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Ghrelin accelerates the growth and osteogenic
differentiation of rabbit mesenchymal stem
cells through the ERK1/2 pathway

Nan Ye1,2 and Dianming Jiang1*
Abstract

Background: Mesenchymal stem cells (MSCs) can differentiate into chondroblasts, adipocytes, or osteoblasts under
appropriate stimulation. Ghrelin, an endogenous ligand for the growth hormone secretagogue receptor (GHSR),
stimulates growth hormone (GH) secretion, and has both orexigenic and adipogenic effects. This study sought to
understand the potential involvement of members of MAPK serine/threonine kinases in the ghrelin-induced growth
of rabbit MSCs ( rBMSC).

Methods: We applied various concentrations of ghrelin to cultured rBMSC and observed the growth rate of the
cells by MTT, changes in the phosphorylation state of ERK1/2, JNK and p38, and the expression levels of ALP, Runx2,
and Osterix by wetern blot.

Results: We found that the growth and osteogenic differentiation of ghrelin-treated rBMSC are promoted primarily
by phosphorylated ERK1/2, and that this phosphorylation, as well p38 phosphorylation, is mediated by GHSR.

Conclusions: Our study suggests that ghrelin promotes the growth and osteogenic differentiation of rBMSC primarily
through the ERK1/2 pathway.

Keywords: rBMSC, MAPK, Ghrelin, Osteogenic differentiation
Background
Mesenchymal stem cells (MSCs) are regarded as one of
the promising candidates for cell therapy by either au-
tologous or allogeneic transplantation [1]. MSCs can
differentiate into a variety of cell types, including osteo-
cytes, chondrocytes, adipocytes, cardiomyocytes, neurons,
and endothelial cells [2–4]. Transplanted MSCs can
mobilize and become integrated within the host to
replace pathological or damaged tissue [5]. In addition,
MSCs can modulate immune responses and inflammation,
providing growth factors or cytokines that can prevent
cells from undergoing apoptosis in certain environments,
notably in the central nervous system [6]. During the last
two decades, an increasing number of studies have proved
the therapeutic potential of MSCs in the treatment of neu-
rodegenerative diseases, spinal cord and brain injuries,
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cardiovascular diseases, diabetes mellitus, and diseases of
the skeleton [7–9]. Basic research on MSCs in certain
fields has led to the initiation of clinical trials worldwide.
To provide therapeutic benefits and further understand
the mechanisms responsible for them, large numbers of
cells are needed [10, 11]. Thus, it is important to find effi-
cient, economical and scalable methods to generate large
numbers of MSCs without altering their multipotency [12].
Ghrelin, an endogenous ligand for the growth hor-

mone secretagogue receptor (GHSR), is a 28-amino acid
peptide produced from a 117-amino acid preprohor-
mone. The mature form of ghrelin may undergo several
post-translational modifications, including the addition
of a fatty acid chain (n-octanoic acid) to the serine resi-
due at position 3 [13]. Ghrelin has been shown to stimulate
growth hormone (GH) secretion, to have both orexigenic
and adipogenic effects [14], and to influence the metabol-
ism of both glucose and lipids. Most ghrelin is produced in
the stomach, by a distinct group of endocrine cells located
within the gastric oxyntic mucosa [15, 16], with smaller
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amounts produced by other organs. Small amounts of
ghrelin have also been observed elsewhere in the gastro-
intestinal tract and in the pancreas.
The MAPKs are members of a family of serine/threo-

