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Abstract

Background: Producing transgenic chickens with chicken blastodermal cells (cBCs) is inefficient due to the
extremely low germline transmission capacity of cBCs. As chicken primordial germ cells (PGCs) have been reported
as an efficient method for producing transgenic chickens, the inefficiency of cBCs could potentially be resolved by
inducing them to differentiate into germ cells. However, whether chemical inducers are able to enhance cBCs
germline competence in vitro is unknown and the molecular mechanisms of differentiation of chicken pluripotent

cells into germ cells are poorly understood.

Results: We cultured cBCs with a monolayer morphology in E8 medium, a xeno- and feeder-free medium. We
showed that retinoic acid (RA) treatment increased expression of germ cell-specific genes in cBCs. Using western
blot, we determined that RA stimulated Smad1/5 phosphorylation. Moreover, Smad1/5 activation regulates the
expression of germ cell-specific genes, as co-treatment with a Smad1/5 phosphorylation inhibitor or activator alters
expression of these genes. We also demonstrate that Smad1/5 is required for RA-induced differentiation by RNA

interference knockdown.

Conclusion: Our results demonstrated that E8 medium is able to maintain cBC growth for weeks and RA treatment
induced germ cell differentiation of cBCs through the BMP-Smad1/5 signaling pathway.

Keywords: Chicken blastodermal cells, E8 medium, Retinoic acid, Germ cell differentiation, Smad1/5

phosphorylation, Growth factor

Background

Transgenic chickens have many applications due to their
physiological characteristics. Transgenic chickens are
considered a powerful bioreactor for the production of
proteins of pharmaceutical and industrial interest [1-3].
Chickens are also an excellent model for human diseases
[4]. Furthermore, the chicken embryo uniquely permits
observation of development through the eggshell,
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facilitating investigation of embryo survival and develop-
ment [5]. However, methods for generating transgenic
chickens carrying targeted mutations are currently
difficult.

Chicken primordial germ cells (cPGCs) are an efficient
system for germline transmission and producing trans-
genic chickens [6]. Because only a limited number of
c¢PGCs can be obtained from each embryo, the establish-
ment of a long-term culture system for stable cPGC lines
would be indispensable. However, this process is both
technically demanding and resource intensive. An alterna-
tive is culturing chicken blastodermal cells (cBCs), which
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can be easily obtained from fertilized eggs and manipu-
lated. cBCs are derived from the area pellucida of Eyal-
Giladi and Kochav (EG&K) stage X chicken embryos [7,
8]. Somatic and germline chimeras were produced after
freshly isolated cBCs were transplanted into the sub-
germinal cavity of stage X (EG&K) embryos [8, 9]. Unlike
mouse embryonic stem cells (mESCs), which are derived
from the inner cell mass of the blastocyst, ¢cBCs cultured
in vitro have extremely low germline transmission
competence. It seems that the maintenance of germ-
line competence of ¢BCs is sensitive to culture condi-
tions, as germline competence rapidly and dramatically
diminishes after culture in vitro [10, 11]. Therefore, a
method for inducing ¢BCs to enhance or to recover germ-
line competence would be desirable for generating trans-
genic chickens. Indeed, overexpression of Cvh (chicken
Vasa homologue) in in vitro cultured chicken ESCs
derived from ¢BCs is able to restore germline competence
by both inducing the germ cell differentiation program
and impairing the somatic differentiation program [12].
Moreover, overexpression of ectopic transcription factors
(Oct4, Nanog, Sox2, Lin28, Kif4, and C-myc) in chicken
embryonic fibroblasts leads to the generation of induced
cPGCs, which can migrate to the embryonic gonad after
injection into the vasculature of Hamburger and
Hamilton (H&H) stage 15 embryos [13, 14]. Com-
pared with ectopic overexpression of transcription
factors, chemical induction of pluripotency is more
convenient to use for differentiation of mESCs and cESCs.
However, whether chemical inducers are able to enhance
¢BC germline competence in vitro is unknown.

