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Abstract
Background: Multiple approaches for the site-directed mutagenesis (SDM) have been developed.
However, only several of them are designed for simultaneous introduction of multiple nucleotide
alterations, and these are time consuming. In addition, many of the existing multiple SDM methods
have technical limitations associated with type and number of mutations that can be introduced, or
are technically demanding and require special chemical reagents.

Results: In this study we developed a quick and efficient strategy for introduction of multiple
complex mutations in a target DNA without intermediate subcloning by using a combination of
connecting SDM and suppression PCR. The procedure consists of sequential rounds, with each
individual round including PCR amplification of target DNA with two non-overlapping pairs of
oligonucleotides. The desired mutation is incorporated at the 5' end of one or both internal
oligonucleotides. DNA fragments obtained during amplification are mixed and ligated. The resulting
DNA mixture is amplified with external oligonucleotides that act as suppression adapters.
Suppression PCR limits amplification to DNA molecules representing full length target DNA, while
amplification of other types of molecules formed during ligation is suppressed. To create additional
mutations, an aliquot of the ligation mixture is then used directly for the next round of mutagenesis
employing internal oligonucleotides specific for another region of target DNA.

Conclusion: A wide variety of complex multiple mutations can be generated in a short period of
time. The procedure is rapid, highly efficient and does not require special chemical reagents. Thus,
MALS represents a powerful alternative to the existing methods for multiple SDM.

Background
The introduction of multiple mutations in the same gene
is often necessary for a wide range of studies, including
studying gene expression and protein structure and func-
tion. Thus, site-directed mutagenesis is a central method
in molecular biology. A number of strategies have been

developed to simplify the generation of multiple mutant
sites within a target sequence [1,2].

A popular approach employs several pairs of mutagenic
primers for sequential rounds of mutagenesis. This proce-
dure is robust, however it is time-consuming because it
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requires a subcloning procedure between rounds of muta-
genesis [3]. Another strategy utilizes combining muta-
genic oligonucleotides in the same reaction [4-7]. Non-
PCR based template amplification in combination with
ligation of growing DNA strands reduces the rate of spon-
taneous errors. Despite the advantages, this procedure
also has limitations, such as restrictions in the number,
sizes and types of mutations that can be introduced simul-
taneously [2]. Alternatively, a few DNA fragments, each
carrying mutations, can be sequentially connected to gen-
erate a joined product with multiple mutations [8]. Selec-
tion measures such as nested PCR or enzymatic digestion
have been developed for removal of wild-type DNA [9-
11]. However, the possible combinations of DNA mole-
cules grow geometrically with the number of fragments
generated, only one which is the desired product. The
need for resolution of these products greatly reduces the
overall efficiency of the method.

In this study we described a rapid and efficient PCR-based
strategy for multiple SDM that has several advantages over
existing approaches. The method allows the creation of a
wide variety of mutations in any combination, including
sequence insertions, deletions of different lengths, and
complex nucleotide exchanges. The mutagenesis is highly
efficient (60-100% in our model experiments). Multiple
complex mutations in the same DNA template can be
introduced without intermediate subcloning, thereby per-
mitting the generation of sequences with multiple muta-
tions in a short period of time.

Results and discussion
The principle scheme of the method is shown on Figure 1.
MALS procedure (Mutagenesis by Amplification, Ligation
and Suppression PCR) allows the generation of all types
of mutations depending on the design of the internal oli-
gonucleotides used (Figure 1). The maximal sizes of
nucleotide exchanges and insertions are restricted only by
the lengths of internal oligonucleotides, and there are no
length restrictions for sequence deletions. To demonstrate
the efficiency of the method we sequentially introduced
four different nucleotide alterations in a model 4 kb DNA
sequence originating from the genomic DNA of phage λ
(Figure 2).

Initially, we introduced 1 bp nucleotide exchange in the
target DNA. Double stranded DNA template was ampli-
fied with two non-overlapping pairs of oligonucleotides
(Figure 3, lanes 1 and 2). External oligonucleotides SO1
and SO2 were dephosphorylated and consisted of tem-
plate-specific sequences and high-melting suppression
sequences having no similarity to each other (Table 1,
Additional File 1). In addition, two different restriction
recognition sites (absent from target DNA) were intro-

duced into the external oligonucleotides for subsequent
cloning. The desired mutation was incorporated at the 5'
end of one of the internal phosphorylated oligonucle-
otides (Table 1, oligonucleotide IR1). PCR amplifications
were performed in separate tubes to minimize generation
of non-specific PCR products.

