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Abstract

Background: Xylanase inhibitors have been confirmed to be involved in plant defence. OsXIP is a XIP-type rice
xylanase inhibitor, yet its transcriptional regulation remains unknown.

Results: Herbivore infestation, wounding and methyl jasmonate (MeJA) treatment enhanced mRNA levels and protein
levels of OsXIP. By analyzing different 5’ deletion mutants of OsXIP promoter exposed to rice brown planthopper
Nilaparvata lugens stress, a 562 bp region (-1451 — —889) was finally identified as the key sequence for the
herbivores stress response. Using yeast one-hybrid screening, coupled with chromatin immunoprecipitation
analysis, a basic helix-loop-helix protein (OsbHLH59) and an APETALA2/ETHYLENE RESPONSE FACTOR (AP2/ERF)
transcription factor OsERF71 directly binding to the 562 bp key sequence to activate the expression of OsX/P
were identified, which is further supported by transient expression assay. Moreover, transcriptional analysis
revealed that mechanical wounding and treatment with MeJA resulted in an obvious increase in transcript
levels of OsbHLH59 and OsERF71 in root and shoot tissues.

Conclusions: Our data shows that two proteins as direct transcriptional activators of OsXIP responding to
stress were identified. These results reveal a coordinated regulatory mechanism of OsXIP, which may probably
be involved in defence responses via a JA-mediated signaling pathway.
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Background
Xylanase inhibitors (XIs) are a kind of plant-produced
proteinaceous inhibitor that inhibits the activity of xyla-
nase [1]. Recently, RIXI, riceXIP, OsXIP and OsHI-XIP
xylanase inhibitors have been identified in rice plants
[2-5], which all belong to XIP-type XIs. XIs have been
thought to be involved in plant defence mainly for the
reason that XIs only inhibit xylanases of microbial origin
but not of plant origin. And many data provide evidence
that XIs do indeed participate in plant defense [1].
Xylanase inhibitor genes act as defence-responsive
genes in stress-induced signal transduction pathways.
Taxi-Ia expression was induced 2.5 times and the tran-
scripts of Tawxi-Ib/III and Taxi-IIb/IV rose up to 20-fold
by F. graminearum infection of wheat lemma, palea and
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ovary [6]. Infestation of wheat leaves by the powdery
mildew fungus B. graminis induced the expression of
Taxi-Ib/IIl and Taxi-IIb/IV [6]. The transcripts of OsXIP
and riceXIP were drastically induced by wounding and
methyl jasmonate (MeJA) treatment in the root [2]. Our
previous study also revealed that pathogens can induce
the expression of the rice xylanase inhibitor gene RIXI
[7]. In planta direct evidence for this role has not been
reported until Moscetti et al. [8] found that constitutive
expression of the xylanase inhibitor TAXI-III delayed
Fusarium head blight symptoms. Furthermore, overex-
pression of the RIXI xylanase inhibitor improved disease
resistance of rice to the fungal pathogen, Magnaporthe
oryzae [9]. In addition, overexpression of OsHI-XIP en-
hanced resistance in rice to herbivores, which is also the
first time that a xylanase inhibitor has been demon-
strated to play a role in resistance among rice herbivores
[5]. However, the molecular basis underlying the regula-
tion of XIs in plant defense is poorly understood.
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A number of biotic and abiotic stress-responsive
elements were observed by comparative analysis of
cis-elements of xylanase inhibitors gene promoter by
bioinformatics softwares PLACE and PlantCARE. The
promoter region of a gene can provide valuable informa-
tion about the factors inducing expression. For instance,
cis-acting elements implicated in pathogen- and wound-
inducible gene expression, i.e., GCC-box and W-box se-
quences could be recognized in the promoter region of
TAXI-II [6]. Also investigation of the durum wheat Xip-II
upstream region revealed the presence of a number of cis-
acting elements controlling the expression of defense-
related genes such as several W-boxes and a Myb-binding
element, supporting its role in plant defense against path-
ogens [10]. The importance of these promoters regions
has not yet been confirmed by promoter deletion analyses.

OsXIP is a XIP-type rice xylanase inhibitor, which was
induced by various stresses such as MeJA treatment and
wounding. And the expression patterns of OsXIP and
riceXIP resemble each other and the induction of their
expression by wounding may occur via a JA-mediated
signaling pathway [2]. However, whether OsXIP plays
an important role in resistance to invaders via a JA-
mediated signaling pathway remains unclear.