Retinoic acid (RA), an active metabolite of vitamin A,
alters the expression of target genes to regulate many
different growth and differentiation processes during
embryogenesis and organogenesis [15]. Because RA
treatment results in the rapid expression of germline-
specific genes, it is the most commonly used reagent
during in vitro germ cell differentiation of pluripotent
cells [16]. Among the genes influenced by RA treatment
are members of the Bone morphogenetic protein (BMP)
family. BMP2, BMP4 and BMP8b activate Smadl/5 in
the PGCs. The BMP-Smadl/5 signaling pathway is
essential for the specification and proliferation of PGCs
[17-19]. RA has previously been shown to promote
germ cell differentiation in mESCs by activates the
BMP-Smadl/5 signaling pathway [20]. However, it is
unknown whether similar mechanisms of inducing
differentiation exist in ¢BCs.

A variety of culture systems have been developed for
both self-renewal or directed differentiation of pluripo-
tent cells. One of these, E8 medium, contains only seven
additional completely defined and xeno-free ingredients
supplementing the standard DMEM/F-12 medium [21].
It is a feeder-free medium that supports the culture of
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human induced pluripotent stem (iPS) cells and mESCs
[22]. Cells grown in E8 medium are appropriate to in-
vestigate molecular mechanisms because E8 medium
provides a clean background detecting the accumulation
of specific growth factors during the process of cell
differentiation. Despite the fact that E8 medium was
originally developed for mammalian systems, culturing
¢BCs in E8 medium is possible because the growth
requirements of pluripotent mammal and chicken cells
are nearly identical.

In this study, we describe the growth process of cBCs
in E8 medium and demonstrate that RA treatment
stimulated expression of germ-specific genes. Moreover,
we reveal that RA activates the BMP-Smad1/5 signaling
pathway in c¢BCs and this pathway is required for
expression of germ-specific genes.

Results

Morphology and growth of cBCs in E8 medium

After ¢cBCs were seeded, they attached firmly to culture
plates within 12 h. The cells had large nuclei and pro-
nounced nucleoli and grew in monolayer colonies with
clearly distinguishable individual cells (Fig. 1a). This
morphology is similar to that described previously [10].
When we withdrew FGF2 and TGF-p from E8 medium,
¢BCs formed tight, compact colonies of multilayered cells
arranged in clusters within 48 h (Fig. 1b). We speculate
that colonies with this cobblestone morphology are
analogues of embryoid bodies.

In general, cBCs retained monolayer morphology for
three or four passages (approximately 2 weeks). Beyond
this period, most of the cells tended to grow in multi-
layered morphologies and the monolayer cells tended to
developed fibroblast-like features. Though multilayer cells
were still positive for the pluripotency marker SSEA-1
(Fig. 1c), cells developed vacuoles and stopped growing
after five or six passages (approximately 3 weeks).

LIF contributed to proliferation and pluripotent character
of cBCs

To identify the essential growth factors for culture of
¢BCs, we cultured ¢cBCs under combinations of SCF and
LIF, which are commonly used to enhance self-renewal
and proliferation of various chicken pluripotent cells
[23]. The total number of ¢BCs increased in the pres-
ence of LIF. However, SCF did not influence the prolifer-
ation of ¢BCs (Fig. 2a). The result was consistent with
the cell viability essay (Fig. 2b). Following this, we exam-
ined the expression of pluripotent markers using quanti-
tative PCR analyses. In chickens, POUV, SOX2, and
NANOG are considered the core transcriptional regula-
tors of pluripotency [24]. We detected that mRNA
expression of PouV and Nanog were increased by LIF
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Fig. 1 The growth of chicken blastodermal cells (cBCs) in E8 medium. a The cells have large nuclei and pronounced nucleoli (arrows), and grow
in a monolayer with clearly distinguishable individual cells. b The cells form tight and compact colonies of multilayer cells arranged in clusters
after FGF9 and TGF-B are withdrawn. ¢ Immunofluorescence staining of SSEA-1 (green), nuclei were counterstained with DAPI (blue)
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addition, and Sox2 mRNA accumulation increased with
co-addition of LIF and SCF (Fig. 2c).

These results indicate that LIF addition optimizes the
effectiveness of E8 medium for culturing cBCs. Even
though optimized E8 medium is unable to maintain a
long-term culture for ¢BCs, it could be appropriate as a
system for directional inducing.

RA causes early expression of germ-specific genes in ¢BCs
To identify the extent of germ cell differentiation in
c¢BCs, we measured the mRNA expression of germ-
specific genes. Stra8 (stimulated by retinoic acid gene 8)
is a key intrinsic gene in meiotic initiation in response to
extrinsic signaling [25]. Dazl (Deleted in azoospermia) is
likely exclusively expressed in chicken germ cells [26, 27]
and is involved in chicken gametogenesis [28]. Cvh is a
specific marker of differentiating germ cells between the
late migration stage to the post-meiotic stage [12].

