the molecular
chain, which are preferred for the adsorption of parti-
cles and for flocculation [44]. It has been proven that
flocculation capacity was positively associated with uronic
acid content [45].

Spectroscopic characterization

The FTIR spectrum was determined and showed the
presence of hydroxyl, amide and carboxyl groups in the
bioflocculant (Fig. 4). The spectrum showed an intense
and broad absorption peak at 3403 cm™, which implied
the presence of a hydroxyl or amide group. A weak C-H
stretching band was observed at 2856 cm™ and is
known to be typical of carbohydrates. A weak peak
observed at 2358 cm™* could be assigned to CO, adsorp-
tion or to the amine group. An asymmetrical stretching
peak at 1637 cm™ could be attributed to the C=0O
stretching vibration in -NHCOCHS3;. A strong absorption
band at 1074 cm™" indicated the asymmetrical stretching
vibration of a C-O-C ester linkage. A strong band at
884.87 cm™' could be associated with the B-glycosidic
linkage between the sugar monomers. In addition, a
weak peak at 611 cm™" could be due to the stretching of
C-Br alkyl halides. The infrared spectrum showed char-
acteristic peaks for carbohydrates and amides, which
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Fig. 4 Infrared spectra of the purified bioflocculant

serves as further confirmation that the bioflocculant
produced by strain CGMCC 10612 most likely belongs
to the glycoprotein group.

Molecular weight and SEM analysis

The HPGPC spectrum of the purified bioflocculant
showed a symmetrical and sharp peak in the time of
20.556 min (Fig. 5a). The molecular mass-retention time
equation accorded with the calibration curve was as
follows: log (molecular weight) =-0.1368 T +8.3496.
The average weight of the bioflocculant was calculated
to be 3.94 x 10° Da, which is much higher than the weight
of other bioflocculants reported previously [36, 40, 46].
Bioflocculants with high molecular weight present stronger
bridging, more adsorption points, and higher flocculating
activities than those with low molecular weight [4].

SEM observation was carried out to determine the sur-
face morphology of the purified bioflocculant (Fig. 5b).
Micrograph images of the purified bioflocculant revealed
nano-structured granules with an average size of 200 nm.
The nanoparticle polymer was coarse-grained and varied
in size. This property of the bioflocculant contributed not
only to the flocculation of the kaolin-clay particles but
also to sustained drug delivery, cancer chemotherapy
and bioimaging [47].

Stability analysis of Bioflocculant

Investigation of the stability of the bioflocculant showed
that the bioflocculant was relatively stable after a long
period of heat treatment and at a wide range of pH
values (Table 2). After heat treatment at 100 °C for
15 min, the bioflocculant exhibited good flocculating
capability without loss of activity, which could satisfy the
requirements for practical use in industry. Meanwhile,
over 82% of the flocculating activity was maintained
after heat treatment at 100 °C for 30 min. The biofloccu-
lant was much more thermally stable than the recently
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Fig. 5 Gel permeation chromatogram (a) and SEM (b) of the purified bioflocculant

reported polysaccharide bioflocculant, which decreased
in activity by 65.2% after being heated at 80 °C for
30 min [48]. After heating at 100 °C for 60 min, the
bioflocculant activity still reached 850 U/mL with a
34.6% decrease, indicating that the protein is one of the
functional components. The optimum pH for different
bioflocculants may vary due to their different composi-
tions. The electric states of the bioflocculant vary for
different pH, which in turn affect the flocculation ability
of the bioflocculant for the kaolin particles. The highest
flocculating activity of 1301.8 U/mL was attained at
pH 9.0. The high flocculating activity achieved in a
wide pH range suggests that this bioflocculant could be
applied to treat various wastewaters in various industries
without adjusting the pH, thus rendering the bioflocculant
cost-effective. Similar findings were reported for the bio-
flocculant produced by Bacillus pumilus, which presented
good flocculation ability under both acidic and alkaline
conditions [49].

Decolorization by the Bioflocculant
Effect of solution pH on dye removal
In the flocculation experiments, two anionic dyes (Congo
Red and Direct Black) and one cationic dye (Methylene

Table 2 Effects of heating time and pH on the flocculating
activity of the purified bioflocculant (n =3, mean + SD)

Heating time (min) FA+SD (U/mL) pH FA £SD (U/mL)

0 1313.1+58 3 9389+27.8

15 12892+ 16.0 5 11194 +£256

30 1080.2 355 7 12514+ 365

45 926.1 £ 166 9 1301.8+14.7

60 858.7+ 194 11 10143 +£356
13 6959+694

Blue) were used with different pH values. The results
showed that the bioflocculant exhibited different deco-
lourization capacity depending on the dye used and the
solution pH (Fig. 6a). For anionic dye, a gradual increase
in decoloration efficiency was observed from pH 3.0 to
11.0. The removal of anionic dyes was directly impacted
by the availability and strength of positive charges in the
solution, which in turn were fixed by the conformation
and the cationicity of the bioflocculant. It can be explained
by the theory reported by Somasundaran that pH influ-
ences the electrochemistry of the dyes and the dissociation
of the polyelectrolytes, and hence their conformation in
solution [50]. For cationic dye, the impact of pH on dye
removal is not obvious, probably because of the cationic
property of the bioflocculant. Overall, the bioflocculant
had moderate removal ability for anionic dye, with the
highest decolourization rates for Congo Red and Direct
Black being 98.5% and 97.9%, respectively; a lower rate
was observed when used with cationic dyes for Methylene
Blue, at 72.7%. These results suggested that the biofloc-
culant was more effective for anionic dyes than cationic
dyes. Similarly, the bioflocculant produced by Kocuria
rosea was effective for the removal of anionic dyes [51].
In addition, the effect of mixing time on dye removal
was investigated. The results showed that the dye removal
efficiency after mixing the bioflocculant and dye for 5 min
was identical to that after mixing for 10 min, which indi-
cated that the adsorption of dye by the bioflocculant is a
very rapid process.

Effect of Bioflocculant dosage on dye removal

The dye removal efficiency of bioflocculant at different
adsorbent doses (20-220 mg/L) is shown in Fig. 6b,
and a comparison of dye wastewater before and after
flocculation is presented in Fig. 6¢. Generally, the removal
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efficiency increased with the bioflocculant dosage, which
is due to the increase in absorbent surface area and
adsorbing sites. When the bioflocculant was administered,
microflocs aggregated into larger ones due to the adsorp-
tion/bridging ability of the polysaccharides. The optimal
bioflocculant dosages for Congo Red, Direct Black and
Methylene Blue were 100, 200 and 180 mg/L, respectively.
Further increasing the adsorbent resulted in a slight
decrease in decolourization efficiency, since higher bio-
flocculant doses would inhibit small flocs from growing
due to the stronger repulsion force between them [52].
Moreover, especially for anionic dyes, the bioflocculant
exhibited excellent decolourization ability without the
addition of any cationic salt.

Conclusion

A bioflocculant-producing strain was isolated from sea-
water and identified as Alteromonas sp. CGMCC 10612.
A maximum bioflocculant production of 11.18 g/L with
a flocculating activity of 2575.4 U/mL was achieved in a
2-L fermenter. Its composition was predominantly poly-
saccharide (69.6%), which explains its thermal stability.
Further, its high content of uronic acid (14.5%) indicated

the presence of many functional groups containing
nitrogen and oxygen atoms, which are preferred for
flocculation. In addition, its high molecular weight
(3.94 x 10° Da) strengthens its competitive advantage
in bridging function and flocculation ability. Above all,
its excellent decolourization ability suggests its potential
industrial utility for biotechnological processes.
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