If only one mutation is needed, the resulting PCR frag-
ments can be digested with specific restriction endonucle-
ases and directly ligated with vector for subsequent
subcloning. To perform multiple-site mutagenesis, PCR
fragments obtained during amplification are mixed
together in equal molar proportion and ligated without
prior digestion. Ligation of blunt-ended DNA fragments
can be done at room temperature (20-25°C) in 10-30 min
with high concentrated T4 DNA ligase (30,000 Weiss
units/ml, #M0202 M, New England Biolabs).

A similar mutagenesis procedure which utilizes two sepa-
rate PCRs to amplify two halves of a complete gene using
four primers was developed earlier, and is known as a con-
necting SDM [1]. In the connecting SDM, two resulting
PCR products are ligated to form fused DNA carrying
mutation situated in the middle. However, PCR fragments
become ligated in all possible combinations, and the final
DNA mixture contains multiple DNA species. This does
not allow a repeat mutagenesis procedure without prior
subcloning for selection of the correct mutants. Connect-
ing SDM was proposed as a single round mutagenesis
method designed for the introduction of a single muta-
tion with subsequent subcloning [1].

We applied a selective amplification based on the PCR
suppression effect [12] for the separation of desired
mutant molecules from other types of molecules formed
during ligation and present in the entire DNA population.
This procedure enables one to avoid time- and labor-
intensive subcloning. Suppression PCR has been used suc-
cessfully in a variety of applications: genome walking
[12], DNA subtractive hybridization [13], and targeted
genomic differential display [14]. In suppression PCR, an
inverted repeat is incorporated in the ends of DNA
sequences to prevent amplification during PCR [12]. The
suppression effect occurs when these inverted repeats
anneal intramolecularly to form panhandle structures
which cannot be amplified by PCR [12-16].

The DNA population formed as a result of ligation of the
SO1/IR1 and SO2/IF1 DNA fragments contains several
types of molecules (Figure 1 and Figure 3, lane 3): homo-
meric ligation products (type A), non-ligated DNA frag-
ments (type B), and molecules representing full length
initial DNA template (type C). Homomeric ligation prod-
ucts consist of self-ligated DNA fragments, and thus have
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identical ends. Heteromeric ligation products have differ-
ent annealing sites for the SO1 and SO2 oligonucleotides
on their 5' and 3' ends.

SO1 and SO2 oligonucleotides add suppression PCR
inverted repeat elements to the ends of type A molecules.
Both of these primers are long and contain the additional
suppression sequences as a non-annealing overhang
(Additional File 1). The overhang sequence is incorpo-
rated into template DNA ends in the early rounds of PCR.
SO1 and SO2 should have a GC content of 50-70% and a
Tm of at least 65°C; whenever possible the Tm should be
greater than 70°C [15,16]. In our experience, suppression
primers with an annealing temperature of 70°C give com-

plete suppression of amplification of type A molecules. It
is important to avoid using self-complementary SO1 and
SO2 primer sequences which can fold back and form
intramolecular hydrogen bonds, as well as primers that
have complementarity to the internal mutagenic primers,
particularly in their 3' ends.

The entire DNA population obtained during ligation is
used for PCR with external SO1 and SO2 oligonucleotides
(Figure 1 and 3). Suppression occurs when complemen-
tary sequences are present on each end of a single-
stranded DNA fragment (Additional File 1). During PCR,
after each denaturation step, self-complementary ends of
single-stranded (ss) type A molecules form strong

The MALS mutagenesis procedureFigure 1
The MALS mutagenesis procedure. Target DNA is individually amplified with two pairs of oligonucleotides SO1/IR1 and 
SO2/IF1. IF1 and IR1 are phosphorylated (rose circles), while SO1 and SO2 are dephosphorylated. The desired mutation is 
incorporated at the 5' end of IR1 oligonucleotide (shown in red). Panel 1 on the right shows the types of mutations available 
with MALS. PCR-generated DNA fragments are ligated. The resulting DNA population consists of homomeric ligation prod-
ucts (type A), non-ligated DNA fragments (type B), and molecules representing full length target DNA (type C) (panel 2 on the 
right). The entire DNA population is then amplified with suppression oligonucleotides SO1 and SO2. Intramolecular hybridiza-
tion of inverted repeat sequences prevents efficient replication of type A molecules, while type B molecules amplify linearly 
(panel 3 on the right). Only heteromeric ligation products (type C) amplify exponentially. The resulting DNA population pre-
dominantly consists of type C molecules. An aliquot of the PCR mixture is used for the next round of mutagenesis employing 
internal oligonucleotides specific for another region of target DNA. Finally, SO1 and SO2 suppression sequences (green and 
blue, respectively) are digested with restriction endonucleases and DNA fragments are ligated with linearized vector for subse-
quent subcloning.
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duplexes; thus, all ss type A molecules adopt hairpin struc-
tures (Figure 3 and Additional File 1). Replication of such
DNA fragments using SO1 and SO2 oligonucleotides is
suppressed (Figure 1 and Figure 3). Type B molecules have
only one primer annealing site, and thus amplify linearly.
Only heteromeric ligation products (type C, Figure 1 and
3) with two different adaptors at their 5' and 3' ends
amplify exponentially (Figure 3, compare lines 3 and 4).
These molecules are enriched during PCR and the final
reaction mixture contained predominantly these DNA
species (Figure 3, lane 4).