Despite all these observations, there have been no
reports on in planta functional characterization of the
promoter region of xylanase inhibitor gene and its tran-
scriptional regulation pattern so far. In this study, the
promoter of OsXIP was cloned and analyzed, and a
562 bp region (—1451 to —889) was identified as the key
sequence for the herbivores stress response by promoter
deletion analyses. Using this 562 bp sequence as the bait,
OsbHLH59 [11] and OsERF71 [12] proteins as direct
transcriptional regulators of OsXIP responding to stress
were identified. Collectively, our results, for the first
time, reveal a transcriptional regulatory mechanism of
OsXIP involved in defence responses.

Methods

Plant materials, growth conditions and stress treatments
The rice genotypes used in this study were Nipponbare
wild-type (WT) and transgenic lines (see below). Rice
seeds were sown in water and grown in normal culture
solution in a greenhouse with natural day length ex-
tended to light/dark cycle of 14/10 h using high-
pressure sodium lamp, with heating or ventilation used
to maintain temperature at 28 °C and 18 °C during day
and night respectively.

For wounding stress, 14-day-old seedlings were cut
into 5-10 mm width and floated on distilled water. For
phytohormone treatment, 14-day-old rice seedlings were
submerged in 200 uM MeJA solution for 0, 2, 6, 12 and
24 h, and then shoots and roots were harvested separately.
For BPH treatment, plants were individually infested with
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20 adult BPH confined in a glass cylinder [diameter
4 cm, height 8 cm, with 48 small holes (diameter
0.8 mm)], the top of which was covered with a piece of
sponge. One empty cylinder was used for control plants
(non-infested).

Construction of the OsXIP promoter vectors and rice
transformation

The full-length OsXIP gene promoter named OP1
(-2070 bp to +52 bp) was amplified from the genomic
DNA of WT with OP1-U (forward primer) and OP1-L
(reverse primer). Then a series of nested 5 deletions of
OP1 fragments OP2 (-1451 bp to +52 bp), OP3
(-889 bp to +52 bp), OP4 (-569 bp to +52 bp), OP5
(-380 bp to +52 bp), OP6 (-172 bp to +52 bp), OP7
(-90 bp to +52 bp) were amplified by PCR from
pMD19T-OP1 using the common reverse primer OP1-L
and either the forward primers OP2-U, OP3-U, OP4-U,
OP5-U, OP6-U, or OP7-U, respectively. The primers are
shown in Additional file 1: Table S1. The full-length pro-
moter and 5’-deletion derivatives were cloned into the
pBI101.3-GUS upstream of GUS (B-glucuronidase). Empty
vector pBI101.3-GUS was used as a negative control
(VC). All constructs were mobilized into Agrobacterium
tumefaciens EHA105 and transformed into calli derived
from mature seeds of rice according to a previously de-
scribed protocol [13, 14]. Approximately 90 calli were
co-cultured for each vector, with the number of puta-
tive independent transformed plants being regenerated
being 25, 19, 20, 16, 22, 13, 17 and 10 respectively for
OP1-OP7 and a vector control. Primary transformants
(TO) were raised, transferred to soil and allowed to
grow in a greenhouse. Seeds were harvested and used
for analysis in the next generation.

RNA extraction and quantitative RT-PCR

Total RNA was isolated from roots and shoots of rice
seedlings using the RNAprep pure plant kit (Tiangen)
according to the manufacturer’s protocol. RNA (1 ug)
was used to synthesize the first strand complementary
DNA (cDNA) with an oligo (dT) primer according to
the instruction of the PrimeScript first-strand cDNA
synthesis kit (Takara). The qRT-PCR assay was per-
formed on LightCycler480 instrument (Roche) using a
SYBR® Premix Ex TaqTM kit (Takara). A rice actin
gene Osactin (GenBank: Os03g50885) was used as an
internal standard to normalize cDNA concentrations.
The primers for qRT-PCR are listed in Additional file 2:
Table S2. The relative quantification of gene expression
was analyzed by the comparative method (2725CY 15]
with some modifications. Using the 272“* method, data
were presented as the fold-change in mRNA expression
normalized to the endogenous reference gene (Osactin)
and relative to the control.
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Western blot analysis

