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Abstract
Background: When generating a genetically modified organism (GMO), the primary goal is to give
a target organism one or several novel traits by using biotechnology techniques. A GMO will differ
from its parental strain in that its pool of transcripts will be altered. Currently, there are no
methods that are reliably able to determine if an organism has been genetically altered if the nature
of the modification is unknown.

Results: We show that the concept of computational subtraction can be used to identify
transgenic cDNA sequences from genetically modified plants. Our datasets include 454-type
sequences from a transgenic line of Arabidopsis thaliana and published EST datasets from
commercially relevant species (rice and papaya).

Conclusion: We believe that computational subtraction represents a powerful new strategy for
determining if an organism has been genetically modified as well as to define the nature of the
modification. Fewer assumptions have to be made compared to methods currently in use and this
is an advantage particularly when working with unknown GMOs.

Background
Genetically modified organisms have been engineered
through the stable integration of a recombinant genetic
cassette into the genome of a recipient organism. The pur-
pose of generating a genetically modified organism
(GMOs) is, like breeding in general, to provide the new
variety with novel features, and for introduced traits to be

inheritable, the nuclear or organellar genome has to be
altered. Protein coding mRNAs represent a causal starting
point for most metabolic processes and structural compo-
nents of a cell, and a cell's pattern of RNA transcription
reflects the coding potential of its genome. For a genetic
modification to have an effect, it is thus also vital that it
changes the coding capacity of the recipient cell.
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The strategy most commonly used when generating genet-
ically modified plants that are commercially relevant is to
introduce a genetic construct that either confers some
kind of advantage when it comes to farming/storage or
increases the nutritional quality of the end product.
Among the most widely used genetic features are genes
that encode herbicide tolerance, insect resistance or
improve content of key nutrients http://www.agbios.com/
. In addition to these trait genes, various selection markers
are also usually introduced in order to simplify the proc-
ess of GMO generation. These genes include herbicide
resistance genes such as the bialaphos resistance gene
(bar) from Streptomyces hygroscopicus [1], antibiotic resist-
ance genes such as the neomycin phosphotransferase II
gene (nptII) from Escherichia coli found in the Flavr Savr
tomato [2] or positive selection markers such as the phos-
phomannose isomerase gene (pmi) from E. coli (used in
for instance Golden Rice, see [3]). Careful examination of
the pool of transcripts found in a plant should therefore
reveal whether or not a plant has been genetically modi-
fied.

Recently, a new strategy for identification of foreign
nucleic acids (DNA or RNA) called computational sub-
traction has been described for pathogen discovery in
human diseases of unknown etiology [4]. In short, the
approach takes advantage of the fact that for a growing
number of species the complete genomic sequence has
now been generated, and sequencing costs have been
dropping dramatically in recent years. Using sequence
similarity search algorithms it is thus possible to analyze
DNA or RNA sequence data from a sample, compare the
sequences against a set of reference sequences, and filter
away all the endogenous ('expected') reads, leaving a
small collection of sequences that do not appear to stem
from the organism in question. This principle appears to
work well even when subtracting short sequence tags [5],
and should be an efficient way to identify for instance
unexpected transcripts.

We have attempted to use high massively parallel pyrose-
quencing and the concept of computational subtraction
to look for allochthonous transcripts in a transgenic line
of Arabidopsis thaliana. We also explore the concept of
computational subtraction in silico using expressed
sequence tag (EST) data from transgenic rice and papaya.

Results
The cDNA sequencing of transgenic A. thaliana gave a total
of 79,990 reads, yielding 17,457,856 bases (average read
length: 218 bases) and the raw data were deposited in
GenBank's Short Read Archive (SRA) as submission
SRA009344: http://www.ncbi.nlm.nih.gov/sites/ent
rez?db=sra&cmd=search&term=SRA009344+. Sequence
tag extraction gave a total of 58,933 high quality 75-base-
pair sequences. Computational subtraction was per-
formed on the tag datasets and very few A. thaliana
sequences remained after the second round of subtraction
(Table 1). The remaining pool of sequence tags consisted
almost exclusively of sequences with a high degree of
sequence similarity to the pBI121 vector sequence (Table
1). Thirteen tags did not match the pBI121 vector or our
reference transcriptome/genome sequences, but these
sequences were all close matches to A. thaliana accessions
or other plant sequences in the NCBI nt database. The
maximum bitscore possible using our megablast settings
and sequence length (75 basepairs) was 149, and average
score obtained for the remaining 146 sequences was
145.5 when megablast was used against the T DNA (trans-
fer DNA) region of pBI121. For the collection of 75-base-
pair prokaryotic tags on the other hand, only a very small
number of tags were subtracted (Table 1).