nine kinases that play an essential role in transmitting the
activation of cell-surface receptors to effect downstream
changes in transcriptional programs. They are expressed
ubiquitously and are involved in the regulation of a wide
variety of critical cellular functions, including proliferation,
differentiation, migration and apoptosis [17]. In humans,
there are at least 11 members of the MAPK superfamily,
Fig. 1 Identification of rBMSC. a Immunofluorescence staining showing the
proliferation during the second through fifth cell passages (as determined
which can be divided into six distinct subgroups based on
sequence similarity: ERK1 and ERK2; JNK1, JNK2 and
JNK3; and the p38 MAPKs. Each group of MAPKs is acti-
vated by a distinct kinase cascade in which a MAP3K (or
MEKK) phosphorylates and activates a downstream dual-
specificity MAP2K (or MEK), which in turn stimulates
MAPK activity through dual phosphorylation on threo-
nine and tyrosine residues within a conserved tripeptide
motif (Thr-X-Tyr). Phosphorylation of these threonine
and tyrosine residues results in a conformational change
that increases the accessibility of the active site and
expression of CD34 and CD44 in cultured rBMSC. b Cellular
at an absorbance of 570 nm)



Fig. 2 Expression of GHSR mRNA in rBMSCs by RT-PCR
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enhances catalysis [18–20]. ERKs are activated in response
to various cytokines and growth factors and mediate pri-
marily mitogenic and anti-apoptotic signals [21].
While several studies have focused on ghrelin’s effect

on the growth of neural stem cells and embryonic stem
cells, few have examined its influence on MSCs. Here,
we used ghrelin to investigate the molecular mecha-
nisms underlying rabbit MSC differentiation to osteo-
blasts and to enhance the osteogenic potential of rabbit
MSCs. Our data revealed that ghrelin triggers osteogenic
differentiation of rabbit bone marrow-derived mesenchy-
mal stromal cells through ERK1/2 signaling pathways.

Results
Identification of rBMSC
At day ten, cells reached 80 % confluence. At day 13, the
cells displayed a uniform spindle shape and reached 100 %
confluence. To further identify the rBMSC, the expression
of CD34 and CD44 was examined by immunofluores-
cence. The cells were CD44 positive but CD34 negative
(Fig. 1a).
The proliferation of the cells in the second through

the fifth cell passages was analyzed using an automated
microplate reader at an absorbance of 570 nm on days 1
to 10 (Fig. 1b). The cells from the fourth and fifth pas-
sages were 100 % confluent at seven days and then en-
tered a lag phase. However, the cells from the second
and third passages entered the lag phase two days later.
Thus, the cells from the fourth passage displayed the
greatest ability to proliferate (P < 0.05).

GHSR expression in rBMSC
RT-PCR was used To detect the expression level of
GHSR mRNA in the rBMSC,. GHSR was expressed at a
high level in the rBMSC (Fig. 2).

Optimal Concentrations and Timing of Ghrelin and D-Lys3-
GHRP-6Treatment of rBMSC
The MTT assay was used to assess cell growth and viability
following treatment of rBMSC with varying concentrations
of ghrelin, and to determine the appropriate duration of
treatment to achieve the desired level of growth.
Ghrelin was added to the growth medium to final con-

centrations of 400, 500, 600, 700 and 800 ng/ml. The
numbers of viable cells were assessed at 1 to 6 day
(Fig. 3a). The results showed that the optimal concentra-
tion and duration of ghrelin treatment for rBMSC was
3days of treatment at 600ng/ml ghrelin.
Next, we determined the concentration of D-Lys3-

GHRP-6 necessary to promote the growth caused by
600ng/ml ghrelin. rBMSC that had been treated with
600 ng/ml ghrelin were treated with D-Lys3-GHRP-6 at
concentrations of 10−8, 10−9, 10−10, and 10−11mg/ml, and
cell numbers were evaluated at day three (Fig. 3b). The
result showed that 10−10mg/ml D-Lys3-GHRP-6 could
inhibit the growth caused by 600ng/ml ghrelin.