OsXIP-specific polyclonal antibody was produced
against a 15-residue synthetic peptide sequence of
OsXIP (CGGRRNGVYRPFGDA) by GenScript USA Inc
(China). Anti-OsXIP rabbit polyclonal antibody or anti-
B-actin mouse monoclonal antibody (Beijing ComWin
Biotech Co.,Ltd, CW0096) was used as the primary
antibody. Immunoblot analysis was performed as de-
scribed by Akulinkina et al. [16]. Samples were pre-
pared from leaves of 2-weeks old rice plants treated
with BPH for 24 h, wounding for 12 h and MeJA for
12 h, respectively. Protein fractions were separated by
SDS-PAGE, and then transferred onto nitrocellulose
membrane. Finally, immune complexes on a membrane
were detected with BCIP/NBT. The reaction was
stopped after 3 minutes of incubation by rinsing the
membrane with water.

Quantitative GUS analysis

Quantitative GUS activity was measured according to
the method described by Jefferson et al. [17] with some
modifications. Briefly, the shoots or roots of 14-days
seedlings that carried different fragments of OP1 were
homogenized in GUS extraction buffer (50 mM PBS,
pH 7.0, 10 mM EDTA, pH 8.0, 20% methanol, 0.1%
Triton X-100, 0.1% sodium lauryl sarcosine, and 10 mM
B-mercaptethanol). Crude protein extract (50 pl) was
added to 450 pl of extraction buffer containing 2 mM 4-
methylumbelliferyl-B-D-glucuronide (MUG) at 37 °C for
30 min or 60 min, and thereafter 200 pl of the reaction
mixture was added to 800 pl of stop buffer (0.2 M
Na,CO3). The 4-methylumbelliferone fluorescence was
measured using a spectrofluorophotometer (RF-5301PC,
Shimadzu) at 460 nm with excitation at 355 nm. Protein
concentration was quantified by methods described by
Bradford [18]. GUS activity was calculated as pmol of 4-
methylumbelliferon (4-MU) min per minute and per
milligram of total soluble proteins and presented as
GUS activity relative to the VC.

Yeast one-hybrid (Y1H) screening

The Y1H screening used the Matchmaker Gold One-
Hybrid Library Screening System (Clontech, Cat. Nos.
630491). The bait sequence (562 bp fragment) was
cloned into the pAbAi vector that harbors the AURI-C
gene, conferring resistance to Aureobasidin A (AbA, a
cyclic depsipeptide antibiotic used as a yeast selection
marker). The resulting pAbAi-Bait construct was then
linearized and integrated into the genome of the
Y1HGold yeast strain by homologous recombination to
generate a bait-specific reporter strain. The minimal in-
hibitory concentration of Aureobasidin A for the bait-
specific reporter strain was determined. And the strain
was used to screen a cDNA library generated from the
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leaves of WT treated by BPH for 24 h. The transfor-
mants were initially screened on selective medium (SD/
~Leu/AbA') and the positive colonies were identified
by PCR and DNA sequencing.

For the re-transformation assay, the full-length CDSs
of candidate genes were amplified from cDNA using
the primers 59-AD-U/L and 71-AD-U/L as listed in
Additional file 1: Table S1. The PCR products were
then cloned into the pGADT7 vector and the resulting
constructs were transferred into the bait reporter yeast
strain mentioned above, respectively. The cells were
grown on SD/-Leu and (SD/-Leu/AbA'®) plates at
30 °C for 3 days, and resuspended in liquid media to
ODgop of 0.1 (107") and diluted in a 10x dilution series
(107> to 107%). Of each dilution, 7 pl was spotted on
media selecting for both plasmids (SD/-Leu) and selecting
for interaction (SD/-Leu/AbA'®), supplemented with
100 ng ml™ to suppress background growth. The empty
vector pGADT7 was used as a negative control.

Chromatin immunoprecipitation (ChIP)-PCR analysis

The 35Sp:OsbHLH59:GFP and 35Sp::OsERF71:GFP ex-
pression vectors were constructed by subcloning the
full-length CDSs without terminators of OsbHLH59
and OsERF71 into the pCAMBIA1300-sGFP vector
under the control of the 35S promoter [19], respectively.
The primers 59-GFP-U/L and 71-GFP-U/L are listed in
Additional file 1: Table S1. The resulting constructs were
then introduced into Agrobacterium tumefaciens strain
EHA105, and transformed into WT rice.