We treated cBCs with RA while they were growing in
monolayer colonies. As a result of RA treatment, the
mRNA expression of Stra8 increased over 100-fold. Daz!
and Cvh mRNA levels were increased approximately 4—
6-fold (Fig. 3a). The BMP-Smad1/5 signaling pathway is
involved in germ cell differentiation in mESCs [20], and
we detected a substantial increase in Bmp2, Bmp4 and
Bmp8b mRNA expression (Fig. 3b) after RA treatment.
The mRNA levels of the germ cell-related genes and
BMP-encoding genes suggested that RA treatment
induced cBCs to differentiate to germ cells.

Smad1/5 activation is required for RA-mediated germ-specific
gene expression

We then explored the molecular mechanisms of germ
cell differentiation of cBCs. We investigated whether the
activation of Smad1/5 is linked to RA treatment of cBCs.
To eliminate interference of LIF, we first performed a
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Fig. 2 Effect of SCF and LIF on growth of cBCs in E8 medium. Cell number (a) and cell viability (b) were measured after treatment for the
indicated times with SCF, LIF or both. Values are the mean + SEM (n =5). ¢ The expression levels of the pluripotency genes PouV, Nanog and Sox2
were measured by gRT-PCR after growth factor treatment for 24 h. Values are the mean + SEM (n = 3). Data are representative of results in three
independent experiments, and each condition is normalized to -actin abundance. *, p < 0.05; **, p < 0.01
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time-course analysis of Smad1/5 activation using western
blot following withdrawal of LIF from E8 medium. There
is no obvious change in the levels of phosphorylated-
Smad1/5 until 24 h following LIF withdrawal (Fig. 4a). We
then measured the effect of RA treatment on Smadl/5
activation in E8 medium without LIF. Phosphorylation of
Smad1/5 was first observed 3 h after treatment with RA
and increased dramatically after 6 h. When cBCs were
treated with the Smad1/5 phosphorylation inhibitor dor-
somorphin [29], RA-induced phosphorylation of Smadl/5
was decreased (Fig. 4b). Additionally, inhibition of Smad1/
5 phosphorylation substantially decreased the mRNA
expression levels of Stra8, Dazl and Cvh, even in the pres-
ence of RA (Fig. 4c). These results indicate that RA pro-
motes Smadl/5 phosphorylation, which is required for
differentiation of ¢cBCs to germ cells.

To determine the details of Smad1/5 activation in RA-
induced germ cell differentiation, we treated ¢cBCs with
or without RA and SB431542. SB431542 is considered
an inhibitor of TGF-P receptors (ALK4/5/7) in previ-
ous work [30, 31], but more recent studies have
shown that SB431542 also activates Smadl/5 phos-
phorylation [20, 32], and this effect is not due to the
direct pharmacological modulation of BMP receptor

kinase activity but rather to some indirect approach
[32]. We detected that SB431542 treatment increased
phosphorylated Smadl/5 in response to all treat-
ments, while the addition of dorsomorphin neutral-
ized the effect of SB431542 (Fig. 5a). However, the
activation of Smad1/5 mediated by SB431542 failed to in-
crease germ-specific gene expression in the absence of RA
(Fig. 5b). Co-treatment with SB431542 and RA increased
the expression of germ-specific genes compared with RA
treatment alone, and this increase was significantly re-
duced by dorsomorphin treatment (Fig. 5c). Moreover, the
expression levels of Smadl and Smad5 did not signifi-
cantly change after RA, Dorso or SB431542 treatment
(Additional file 1: Figure S1). According to these results,
we conclude that RA activates the BMP-Smad1/5 signal-
ing pathway, and cooperates with phosphorylated Smad1/
5 to induce germ cell differentiation in cBCs.

RNA interference of Smad1/5 reduced RA-mediated induction
of germ-specific genes

We used RNA interference to determine if Smadl/5 is
necessary for RA-mediated differentiation of ¢cBCs. The
siRNAs targeting Smadl and SmadS5 were efficient when
we transfected them into ¢cBCs and detected Smadl and
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Smad5 mRNAs (Fig. 6a). We then co-transfected the
most efficient siRNAs targeting Smadl and Smads5, re-
spectively. We observed that knockdown of Smadl/5
substantially reduced germ-specific gene mRNA expres-
sion in the presence of RA (Fig. 6b). These data are
consistent with the results of dorsomorphin treatment
and indicate that the BMP-Smad1/5 signaling pathway is
involved in RA-induced ¢BC differentiation.