A number of transgenic EST reads could be identified in
both the rice and the papaya sequence collections (Figure
1). Both the trait genes and selection markers seemed to
have reasonable expression levels, and some reads from
papaya also showed some diversity in the 5' end of the
coat protein transcript (Figure 1). The two different
sequences found corresponded to two different versions
of transgenic papaya; one with the complete transcript
from the papaya ringspot virus and one earlier version
where a composite sequence comprising a part of the
papaya ringspot virus genome as well as a part of the
cucumber mosaic virus genome was used [6].

Discussion
Most of the methods currently used for characterization of
(unknown) genetic modifications rely on PCR [7]. This
approach assumes some knowledge about the target
sequence, as it relies on primer design. High density array-
based methods that make fewer assumptions about the
nucleic acids to be detected have been suggested and

Table 1: Computational subtraction of 75-basepair sequence tags against A. thaliana transcriptome and genome

Starting pool of tags Transcriptome megablast Genome megablast

Sequenced tags 58,933 (100%) 5,727 (9.72%) 159 (0.27%)
pBI121 T DNA tags 147 (0.25%*) 146 (2.55%*) 146 (91.82%*)
Prokaryotic tags 1,000 (100%) 995 (99.5%) 995 (99.5%)

* - percent of total remaining tags that match pBI121 T DNA
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developed [8,9], but even here some basic assumptions
have to be made. By using high throughput sequencing of
either a cDNA or a genomic/organellar DNA library, it
should be possible to detect any novel transcript or
genetic construct. The exception would be if one works
with cDNA and the target organisms' only novel feature
on the expression level is the increased or reduced expres-
sion of an otherwise endogenous gene [10].

Computational subtraction might also be performed
using genomic DNA instead of mRNA. The number of

sequences that need to be derived for computational sub-
traction to be effective when working with transcripts will
depend upon the frequency and length of the transgenic
mRNA versus the pool of endogenous mRNA and small
transgenic transcripts and/or a low level of expression will
require deeper sequencing. The same principle applies to
computational subtraction using genomic DNA, but here
the size of the inserted construct relative to the target
genome will be the most important factor [11]. Using A.
thaliana transformed with pBI121 as an example, the
insert size is 6,192 bases (GenBank accession number

Construct-derived sequences found in the transgenic EST libraries generated using the ABF3 rice line and SunUp papayaFigure 1
Construct-derived sequences found in the transgenic EST libraries generated using the ABF3 rice line and 
SunUp papaya. 15 sequences were found in the rice library, whereas the SunUp papaya cDNA collection contained 23 con-
struct-derived sequences. Two versions of the papaya ringspot virus coat protein (PRSVcp) transcripts were found, and labeled 
in green are sequences from the cucumber mosaic virus coat protein (CMVcp) gene. When present in the sequences, poly(A) 
tails have been indicated and the sequences have been labeled with their GenBank EST accession numbers. Construct maps 
were modified from [18,19,21] and http://www.agbios.com/. Ubi1 - maize ubiquitin promoter 1. ABF3 - abscisic acid responsive 
elements-binding factor 3. 3'pinII - 3' region of potato proteinase inhibitor II. 35S - Cauliflower Mosaic Virus (CaMV) P35S pro-
moter. bar - phosphinothricin acetyltransferase. 3'nos - 3' region of nopaline synthase. 5'nos - 5' region of nopaline synthase. 
nptII - neomycin phosphotransferase II. PRSVcp - Papaya Ringspot Virus coat protein. t35S - CaMV P35S terminator. UidA - 
beta glucuronidase.
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AF485783) and the genome size of A. thaliana is
125,000,000 basepairs [12] (excluding mitochondrial
and chloroplast genome). If we had sequenced 58,933
genomic tags, we could have expected only to find <3
sequence tags that had sequence overlap with the insert.

One way to increase the likelihood of picking up GM-spe-
cific nucleic acids would be to do an in vitro physical sub-
traction of the DNA/RNA before library preparation. This
would reduce the amount of nucleic acids that the sample
would have in common with a (wildtype) reference and
increase the relative amount of the GM-associated DNA or
transcripts. There are kits available for performing sup-
pressive subtractive hybridization based on published
techniques [2] and subtractions can also be performed
commercially (offered by for instance by Eurofins MWG/
Operon, see Products & Services at http://www.euro
finsdna.com/).