2-3 g of 3-weeks-old 35S:0sbHLH59-GFP or
35S:OsERF71-GFP transgenic seedlings were used for
ChIP-PCR experiments as described in Haring et al. [20].
In brief, transgenic rice was fixed with 60 mL of 1.0% for-
maldehyde by vacuuming for 10 min. The chromatin DNA
was sheared to 200-500 bp fragments by sonicating.
Sheared DNA was incubated with GFP antibody (Biogot)
(ChIP). Chromatin before immunoprecipitation was used
as an input control. The primers for PCR of the target
DNA are listed in Additional file 3: Table S3.

Transient expression in Nicotiana benthamiana leaves

The construction of vectors and transient expression in Ni-
cotiana benthamiana leaves were performed as described
by Ding et al. [21]. Briefly, for construction of effector vec-
tors, the full length ORFs of OsbHLH59 and OsERF71
were amplified and cloned into the pCAMBIA1300-sGFP
vector under the control of the 35S promoter. The 5—de-
leted OP2 and OP3 promoters were constructed into the
reporter vector pGreenlI0800-LUC [22]. The recombinant
plasmids were transferred into the Agrobacterium
EHA105 lines. Then the EHA105 lines were co-
infiltrated into the N. benthamiana leaves as described
previously [23]. The Firefly and Renilla luciferase
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activities were quantified using a Dual Luciferase assay
kit (Promega, http://www.promega.com/).

Subcellular localization

The 35Sp:OsbHLH59:GFP and 35Sp::OsERF71:GFP ex-
pression vectors were infiltrated into the N. benthami-
ana leaves by Agrobacterium-mediated transformation
[24]. The two constructs were also transfected into rice
protoplasts according to the protocol of Yoo et al. [25]
with some modifications. The rice protoplasts were iso-
lated from stems of 12-day-old WT seedlings by enzyme
hydrolysis. Then 10 pg plasmid DNA was polyethylene
glycol/calcium-transfected into these protoplasts. Empty
vector was used as a control. The cells were observed
with a confocal microscope (Zeiss LSM 710).

Results

Herbivore infestation, wounding and methyl jasmonate
(MeJA) treatment enhanced mRNA levels and protein
levels of OsXIP

qRT-PCR analysis revealed herbivore infestation, mech-
anical wounding, and MeJA treatment, especially
wounding, resulted in an obvious increase in transcript
levels of OsXIP (Fig. 1a). OsXIP expression was induced
3.5 times by BPH infestation and five-fold by wounding
and MeJA treatment. To determine whether these stress
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also affected the protein levels of OsXIP, we analyzed
the protein levels of OsXIP by quantitative GUS activity
of transgenic rice that carried the full-length OsXIP gene
promoter named OP1 (-2070 bp to +52 bp) and western
blotting. The expression levels of GUS all significantly
rose up (Fig. 1b). Immunoblot analysis showed that
the level of OsXIP also increased upon these stress
(Fig. 1c). These results demonstrate that OsXIP is a
stress-responsive gene.

Identification of herbivore-responsive promoter region
Given the observation that the expression of OsXIP was
induced by different stress (Fig. 1), we used the PLACE
and PlantCARE to analyse the promoter sequence of
OsXIP. And as expected, a series of biotic and abiotic
stress-responsive cis-regulatory elements exist in the
promoter region (Additional file 4: Figure S1), such as
W-box (TGACY) element, ABRE (CACGTG) element,
MYB-binding (CGGTCA) site. To further determine the
key sequences of the OsXIP promoter responding to
herbivory, the transgenic plants that carried a set of 5’
deletion promoter reporter constructs, OP2, OP3, OP4,
OP5, OP6 or OP7 were obtained (Fig. 2) and their quan-
titative GUS activity was measured.