Discussion

Germline competence represents the ability of trans-
planted cells to produce functional gametes and transmit
genetic information to the next generation. Pluripotent
cells that are germline competent are important tools
for animal biotechnology that increases human welfare
as well as elucidates basic biological phenomena. In
chickens, ¢BCs are considered pluripotent cells because
they can give rise to all somatic tissues as well as the
germline after injection into the sub-germinal cavity of
stage X (EG&K) recipient embryos. Chicken embryonic
stem cells (cESCs) can be derived from cBCs after long-
term in vitro culture beyond 20 passages [33]. In vitro,
cESCs demonstrate pluripotency by differentiating into
derivatives of all three germ layers via embryoid body
formation [11] or monolayer culture [34, 35]. However,
while cESCs efficiently contribute to somatic tissues,
they fail to form germline in vivo. Therefore, cESCs are

considered more similar to epiblast stem cells (EpiSCs)
than to mESCs [36]. Interestingly, a recent report re-
vealed that cESCs show greater similarity with mESCs
than mEpiSCs at the transcriptome level using micro-
array analysis, while ¢cBCs show a highly similar profile
of gene expression as cESCs [37]. In this study, we
attempted to explore whether the germline competence
of cBCs can be enhanced using a protocol resembling
that of germ cell differentiation in mESCs. RA is the
most commonly used reagent to induce germ cell differ-
entiation in vitro because it stimulates the expression of
germ-specific genes. As expected, we detected a rapid
increase in Stra8, Dazl and Cvh mRNA expression in
cBCs after treating with RA, the results showed that
cBCs were susceptible to germ cell fate induction, simi-
lar to mESCs. It is worth noting that RA is also used as
reagent to induce neural phenotypes in various stem
cells in vitro, and BMPs inhibition promoted neural in-
duction [38]. We detected the increased level of BMPs
in c¢BCs after treating with RA, and we speculated this
may make ¢BCs tend to differentiate into germ cells
rather than neurons. Nevertheless, the relationship
between RA, BMPs, and neural phenotype in cBCs
needs further investigation.

Developing systems perform a dynamic balance between
cell proliferation and differentiation. In general, RA is con-
sidered a differentiation-inducing molecule that inhibits
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Fig. 4 Inhibition of Smad1/5 phosphorylation decreased RA-induced germ cell differentiation of cBCs. a Cells were grown for the indicated time
following LIF withdrawal in the presence of RA. Western blots were used to analyze the expression levels of phosphorylated Smad1/5 (pSmad1/5)
and a loading control (GAPDH). Similar results were obtained in two separate experiments. b The expression levels of pSmad1/5 were analyzed
after 12 h of RA treatment, 2 h of dorsomorphin (Dorso, inhibitor of BMP signaling pathway) treatment, or both. Similar results were obtained in
two separate experiments. ¢ The mRNA expression levels of Stra8, Dazl and Cvh were measured after RA or Dorso treatment by gRT-PCR. Data are
representative of results in three independent experiments, values are the mean + SEM (n = 3) and each condition was normalized to S-actin
abundance. *, p < 0.05; **, p < 0.01