Regardless of what the starting material for library prepa-
ration is, the target organisms' transcriptome and/or
genome must be well characterized. Sequence filtering
might be done using data from a close relative (see for
instance the use of mouse data in [4]), but this alone will
not be sufficient when working with a high number of
sequence reads. At time of writing, ten large plant genome
sequencing projects had been completed: Arabidopsis thal-
iana (thale cress), Glycine max (soybean), Phoenix dactylif-
era (date palm tree), Medicago truncatula (barrel medic),
Oryza sativa (rice), Populus trichocarpa (black cottonwood),
Sorghum bicolor (sorghum), Vitis vinifera (wine grape), Car-
ica papaya (papaya) and Zea mays (corn). Many more spe-
cies are slated to be sequenced in the near future http://
www.ncbi.nlm.nih.gov/genomes/PLANTS/
PlantList.html, so we believe that for the major crop spe-
cies this will not be a limiting factor for long.

A possible example of the potential benefits of such an
approach was observed in our collection of downloaded
EST libraries where a library from a unpublished project
entitled 'Subtractive cloning of differentially expressed
mRNA from transgenic rice plants' was found (library
name: Oryza sativa cv. Pusa Basmati-1). This library com-
prised only 9 sequences, but even with this small number
a reads, a transgenic EST could be detected. The 242 base-
pair sequence found (accession number AJ309294) was a
100% match with the gene trapping Ds/T-DNA vector
pDsG8 designed for insertion mutagenesis in rice [13].

The data generated in this study can also be used to search
for other novel transcripts than those that represent trans-
genic candidates. Careful examination of the 5.568 tran-
scripts that were found that did not match the reference A.
thaliana transcriptome but matched the genome sequence
well (Table 1; 5,727-159 = 5,568), revealed several poten-

tially novel, spliced endogenous genes (data not shown).
We do not believe that these transcripts are directly linked
to the genetic modification, but this merely demonstrates
how versatile data generated using high throughput
sequencing of cDNA libraries can be.

Conclusion
As the amount of available sequences data increases and
DNA sequencing costs drop, we believe that a sequencing-
based approach using computational subtraction will be
feasible for the detection, characterization and risk assess-
ment of genetic modifications. In this pilot study we have
shown that transgenic cDNA can be detected using genet-
ically modified plants as a model system.

Methods
Plant growth and RNA isolation
A. thaliana seeds from plants vacuum infiltrated with Agro-
bacterium [14] carrying the pBI121 35S:GUS Ti plasmid
(also includes the nptII selection marker; Clontech, Moun-
tain View, CA, USA) were surface sterilized and grown on
Murashige and Skoog medium [15] without kanamycin
for 10 days in growth chambers at 22°C for 8 h of dark
and 16 h of light (100 μEm-2s-1). 10 day old frozen A. thal-
iana seedlings were grinded using a pestle and mortar in
the presence of liquid nitrogen and total RNA was isolated
using the Spectrum Plant Total RNA kit (Sigma, St. Louis,
MO, USA) following the manufacturer's recommenda-
tions. RNA was eluted once in 50 μl of elution solution.
Quantification of RNA was done using a NanoDrop ND-
1000 Spectrophotometer (Thermo Scientific NanoDrop
Products, Wilmington, DE, USA).

Library construction, sequencing and computational 
subtraction
The mRNA was DNase I treated using a deoxyribonuclease
I kit (Sigma) and subsequently reverse transcribed using
the SMART PCR cDNA Synthesis Kit (Clontech). Briefly,
first-strand synthesis was done using the 3' SMART CDS
Primer II A oligonucleotide and PrimeScript Reverse Tran-
scriptase (Takara Bio Inc., Shiga, Japan) in combination
with the SMART II A oligonucleotide. cDNA was ampli-
fied using the 5' PCR primer II A, and six 50 μl reactions
(150 ng DNase-treated RNA per sample as template) were
done using 21 PCR cycles. Amplification products were
pooled, phenol/chloroform/isoamyl alcohol extracted
and ammonium acetate/ethanol precipitated. The pellet
was dissolved in molecular grade water and DNA quanti-
fication confirmed that the yield was as expected using
this kit and protocol.