Without BPH treatment (Fig. 2), about 110- and 54-
fold higher expression of GUS was detected with OP1
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Fig. 1 Inducible expression of OsXIP after different treatments. a Transcript levels of OsXIP in rice leaves after different treatments were analyzed
by gRT-PCR. Two-weeks-old WT seedlings were treated with BPH for 24 h, wounding for 12 h and MeJA for 12 h, respectively. The data represent
means + SD of three independent replicates. Asterisks indicate statistically significant differences compared with CK (0 h) (**P < 0.01; Student’s t test).

b GUS activity of OP1 transgenic rice after different treatments was measured by quantitative fluorescence method. Two-weeks-old transgenic rice
seedlings were treated with BPH for 24 h, wounding for 12 h and MeJA for 12 h, respectively. The data represent means + SD of three independent
replicates. Asterisks indicate statistically significant differences compared with CK (**P < 0.01; Student’s t test). ¢ Western blot analysis of OsXIP.
Protein fractions were isolated from leaves of WT treated with BPH for 24 h, wounding for 12 h and MeJA for 12 h, respectively and subjected
to immunoblot with anti-OsXIP antibody (top panel). M, markers of proteins, the sizes of the markers are indicated at the left of the picture. Fractions
corresponding to 10 pug were loaded into each lane and equal loading was confirmed by anti-actin antibody (bottom panel)
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Fig. 2 Schematic representation of 5" deletion promoter constructs and their GUS expression in shoot tissues. TSS, transcriptional start site. For
every construct, three independent T2 transgenic lines were measured, and similar results were obtained. The data represent means + SD of three
independent replicates

and OP2 in the shoots, respectively, compared with vec-
tor control (VC). It was interesting to observe a sudden
drop in expression with OP3, which was 18-fold higher
compared with VC and similar to OP4. Surprisingly, the
relative GUS expression for OP5 and OP6 are both
three-fold greater than OP3 and OP4, despite having a
greater deletion in the promoter region. Both OP5 and
OP6 retain restore the expression level observed in OP2,
whereas OP7 with the greatest promoter deletion has
very minimal expression.

After infestation with BPH for 24 h (Fig. 3), GUS ex-
pression increased significantly in both the shoots and
roots of transgenic lines OP1 and OP2. Elevated expres-
sion of GUS was also observed in the shoots of OP5,
OP6 and OP7 and root of OP6. However, no significant
change in expression was observed in the shoots of OP3
and OP4 and roots of OP4, OP5 and OP7. A sudden de-
crease in GUS expression was observed in the root of
OP3. As mentioned above, the GUS expression of OP1
and OP2 was induced after BPH infestation, but OP3
and OP4 were not induced. Comparing the promoter re-
gions upstream from the GUS gene in the constructs
OP2 and OP3, OP2 had 562 bp region [-1451 bp to
—-889 bp relative to the transcriptional start site (TSS)]
that was deleted from OP3. And the 562 bp fragment
contains some stress-responsive cis-acting elements,
such as W-box, ARR1IAT, MBS. So we speculated that
the 562 bp fragment was the key sequence involved in
herbivore stress response. While the 290 bp fragment
(380 bp to —90 bp) was involved in herbivore stress re-
sponse, this 562 bp fragment was then used for further
research in this paper.

Proteins bound to the herbivores-responsive promoter
region

To determine the proteins bound to the herbivores-
responsive promoter region, we used the 562 bp fragment
mentioned above as a bait to screen transformants from a
c¢DNA library generated from the leaves of rice plants
infested with BPH for 24 h by yeast one-hybrid (Y1H)
screening system. Through initial screening, DNA sequen-
cing and BLAST analysis, some proteins including func-
tional proteins and regulatory proteins showing interaction
with OsXIP promoter were obtained. The functional pro-
teins included fructose 1, 6-bisphosphatase, HSP, photo-
system, Tify domain containing protein. While only two
genes LOC_0s02g02480 and LOC_0Os06g09390, according
to the rice genome annotation of The Institute for Genomic
Research (TIGR; http://rice.plantbiology.msu.edu/), were
the candidates of regulatory proteins. Based on BLAST ana-
lysis and literatures, LOC_0s02g02480 is a basic helix-
loop-helix protein (OsbHLH59) [11]; LOC_Os06g09390 is
an APETALA2/ETHYLENE RESPONSE FACTOR (AP2/
ERF) transcription factor (OsERF71) [12].