cell proliferation. RA-regulated processes of developmen- RAREs [43], Stra8 expression decreased nearly three
tal biology include somitogenesis, neurogenesis, limb quarters when the BMP-Smad1/5 signaling pathway was
development, and visceral organ formation [38-40]. blocked. Thus, it seems that the indirect pathway of RA
Moreover, RA is required for initiation of meiosis in verte-  activation plays an important role whether RAREs are
brate germ cells [41]. In chickens, it has been established  present or not. The details of RA activation of the BMP-
that RA regulates the switch between mitosis and meiosis ~ Smad1l/5 signaling pathway still require further investi-
in embryonic germ cells [25]. The molecular mechanism  gation. We speculate that Smadl/5 is activated by an
of RA action is complex. RA activates two families of RA  increase of BMPs secretion after RA treatment. Add-
receptors, nuclear RA receptors (RARs) and nuclear retin-  itionally, Smadl/5 may also be activated by RA-
oid X receptors (RXRs). RAR-RXR dimers bind to RA  mediated kinase signaling pathways. Indeed, RA acti-
response elements (RAREs) and then control the tran-  vates p42/p44MAPKs in neurons and ESCs [44, 45], and
scription of nearby genes. In addition to its classical p42/p44MAPKs enhance Smadl phosphorylation [46].
genomic effects, RA also has extranuclear and non- Inducing pluripotent cells into specific cell types by
transcriptional effects. RA induces the rapid and transient  the formation of embryoid bodies or monolayer culture
activation of kinase signaling pathways, and then RARs are two commonly used methods. E8 medium supports
and other co-regulators are phosphorylated to integrate  human iPSC growth in monolayers and maintains their
the classical genomic effects [42]. pluripotency beyond 50 passages. After withdrawing
As they lack RAREs, RA possibly regulates Dazl and FGF2 and TGEF-p, iPSCs form embryoid bodies [47]. For
Cvh through an indirect pathway in ¢BCs. Our results the first time, we describe the growth of cBCs in E8
showed that the BMP-Smadl/5 signaling pathway was medium. In E8 medium, c¢BCs grew in monolayer
required for this indirect pathway. Interestingly, even colonies and demonstrated morphology similar to
though the promoter of Stra8 contains two putative cESCs. Moreover, analogues of embryoid bodies rapidly
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Fig. 5 Activation of Smad1/5 phosphorylation enhanced the RA-induced germ cell differentiation of cBCs. a Western blots were performed after
12 h of RA treatment, followed by 2 h of Dorso or SB431542 (Activator of Smad1/5 phosphorylation) in the absence of RA. Similar results were
obtained in two separate experiments. The mRNA expression levels of Stra8, Dazl and Cvh were measured after Dorso or SB431542 treatment in
the absence (b) or presence (c) of RA. Data are representative of results in three independent experiments, values are the mean + SEM (n = 3)
and each condition is normalized to S-actin abundance. *, p < 0.05; **, p < 0.01

formed after we withdrew FGF2 and TGF-p from E8
medium. Recent reports revealed that the monolayer
culture-mediated method of induction is simple and reli-
able in cESCs [34, 35], so we chose this method for ¢cBCs
induction. Even though ¢BCs showed the classic dy-
namic of pluripotent cell growth for just a limited period
of time in E8 medium, this could still be appropriate as
a system for directional inducing, because we cultured
¢BCs with a monolayer morphology for nearly 2 weeks,
which is sufficient for germ cell differentiation [48—50].

A variety of media are used to culture cBCs. For
example, cBCs were cultured on inactivated STO feeder
cells in embryonic stem cell medium (ESA) containing
growth factors including FGF2, IGF-1, SCF, IL-6, IL-11,
CNTE, OSM and LIF [51]. In some reports, BRL condi-
tioned medium was added, which contains LIF and some
undefined cytokines [10, 34]. Due to the complex and
undefined ingredients from feeder cells and BRL-
conditioned medium, the evaluation of individual growth
factors is impossible to undertake. Because E8 medium
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provides a clean background, we were able to evaluate
the proliferation and self-renewal effect of growth factors
including LIF and SCF. LIF influenced the proliferation
and pluripotency of ¢BCs. This was in accordance with
the observation that the LIF-STAT3 signaling pathway is
a hallmark of pluripotency in both human and mouse
ESCs [52]. Surprisingly, SCF addition did not have an
effect on proliferation or pluripotency. We speculate that
SCF may play a role in pluripotent cells by cooperating
with other growth factors. Therefore, additional
growth factors should be systematically tested to
evaluate their efficiency and map the network of cross
talk between them.

Although injection lentiviral vectors into subgerminal
cavity to produce chicken chimeras is highly efficient,
lentiviral transduction does not allow targeted gene
editing because the transgene inserts randomly at mul-
tiple sites [53]. In contrast, using homologous recombin-
ation or transcription activator-like effector nucleases
(TALEN) to transduce targeted mutations in cPGCs,
targeted gene knockout chickens have been produced
[54, 55]. However, in the decades that have passed since
the first PGC-mediated chicken chimeras were pro-
duced, only a few laboratories have been able to culture
cPGCs. Though it is not very efficient, ¢cBC-mediated
transgenic chicken production is valuable because ¢BCs

are much more easily obtained and manipulated than
c¢PGCs [56]. By inducing ¢BCs to differentiate into germ
cells in vitro, we may enhance the efficiency of ¢BC-
mediated transgenic chicken production.