An aliquot of the PCR mixture is then directly used for the
next round of mutagenesis, in this case for the sequential
introduction of a 50 bp nucleotide exchange, a 50 bp
insertion and a 70 bp sequence deletion, using the same
strategy as described above, with the exception that inter-
nal oligonucleotides were designed for the other regions
of target DNA (Table 1). An example of the resulting
mutated DNA is shown in Figure 2.

There is no length limitation for sequence deletions that
can be introduced with MALS. The lengths of sequence
insertions and nucleotide exchanges are restricted only by
the available lengths of internal oligonucleotides. To esti-
mate the efficiency of the method, we sequentially intro-
duced a series of sequence insertions at four distinct sites
into our model target DNA using the same suppression
oligonucleotides SO1 and SO2 and internal mutagenic
oligonucleotides listed in the Additional File 2. The muta-
tion series included four 1 bp sequence insertions, four 50
bp insertions and four 100 bp insertions. After each round
of the MALS procedure, the mutant DNA was ligated into
the vector and cloned, and 20 individual plasmids with
inserts were isolated and completely sequenced. In each
experiment, the percentage of mutants containing correct
nucleotide alterations specific for particular round (round
efficiency) and number of desired mutations after all
rounds (overall efficiency) were calculated (Figure 4).
Under "correct DNA mutants" we list correctly assembled
plasmid inserts with specific nucleotide alterations at the

Sequence traces of mutated and initial DNA templates demonstrating nucleotide alterations that were sequentially introduced during four rounds of MALS procedureFigure 2
Sequence traces of mutated and initial DNA templates demonstrating nucleotide alterations that were 
sequentially introduced during four rounds of MALS procedure.
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mutant sites. We did not take into account rare spontane-
ous single nucleotide exchanges introduced by DNA
polymerase, because the frequencies of these errors were
relatively low (0 - 20% of plasmid inserts had random
nucleotide exchanges), varied from round to round, and
were not reproducible. Also, the frequency of random sin-
gle nucleotide exchanges will depend on the fidelity of
DNA polymerase used for PCR [17,18]. Fidelity is a meas-
ure of the ability of a DNA polymerase to select a correct
deoxynucleoside triphosphate from a pool of structurally
similar molecules, and thus defines the probable number
of random errors accumulated in the synthesized strands
of DNA [18,19].

The use of high fidelity DNA polymerases in the PCR-
based SDM is essential for reducing the introduction of
random amplification errors in PCR products. Multiple
thermostable DNA polymerases have been developed for
high fidelity PCR amplification [18,19]. However, the
average base substitution error rates exhibited by non-
proofreading DNA polymerases (DNA polymerases hav-
ing no 3'-5' exonuclease activity) are significantly higher
than the error rates of proofreading enzymes [18,19].
Therefore, we suggest the use of proofreading DNA
polymerases with the highest fidelity to reduce the gener-
ation of spontaneous nucleotide exchanges in the mutant
DNA. Thermostable DNA polymerases having 5'-3' exo-

Agarose gel electrophoregram demonstrating the types of molecules forming during one individual round of mutagenesisFigure 3
Agarose gel electrophoregram demonstrating the types of molecules forming during one individual round of 
mutagenesis. Lanes 1 and 2, PCR of target DNA with SO1/IR1 and SO2/IF1 oligonucleotides; Lane 3, homomeric (type A) 
and heteromeric (type C) DNA molecules formed during ligation of SO1/IR1 and SO2/IF1 DNA fragments (also, see Figure 1); 
Lane 4, suppression PCR with SO1 and SO2 oligonucleotides. The scheme on the right shows a graphical representation of 
type A and type C molecules that are present in lane 3 of the gel. During suppression PCR, intramolecular hybridization of 
inverted repeat sequences prevents binding of SO1 and SO2 oligonucleotides to the type A molecules that prevent their effec-
tive replication. Type C molecules amplify exponentially (see Additional File 1 for further details). Lane M, DNA size ladder 
with indicated positions of 1, 2, 3, 4, 6, and 10 kb DNA fragments (GeneRuler 1 kb DNA Ladder, Fermentas).