The interaction between herbivores-responsive pro-
moter region and the corresponding complete encoding
products of the two genes were re-tested by Y1H assay.
The analysis showed that the two proteins interacted
specially with the promoter region (Fig. 4a). Meanwhile,
we performed ChIP-PCR analysis by transforming
35S:0sbHLH59-sGFP and 35S:OsERF71-sGFP into rice
to determine whether OsbHLH59 and OsERF71 regulate
gene expression by binding to the 562 bp region in vivo.
Our results showed that the promoter fragments of
OsXIP were detected in the ChIP assays (Fig. 4b),
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Fig. 3 GUS expression of 5" deletion promoter constructs infested
by BPH in T2 transgenic plants. Relative (to VC) GUS activity in
shoots (a) and roots (b) of different transgenic lines (OP1-OP7)
infested by BPH for 24 h. For every construct, three independent
T2 transgenic lines were measured, and similar results were obtained.
The data represent means + SD of three independent replicates.
Asterisks indicate statistically significant differences compared
with control (Non-infested) (**P < 0.01; Student's t test)

further confirming that OsbHLH59 and OsERF71 can
directly bind to the promoter motifs in vivo.

Transcriptional activation of the OsXIP promoter by
OsbHLH59 and OsERF71

We also performed the tobacco transient expression
assay to further clarify the DNA-binding activities of the
two proteins. The dual luciferases vector was used as a
reporter system following Hellens et al. [22]. The full
length ORFs of OsbHLH59 and OsERF71 were amplified
and cloned into the effector vector. The OP2 and OP3
promoters were constructed into the reporter vector as
P1 and P2 (Fig. 5a), which infiltrated N. benthamiana
leaves alone or co-expressed with the corresponding
effector vectors, respectively. It was obvious that co-
expression of OsbHLH59 remarkably increased LUC

a SD —Leu SD -Leu
0 ng ml! AbA 100 ng ml! AbA
107 102 10° 10" 102 103

empty
bHLHS59

ERF71

b bHLH59 ERF71

Input CchiP Input ChlP

12345M12345 12345M12345

Fig. 4 OsbHLH59 and OsERF71 bind to OsXIP promoter in vitro and
in vivo. a TFs (OsbHLH59, and OsERF71) bind to OsXIP promoter in
yeast. Bait strain YTHGold[pBait-AbAi] yeast cells was transformed
with a prey vector, containing OsbHLH59 and OsERF71 fused to a
GAL4 activation domain, respectively. Cells were grown in liquid media
to ODggp of 0.1 (107") and diluted in a 10x dilution series (107 to 107).
Of each dilution, 7 ul was spotted on media selecting for both
plasmids (SD/—Leu) and selecting for interaction (SD/—Leu/AbA'®),
supplemented with 100 ng mi™" AbA to suppress background growth.
b ChIP-PCR analysis. The ChIP of TFs (OsbHLH59, and OsERF71) assays
was performed using transgenic rice expressing the 355:0sbHLH59-
GFP fusion or 35S:0sERF71-GFP fusion. Products of ChIP assays were

amplified using five specific primers (listed in Additional file 1: Table S1)

expression driven by the OP2 promoter, as did expression
of OsERF71 (Fig. 5b), suggesting OsbHLH59 and OsERF71
proteins promote the transcription of OsXIP. These results
indicated that the two proteins may function as positive
transcriptional regulators of OsXIP expression.

Subcellular localization of OsbHLH59 and OsERF71

To further evaluate the role of the OsbHLH59 and
OsERF71 proteins, their subcellular localization were
determined. We constructed 35Sp::OsbHLH59:GFP and
35Sp::OsERF71:GFP fusion genes, and transiently expressed
the constructs in N. benthamiana leaves (Additional file 5:
Figure S2) and rice protoplasts (Fig. 6), respectively. Fluor-
escence analysis revealed that the proteins localized only in
the nucleus (Fig. 6). Cells infiltrated with GFP construct
(control) yielded fluorescence both in the cytosol and the
nucleus. These results further indicate that the two proteins
may be transcriptional factors that function in the nucleus
to regulate OsXIP expression.