Conclusions

In this study, we demonstrated that E8 medium is able
to maintain ¢BC growth for weeks. We also revealed
that RA treatment induced germ cell differentiation of
¢BCs through the BMP-Smadl/5 signaling pathway.
These results will assist our understanding of the com-
plicated molecular mechanism of RA action. Because
the germline competence of ¢BCs may be enhanced
through RA treatment, induced ¢BCs could be import-
ant alternatives in the production of transgenic chickens.

Methods

Isolation and culture of cBCs

The area pellucida was isolated from Stage X (EG&K)
embryos of Hyline chicken (Gallus gallus) as previously
described [33], washed twice with DMEM/F-12 medium
(Gibco, Carlsbad, CA) and dispersed gently using a
1000-pl pipette into a single cell suspension. The cells
were centrifuged at 350x g for 5 min, the supernatant
was removed, and cells were resuspended in complete
E8 medium (Gibco) containing 100 U/ml penicillin and
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100 pg/ml streptomycin (Gibco). The cells were seeded
at a density of 2 x 10* cells/cm? in Vitronectin (Gibco)-
coated culture plates (Costar, Corning, NY). When cells
grew to 70—80% confluence, passaging was performed by
washing and pipetting the cells with Ca**/Mg**-free
phosphate buffered saline (PBS; Gibco).

Immunofluorescence detection

Adherent cells were washed with PBS and fixed in 4%
paraformaldehyde at room temperature for 20 min,
permeabilized with 0.5% Triton X-100 (Sigma-Aldrich,
St. Louis, MO) in PBS for 10 min. After incubation with
blocking buffer containing 5% newborn bovine serum
(BSA, Solarbio, Beijing, China) for 20 min, the cells were
then stained with anti-SSEA-1 antibodies (1:100, Abcam,
Cambridge, UK) at 4 °C overnight and at rewarmed at
37 °C for 45 min. Alexa Fluor 488 goat anti-mouse IgG
(1:1000, Abcam) was added and incubated at room
temperature for 1 h. The nuclei were stained with 10 uM
DAPI (Sigma-Aldrich) for 30 min. The fluorescence
images were obtained with fluorescence microscopy
(IX71, OLYMPUS, Tokyo, Japan).

Treatment of cultured cells with the drugs

The cells were treated with all-trans RA (Merck Millipore,
Bedford, MA) at 1 uM, dorsomorphin (Selleck, Houston,
TX) at 5 uM, and SB431542 (Selleck) at 5 uM. When co-
treating with RA and these inhibitors, the cells were
treated with RA for 12 h, changed medium and added
inhibitors to treat for another 2 h. The chemicals were
dissolved in dimethyl sulfoxide (DMSO, Sigma-Aldrich)
and diluted with E8 medium. The final concentration of
DMSO in the medium was less than 0.1%.

Western blot analysis

Western blotting was performed according to a previ-
ously described method [57]. Adherent cells were lysed
in RIPA buffer (50 mM Tris, pH 8.0, 150 mM NaCl, 1%
NP-40, 0.5% deoxycholic acid and 0.1% SDS) supple-
mented with Halt Protease Inhibitor Cocktail (Thermo
Fisher Scientific, Waltham, MA). Lysates were centri-
fuged and the protein concentration of supernatants was
estimated using a BCA protein assay kit (Beyotime
Biotechnology, China) following the manufacturer’s in-
structions. After blocking with 5% BSA at room
temperature for 2 h, primary antibodies directed against
phosphorylated Smad1/5 (1:1000, Cell Signaling Tech-
nology, Boston, MA) and glyceraldehyde-3-phosphate
dehydrogenase (GAPDH, 1:5000, Abcam) were added
and the blots incubated overnight at 4 °C. Primary
antibodies were detected using species-specific HRP
(horseradish peroxidase)-conjugated secondary anti-
bodies (1:5000, Cell Signaling Technology) at room
temperature for 2 h.
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Table 1 Primers for PCR analysis
Genes Accession no. Primer sequences (5' to 3') Product
length (bp)