Ghrelin accelerates the Growth of rBMSC via the ERK1/2
Pathway
Phosphorylation states of the MAPKs ERK1/2, JNK, and
p38 were detected by their phosphorylation antibody
which mainly combinate to the phosphorylation part in
these protein. To determine which pathway mediates
ghrelin’s acceleration of rBMSC growth, the phosphoryl-
ation states of the MAPKs ERK1/2, JNK, and p38 were
detected at 0, 20, 40, and 60 min (Fig. 4a) following
treatment with 600ng/ml ghrelin. The resulting increase
in ERK1/2 phosphorylation was greater than that of JNK
or p38 after 40min (Fig. 4b). To explore the function of
ghrelin on rBMSC-derived osteoblasts, the rBMSC were
allowed to differentiate into osteoblasts, and then treated
with ghrelin for 0, 20, 40, and 60 min. The expression
levels of ALP, RUNX2, and Osterix were then examined.
The expression of these proteins at 40 min was higher
than at the other time points (Fig. 5).
When this treatment was repeated with the addition of

10−9mg/ml D-Lys3-GHRP-6, compared with treatment



Fig. 3 Growth of rBMSCs following treatment with ghrelin and with ghrelin plus D-Lys3-GHRP-6. a: Growth percentage at 1 to 6 days following
treatment with increasing concentrations (400, 500, 600, 700, and 800 ng/ml) of ghrelin. Presented as mean ± SD (n = 5). b: The effect of D-Lys3-
GHRP-6 (10−11, 10−10, 10−9, and 10−8 mg/ml) treatment on cell growth following ghrelin treatment
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with ghrelin only, the phosphorylation of ERK1/2 was
reduced (Fig. 6a). The phosphorylation status of the
JNKs and p38 were not significantly changed (Fig. 6b),
nor were the levels of ALP, RUNX2, and Osterix (Fig. 7).
These results suggested that ERK1/2 plays a key role in

ghrelin’s ability to accelerate the growth of rBMSC. To test
this, U0126 (a specific inhibitor of ERK1/2 phosphoryl-
ation) was used to silence ERK1/2 expression. In the pres-
ence of U0126, ghrelin (600ng/ml) did not accelerate
rBMSC growth (Fig. 8a), and the growth rate was signifi-
cantly lower than in the presence of ghrelin alone. The
phosphorylation of p90rsk (p-p90rsk) was reduced (Fig. 8b),
as were the levels of ALP, RUNX2, and Osterix (Fig. 8c).
Discussion
Ghrelin is produced mainly by the stomach, although
lesser amounts are also produced by the bowel, pancreas,
pituitary, kidney, and placenta. The ghrelin receptor,
GHSR, is a typical G-protein-coupled seven-pass trans-
membrane receptor [22]. Several studies have identified
the protective effects of ghrelin on the reproductive sys-
tem [23–26]. Other studies have shown that ghrelin affects
the function of embryonic stem cells [27, 28] via the
ERK1/2 pathway, but have not focused on rBMSC.
In this study, we verified the identity of rBMSC by their

morphology and the finding that they expressed CD44, a
marker of rBMSC, but not CD34, a closely related



Fig. 4 Effects of 600 ng/ml ghrelin on mitogen-activated protein kinase (MAPK) activation in rBMSCs cells. a: The expression of total and phosphorylated
ERK1/2, JNKs, and p38 proteins. b: Contrast gray value of phosphorylation of ERK1/2, JNKs, and p38 based on the western blot. Presented as mean ± SD
(n = 5). *Significantly different from the 0 min group (P < 0.05)
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molecule not expressed by rBMSC. we found that ghrelin
accelerates the growth of rBMSC through activation of the
ERK1/2 branch of the MAPK pathway. Cellular prolifera-
tion following the second through fifth passages was ana-
lyzed on days 1 to 10 following the passages. The fourth
generation rBMSC showed the greatest capacity for prolif-
eration, whereas the second generation showed the least.
The optimal ghrelin treatment to obtain maximum growth
was 600ng/ml of ghrelin for 3days. We also demonstrated
that this effect of ghrelin is mediated through its receptor,
GHSR [29], which we showed to be expressed at high
levels in rBMSC. Experiments in which the GHSR inhibi-
tor D-Lys3-GHRP-6 blocked the ghrelin-mediated growth
provided further support for the role of GHSR.
To gain further insight into the mechanism by which

ghrelin accelerate rBMSC growth, we evaluated the ac-
tivity of signaling pathways downstream of GHSR. The
MAPKs are a super-family of serine/threonine kinases