Influence of abiotic stress on the expression of transcription
factors

The expression patterns of the two genes that encode
transcription factors bound to the rice herbivore-
responsive cis-elements were examined by qRT-PCR in
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Fig. 5 Tobacco transient transactivation assay for the interaction
between OsbHLH59, OsERF71 and OsXIP promoter. a Characterization of
OsXIP promoter and structures of vectors. Full length of the promoter
from the translational start site (ATG) was indicated. OP2 and OP3
promoters were constructed into the report vector, and TFs (OsbHLH59,
and OsERF71) were cloned into the effect vector, respectively. b Transient
expression assay in N. benthamiana. LUC, Firefly luciferase activity; REN,
Renilla luciferase activity (used as control). Data show ratios of LUC to
REN and represent means + SD of three independent replicates
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wild-type rice plants treated with MeJA or wounding at
varying time intervals (2-24 h). The expression of these
genes appeared to be responsive upon abiotic stress and
was similar (Fig. 7). In shoot tissues, transcript expres-
sion of OsbHLH59 and OsERF7I increased concomi-
tantly with time under MeJA treatment to 6 h, while
decreased at 2 h and thereafter increased under wound-
ing stress. The expression levels of OsbHLH59 and
OsERF71 in root tissues were maximally induced ap-
proximately six- and seven-fold, and seven- and eight-
fold after MeJA and wounding treatment, respectively.
These results further suggest that the genes encoding
these transcription factors may be involved in defence
responses against herbivores by a JA- mediated pathway.

Discussion

The phytohormone jasmonic acid (JA) play a vital role
in plant defense when plants are exposed to invaders
[26]. In general, herbivorous insects and necrotrophic
pathogens are more sensitive to JA-induced defenses
[27, 28]. Wounding that caused by mechanical injury or
insect feeding, leads to the accumulation of JA. Subse-
quently, the JA pathway is activated, which induces JA-
responsive gene expression [29]. Our results revealed
that herbivore infestation, mechanical wounding and
MeJA treatment enhanced the expression of OsXIP at
the transcriptional and protein levels (Fig. 1), which is
consistent with OsHI-XIP [5]. To date, there is one

OsbHLH59-GFP 35S-GFP

OsERF71-GFP

GFP fluorescence

was used as a control. Bars, 10 um

bright field

Fig. 6 Subcellular localization of OsbHLH59 and OsERF71 in rice protoplasts. The rice protoplasts were transformed with 355p:0OsbHLH59:GFP,
35Sp:OsERF71:GFP or pCAMBIA1300-GFP. The transformed cells were observed under a confocal microscope. The photographs were taken under
detecting GFP fluorescence, bright field, chloroplast auto-fluorescence, and merged microscope images, respectively. Empty vector (pCAMBIA1300-GFP)

Chl fluorescence merge
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report that the xylanase inhibitor XIP-I could inhibit a
xylanase from the digestive tract of the coffee berry
borer [30]. OsXIP is a wound stress-responsive gene in
rice [31]. When the herbivore feeds on the plants,
wounding generates and then induces the accumulation
of jasmonic acid (JA), which in turn activates wounding-
associated defense pathways [32]. In our study, the ex-
pression level of OsXIP was up-regulated by BPH and
the N. lugens induction process was very similar to that
caused by wounding. When the rice was infested by
BPH, wounding generated first and then activated the
wound-responsive gene OsXIP, thus enhancing resistance
against herbivores.

Bioinformatic analysis of the promoter of OsXIP revealed
that it was a stress-induced promoter. OsXIP promoter
contained stress-responsive cis-acting elements, such as
ARRIAT, W-box, G-box and TGACG-motif. The W-box
(TGACY), has been confirmed to be present upstream of
salicylic acid or wound signal responsive genes; The G-box
(CACGTG) and G-box-like (CANNTG, also called the E-
box) are known to the binding sites of basic helix-loop-
helix (bHLH) transcription factors [33]; TGACG motif has
been reported to be essential for responsiveness to MeJA;
ARRIAT and WRKY710S exist in the promoter of growth
regulators responsive genes. Thus, OsXIP gene responded
to different stress (Fig. 1).