PouV  NM_001110178  GCCAAGGACCTCAAGCACAA 511
ATGTCACTGGGATGGGCAGA

Nanog NM_001146142.1 CAGCAGACCTCTCCTTGACC 586
AAGCCCTCATCCTCCACAGC

Sox2  NM_205188.2 AGGCACAGGCAACTCCAACTC 472
GCCGAGCTGCTCTTGCATCAT

Stra8  XM_416179 GTGAGGGACAGTGGAGGTAA 166
CAGAAATGCCGCTTGTAAAT

Dazl ~ NM_204218 CTGGGGAGCAAAGAAACTACG 213
CAAAGGTGTTCCTCAGACGGT

Cvh NM_204708 GGGAAGATCAGTTTGGTGGA 388
GACAAAGAAAGGCTGCAAGG

Bmp2  NM_204358.1 TGGTGGAGGTGGTTCACTTGGA 184
TGTTTGTGTTTCGCTTGACG(

Bmp4  NM_205237.3 ACGAAGTGATGAAGCCGCTGTC 196
TGATGAGTCTGTGCCTGGTGGA

Bmp8b XM_003642583.2 AACGCCACCAACCACGCCAT 176

CAGCCACAGGACTTCACCACCATA

Smadl NM_001201455.1 CAACCCAACAGTCACCCGTTCC 156
AGGCAGGTAAGCAGGAGGAGGA

Smad5 NM_001014968.1 CCAGATTCCTTCCAGCAACC 213
GCTTGTGTCCATAGACTGAGAG

B-actin NM_205518 GAACCCCAAAGCCAACAGA 185
GGAGGGCGTAGCCTTCATAGA

Reverse transcription and quantitative PCR analyses

Total RNA was isolated using TRIzol reagent (Invitrogen,
Carlsbad, CA) following the manufacturer’s instructions.
PrimeScript RT Master Mix reverse transcription kit
(TaKaRa, Japan) was used for cDNA synthesis. Reverse
transcription products were amplified with the SYBR
Premix Ex Taq PCR kit (TaKaRa). PCR amplification was
conducted on an automated StepOne system (Applied
Biosystems, Carlsbad, CA). Relative gene expression data
were analyzed with the 2*“Ct method. Primers were
designed by using Primer 6.0 software. Primer sequences
and PCR product lengths are listed in Table 1.

Cell viability assay

Cells were seeded into Vitronectin-coated 96-well
culture plates (Costar) at a density of 5000 cells/well and
grown in complete E8 medium. After 1 day of culturing,
medium was carefully replaced with fresh E8 medium

Table 2 The siRNA sequences

siRNA codes Target sequences (5' to 3')
SIRNA-Smad1-1 GGGCTGCTCTCCAATGTTA
SIRNA-Smad1-2 GGATAGAGATACACCTTCA
SIRNA-Smad5-1 TGCGACATTTCCAGATTCC
SIRNA-Smad5-2 GGTGTTCGATTGTGTATTA
Negative control TTCTCCGAACGTGTCACGT
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and treated with appropriate growth factors for 12, 24 or
36 h, respectively. Medium was then replaced with fresh
E8 medium containing diluted CCK-8 reagent (1:10,
Dojindo Laboratories, Japan), and incubated for 2 h at
37 °C. The CCK-8 reaction product was quantified by
measuring absorbance at 450 nm using an ELx800
absorbance microplate reader (BioTek, Vermont, USA).

RNA interference assay

The sequences of siRNAs targeting Smadl and Smad5
were used previously [58] and are listed in Table 2. RNA
oligonucleotides for RNAi experiments were obtained
from GenePharma Inc. (Shanghai, China). When ¢BCs
grew to 70-80% confluence in E8 medium, the cells
were transfected with siRNA using Lipofectamine3000
(Invitrogen). A non-targeting siRNA was used as a nega-
tive control. After 24 h, transfection mixtures were
replaced with E8 medium. After another 24 h, cBCs
were collected for analysis or treated with experimental
drugs as described above.

Statistical analysis

SPSS v16.0 software (SPSS Inc., Chicago, IL) was used to
analyze data sets using the Student’s t-test. P-values less
than 0.05 were considered significantly different and P-
values less than 0.01 were considered extremely signifi-
cantly different. All experimental data are reported as
the mean and error bars represent the experimental
standard error.

Additional file

Additional file 1: Figure S1. The mRNA expression levels of Smad1
and Smad5 were measured after RA, Dorso and SB431542 treatment.
Data are representative of results in three independent experiments,
values are the mean + SEM (n = 3) and each condition is normalized to
B-actin. *, p < 0.05; **, p < 0.01. (TIF 8187 kb)
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