Nebulization was used to fragment 5 ug of cDNA. Adap-
tors where appended to the fragments and one GS LR25
sequencing kit (PTP 25 × 75) was used according to man-
ufacturer's recommendations (Roche Applied Science,
Page 4 of 6
(page number not for citation purposes)

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF485783
http://www.eurofinsdna.com/
http://www.eurofinsdna.com/
http://www.ncbi.nlm.nih.gov/genomes/PLANTS/PlantList.html
http://www.ncbi.nlm.nih.gov/genomes/PLANTS/PlantList.html
http://www.ncbi.nlm.nih.gov/genomes/PLANTS/PlantList.html


BMC Biotechnology 2009, 9:87 http://www.biomedcentral.com/1472-6750/9/87
Indianapolis, IN, USA). Sequencing and library construc-
tion was done at the Centre for Ecological and Evolution-
ary Synthesis' Ultra-high Throughput Sequencing
Platform (University of Oslo, Norway) using the 454
Genome Sequencer FLX System (Roche Applied Science).

From the raw data, tags with high sequence quality were
extracted. A 75 basepair window was slid through the
reads, and when a window that did not overlap with the
SMART PCR cDNA linkers or 454 sequencing key and that
had an average sequence quality score [16] above 30 was
found, a tag was extracted and the algorithm proceeded to
the next read.

Sequence subtractions were performed using megablast
[17] against a collection of reference mRNA sequences
from A. thaliana (TAIR8_cdna, downloaded from The Ara-
bidopsis Information Resource ftp site: ftp://ftp.arabidop
sis.org/home/tair/Sequences/blast_datasets/
TAIR8_blastsets/ with word size 20, no filter for low com-
plexity regions and a high expect (e) value (1000). All of
the sequences that gave a match were removed, and the
procedure was repeated using the most recent release of
the A. thaliana nuclear (downloaded from the National
Center for Biotechnology Information ftp site: ftp://
ftp.ncbi.nih.gov/genbank/genomes/A_thaliana/ as well as
the mitochondrial and chloroplast genome (NC_000932
and NC_001284, respectively).

In order to test the robustness of the subtraction, a ran-
dom collection of 75-basepair sequences was extracted
from a set of 200+ completely sequenced bacterial
genomes. Trait genes used in biotechnology are often of
prokaryotic origin, and we used this to simulate what
would happen if expression of an unknown prokaryotic
gene was to be detected in a pool of endogenous A. thal-
iana transcripts.

Rice and papaya EST libraries
To test the feasibility of finding cDNA sequences derived
from inserted GMO cassettes in a transcript libraries pre-
pared from other plant species, we searched the National
Center for Biotechnology Information (NCBI) EST data-
base ftp://ftp.ncbi.nih.gov/repository/dbEST/ for
sequence collections derived from genetically modified
plants. Focusing on transgenic lines that had an associated
publication and that did not merely overexpress endog-
enous genes we ranked all the libraries found according to
size. The largest library was from genetically modified
papaya (Carica papaya). This cDNA sequence collection
had been compiled as a part of the work to characterize
the SunUp papaya genome and transcriptome [18]. The
six sets of papaya data contained a total of more than
75,000 sequences (EST libraries PY01-PY06; http://
www.ncbi.nlm.nih.gov/sites/entrez). The second largest

library found (UniGene library 14238) had been derived
from GM rice (Oryza sativa) and contained 5,455
sequences. It was an unpublished part of a 2005 article by
Dr. Oh and colleagues ([19] and Dr. Yeon-Ki Kim, per-
sonal communication). The rice line had been trans-
formed with a construct containing the abscisic acid
responsive element binding transcription factor 3 gene
(ABF3) from A. thaliana as well as the bar gene (phosphi-
nothricin acetyltransferase) as selection marker.

Unfortunately, neither of these two sequence collections
appeared to have been filtered for sequence quality or
accurately trimmed to remove cloning vector sequences
before being submitted. This made efficient computa-
tional subtraction intractable (in spite of both the rice and
papaya genomes being publicly available), so we decided
to instead specifically screen the two libraries for the pres-
ence of non-endogenous transcripts (as opposed to
removing endogenous transcripts through filtering). The
EST sequences were analyzed using BLAST sequence simi-
larity searches and the information that could be obtained
from the published ABF3 rice and SunUp papaya GMO
cassette construct maps (see references above), the GMO
Detection Method Database [20] and the nt sequence col-
lection hosted by NCBI.
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