OsXIP promoter deletion analyses showed that GUS
expression of OP3 reduced sharply compared with OP2,

while OP4 slightly enhanced and OP5 reached a max-
imum (Fig. 2). This suggested there were at least an en-
hancer (e) and a repressor (r) motif between OP2 and
OP3 (-1451 bp to -889 bp) and OP4 and OP5 (-569 bp
to —380 bp), respectively. So a regulation model of the
OsXIP gene was proposed: an enhancer site (e) may exist
in —1451 bp to —-889 bp, and a repressor site (r) may be
located between -569 bp and —380 bp in the promoter.
GUS expression in OP2 was high due to the binding of
enhancer (E) to its site (e¢). The enhancer might prefer-
entially bound to the promoter and facilitate the gene
expression on the grounds that binding of enhancer E at
e site prevents the repressor R from binding to r site by
either binding with R or obstructing r site. GUS expres-
sion of OP3 and OP4 decreased because of deletion of
enhancer site (e). GUS expression of OP5 and OP6 in-
creased after deletion of the r site. Serial deletion pro-
moter constructs between -1451 and -889 bp and
between —569 and -380 bp can be constructed to deter-
mine the locations and sequences of e and r by transient
expression assay and electrophoretic mobility shift assay
(EMSA).

After BPH stress, a 562 bp region (-1451 to —889) in
the OsXIP promoter were finally identified as the key se-
quences involved in the herbivores stress response
(Fig. 3). By Y1H screening, positive DNA-protein binding
in vitro and in vivo (Fig. 4) and nuclear localization (Fig. 6),
OsbHLH59 and OsERF71 proteins were confirmed as the
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direct regulators of OsXIP expression. The two proteins
activated the expression of OsXIP gene by transient trans-
activation assay (Fig. 5). Moreover, the two genes encoding
corresponding OsbHLH59 and OsERF71 proteins showed
differential expression upon MeJA and wounding stress
(Fig. 7), further suggesting that they may be involved in
positively regulating OsXIP expression via JA-mediated
defence responses.

In the present study, two proteins (OsbHLH59, and
OsERF71) as transcription activators of OsXIP were
found. OsbHLH59 is a member of bHLH transcription
factors, which are known to bind to G-box or E-box
[11]. We analyzed the bait sequence and found that sev-
eral E-box elements were present, including CAGTTG,
CACTTG and CAATTG. And whether OsbHLH59
binds to these E-box elements of the bait can be further
determined by EMSA. Some bHLH transcription factors
in rice are involved in stress responses. For instance,
RERJ1 (OsbHLHO006) responded to wound and drought
[34, 35]; OsBP-5 (OsbHLH102) is related to transcrip-
tional regulation of the rice Wx gene [36]; OsbHLH094
forms a complex with RSS3 and JASMONATE ZIM-
DOMAIN (JAZ) proteins to modulate the expression
of JA-responsive genes [37]; DPF (OsbHLH25) posi-
tively regulates the accumulation of diterpenoid phy-
toalexins [38].

In Arabidopsis, the bHLH transcription factor MYC2
is a key positive transcriptional regulator of JA signaling
pathway, which is inhibited by JAZ transcriptional re-
pressors [39, 40]. Similarly, OsbHLH062 interacted with
OsJAZ9 to regulate JA-responsive genes expression in
rice [41]. Furthermore, the JA signaling pathway in
Arabidopsis composes of the two major branches: the
ERF branch and MYC branch [29]. And the ERF branch
is controlled by AP2/ERF transcription factors, such as
ORA59 [42]. Thus, the OsERF71 protein, an AP2/ERF
transcription factor, may belong to the ERF branch to
positively regulate the expression of OsXIP. In addition,
transcriptional analysis revealed mechanical wounding
and MeJA induced transcriptional expression of OsbHLH59
and OsERF7I in rice (Fig. 7). These results reinforce the
possibility that the induction expression of OsXIP by
wounding may be regulated by the JA-mediated signaling
pathway [2]. So OsbHLH59 and OsERF71 may belong to
the MYC branch and the ERF branch, respectively, to
positively regulate the expression of OsXIP. This specu-
lation is further supported by the findings that OsXIP
was independent of growth and development in rice
plants [30] and its expression was not regulated by phy-
tohormones associated with growth [2].

Conclusions
In summary, we reveal the transcriptional regulatory
mechanism of OsXIP and its involvement in defense
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response in rice. In response to herbivore infestation,
mechanical wounding or MeJA stress, OsbHLH59 and
OsERF71 transcription factors promote this process by
activating the expression of OsXIP via directly binding to
its promoter. Our discovery contributes to clarify the
regulatory mechanism of OsXIP and gives us a better un-
derstanding of the function of OsXIP in plant defence.
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