Fig. 5 Expression levels of ALP, Runx2, and Osterix proteins in osteoblasts
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that includes ERK, JNK, and p38. These kinases are in-
volved primarily in the activation of nuclear transcrip-
tion factors that control cell proliferation, differentiation,
and apoptosis [30]. Our results suggest that ghrelin ac-
celerates rBMSC growth via the ERK signaling pathway,
and not through the activation of JNK or p38. We found
that 20 to 60 min of ghrelin treatment was required to
stimulate phosphorylation of ERK, and therefore that the
stimulus is time-dependent. Furthermore, both blockade
of GHSR and ERK by chemical inhibition suppressed the
ghrelin-mediated acceleration of rBMSC growth and pro-
moted rBMSC differentiation to osteoblasts.

Conclusions
Our results provide evidence that the ghrelin/GHSR sig-
naling pathway accelerate rBMSC growth and promotes
rBMSC differentiation to osteoblasts mainly through an
ERK-dependent pathway. This study only obtained the
ghrelin function on rBMSC in vitro, in future will be in
vivo. Thus, our findings suggest that ghrelin might be
useful in growing large numbers of rBMSC. Further
study is necessary before any clinical application is
considered.

Methods
Unless otherwise specified, all chemicals and reagents were
purchased from Sigma-Aldrich (St. Louis, MO, USA).
Antibodies to IgG, GAPDH, ALP, Runx2, Osterix, CD44,
CD34, U0126 (an inhibitor of phospho-ERK1/2) ERK1/2,
JNK, p90rsk,phospho-ERK1/2, phospho-JNK and phospho-
p90rsk1(Ser380) were purchased from the Abcam Corpo-
ration, USA.

Isolation and culture of rBMSC
To obtain the rBMSC, the rabbit was used. The femur
from a neonatal New Zealand white rabbit was isolated,
and the ends of the femur were opened. The bone mar-
row was flushed from the femur with low glucose
Dulbecco’s modified Eagle’s medium (DMEM) using a
1mL syringe. Cells were harvested into a culture dish,
suspended using a Pasteur pipette, seeded into a flask
containing DMEM and 15 % fetal bovine serum, and
cultured in an incubator with 5 % CO2 at 37 °C. The
medium was replaced every 2days. When cells grew to a
confluence of approximately 85 %, they were passaged
with 0.25 % trypsin and 0.1 % EDTA (1:2). Cell growth
was monitored using an inverted phase contrast micro-
scope (Nikon Co.). The animal experimental protocols
were approved by the Chongqing medical university ex-
perimental animal management committee.

RNA Extraction and RT-PCR
To detected the GHSR expression status in the rBMSC,
the RT-PCR was used. Total RNA was isolated from o
cells using the RNeasy kit (Qiagen, Hilden, Germany). All
RNA samples were treated with RNase-free DNase I to re-
move genomic DNA contamination. The RNA content of
samples was too low to be accurately quantified by spec-
trometry, and thus, 6.5-μL RNA aliquots were converted
to cDNA by reverse transcription, then amplified (TaKaRa,
Inc., Dalian, China). The ghrelin receptor PCR primers
were: sense, 5’-TCTTCCTTCCTGTCTTCTGTC-3’;anti-
sense, 5’-AGTCTGAACACTGCCACC-3’and the PCR
condition was 95 °C 5 min, 95 °C 30 s 57 °C 30 s 72 °C 30
s 30 cycles, 72 °C 10 min.

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltertrazolium
bromide (MTT) assay
To determine the cell growth percentage, the MTT assay
was operated. Cells were grown in 96-well plates (1 × 103

cells/well) supplemented with MGF. Control cells were
switched from RPMI-1640 to DMEM containing 0.1 % di-
methyl sulfoxide (DMSO). At 1 to 6 days following ghrelin
treatment (400, 500, 600, 700 and 800ng/ml ghrelin), 20μL
of MTT was added to each well to a final concentration of
0.5 %. After a 4h incubation at 37 °C in the dark, 150μL
DMSO was added to each well for 10 min to dissolve the
formazan crystals. The absorbance was measured using a
microplate reader (EXL800, Cole-Parmer, Vernon Hills,
IL, USA) at 490nm. All experiments were repeated three
times. The viability of the MGF treated cells was expressed
as percentage of population growth plus the standard
error of the mean (SEM) relative to that of untransfected
control cells. Cell growth was calculated as follows:

% growth ¼ ðmean experimental absorbance–
mean control absorbanceÞ

=mean control absorbance � 100

Immunofluorescence
To detected the CD44 and CD34 expressin status, the
immunofluorescence was used. The rBMSC were fixed in



Fig. 6 Effects of ghrelin receptor inhibitor (D-Lys3-GHRP-6) on ghrelin-mediated MAPK activation in rBMSC cells. a: The expression of total and
phosphorylated ERK1/2, JNKs, and p38 proteins. b: Contrast gray value of phosphorylation of ERK1/2, JNKs and p38 based on the western blot.
Presented as mean ± SD (n = 5). * Significantly different from the 0 min group (P < 0.05)

Fig. 7 Expression of ALP, Runx2, and Osterix proteins by osteoblasts
after treatment with the ghrelin receptor inhibitor (D-Lys3-GHRP-6)
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3.7 % paraformaldehyde for 30 min at room temperature,
permeabilized with 0.5 % Triton X-100 in PBS for 15 min,
and blocked with 1 % BSA in phosphate-buffered saline
(PBS) with 10 % goat serum overnight at 4 °C. The sam-
ples were then stained with primary antibodies diluted in
PBS. The primary antibody binding was detected with
an Alexa Fluor 488 goat anti-rabbit IgG (H + L) second-
ary antibody. Images were captured with a Nikon A1
confocal microscope. Experiments were performed in
triplicate.



Fig. 8 Effect on rBMSCs following treatment with U0126 (a specific inhibitor of ERK1/2 phosphorylation). a The growth rate of rBMSCs following
treatment with U0126. U0126-: medium plus ghrelin; U0126+: medium plus ghrelin and U0126. b: Effects on p90rsk and phosphorylation of p90rsk

after the phosphorylation ERK1/2 was inhibited at (0, 20, 40, and 60 min). U0126-: medium plus ghrelin; U0126+: medium plus ghrelin and U0126.
c: Expression of ALP, Runx2, and Osterix proteins by osteoblasts after the phosphorylation ERK1/2 was inhibited, at 0, 20, 40 and 60 min
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Western blotting
The detected the protein in MAPK pathway and osteo-
genic, the western blot was used. The protein homoge-
nates from rBMSC were separated using electrophoresis
on 8–12 % sodium dodecyl sulphate/polyacrylamide gels
and transferred to nitrocellulose membranes. Membranes
were blocked for 30 min at room temperature in PBS buf-
fer containing 5 % fat-free milk and 0.1 % Tween 20.
Membranes were then incubated with primary antibody
for at least 1 h at room temperature or overnight at 4 °C.
The membranes were subsequently washed three times
with PBS containing 0.1 % Tween 20, incubated with
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peroxidase-conjugated secondary antibodies, and devel-
oped using ECL reagents (Pierce, Rockford, IL, USA).

Osteogenic differentiation
To detect the rBMSC differentiation to osteogenic, this
experiments was operated. The rBMSC were plated at a
density of 5000 cells/cm2 and exposed to standard
differentiation-inducing media for 21 days. The medium
was changed twice per week. Osteogenic differentiation
was achieved following standard in vitro protocols.
Endothelial differentiation was stimulated by culturing
the cells in endothelial growth medium-2 (EGM-2) [31].

Statistical analysis
Statistically significant differences between gene expression
levels were determined using one-way analysis of variance
(ANOVA) followed by a Newman–Keuls test with Graph-
Pad Prism version five software (GraphPad Software, La
Jolla, CA, USA, www.graphpad.com/company/). Replicates
were included in the statistical model. Differences were
considered statistically significant at the 95 % confidence
level (P < 0.05). Data are presented as mean ± S.D.
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