Table 1: Oligonucleotides used in this study.

Name Nucleotide sequence (5'-3') Orientation Mutation introduced

Suppression oligonucleotides (NheI and HindIII restriction recognition sites are marked in bold)
SO1 GTATGGACACTGCTGCGCGGGCTAGCTCCGGATGCGGAGTCTTATCC Forward -
SO2 CGCCCGTGACACTCTCCAGCAAGCTTCCATAGCAGCCATCACATCAGT Reverse -
Mutagenic internal oligonucleotides (mutagenic nucleotides are marked in bold)
IF1 TCCAGACCCAACCAAACCAATCG Forward 1 bp exchange
IR1 TGGATTTGCTGTACTGCGTGAATAGC Reverse
IF2 GTTCCGAGATAAGTTTACGTCACCGTGTTTACCGCAGCATTAAAGCAG Forward 50 bp exchange
IR2 GTTTGTCCAGACTAAAAATTCAGATCGAGAGACGTCACCTAAGCAGG Reverse
IF3 TTAGCTTTTATCGGCCAATTCCATGCGTGTAGGCGAATTTGCGGAG Forward 50 bp insertion
IR3 ACAGCTAATAATGTTGTATATTGGTCATCCTGCTGGTTGACTGGCCTA Reverse
IF4 CTCCGGTGGCAGGACGTCAGCA Forward 70 bp deletion
IR4 GTCTGACCACTTAACGCCACGC Reverse
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nuclease activity are undesirable in the MALS procedure
because protruding ends of external oligonucleotides and
mismatches introduced by the mutagenic primers can be
removed by 5'-3' exonuclease activity. It is also desirable
to avoid using DNA polymerases which catalyze the non-
template directed addition of an adenine residue to the 3'
end of both strands of DNA molecules, because this will
affect effective ligation of PCR fragments. Additional File
3 provides the characteristics of commercial proofreading
enzymes suitable for the MALS procedure. The choice is
dependent on the size of target DNA and availability of
any particular enzyme.

Figure 4 shows that the efficiency of the MALS procedure
was not significantly affected by the size of the sequence
insertions or by the number of rounds of mutagenesis.
This is because the internal oligonucleotides have prede-
termined mutations, thus all specific PCR fragments con-
tain the mutations after PCR. However, undesired
products accumulating during the procedure reduce the
overall efficiency with increasing number of rounds.
These undesired mutant products included DNA mole-
cules containing primer dimers (the product of nonspe-
cific annealing and primer elongation events) between the
specific DNA fragments.

During PCR, formation of primer dimers can compete
with formation of specific PCR product. In general, incor-
poration of unremoved primer dimers formed by phos-
phorylated internal oligonucleotides between specific
PCR fragments can strongly reduce the efficiency of the
mutagenesis procedure. To avoid this, efficient separation
of specific PCR fragments from short primer dimers is
required. We recommend the use of ion exchange chro-
matography or solid-phase silica-impregnated filter mem-

branes for the separation of the specific PCR fragments
from primer dimers. Commercial PCR purification sys-
tems effectively remove short ds DNA from the DNA pop-
ulation and are available from Promega (Wizard PCR
Preps DNA purification system, which effectively removes
short ds DNA up to 100 bp in length), Qiagen (QIAquick
PCR Purification Kit, which completely removes ds DNA
up to 50 bp in length) or other manufacturers. Alterna-
tively, specific DNA fragments can be separated from long
primer dimers (>100 bp) or excessive unspecific PCR
products by gel extraction.

In our model experiments, the percentages of mutants
containing the desired nucleotide alterations at all sites
ranged from 60-80% after four rounds of mutagenesis had
been performed. However, the efficiency of the method
will depend on the specificity of oligonucleotides and
their ability to generate miss-priming PCR products and,
thus, will very from experiment to experiment.

Conclusion
We report an efficient strategy for a PCR-based multiple-
site SDM which employs suppression PCR for the in vitro
selection of desired mutant DNA molecules from unde-
sired DNA molecules. The method allows introduction of
multiple complex mutations into the same target without
intermediate subcloning between rounds of mutagenesis.
The method is relatively simple and efficient, and it pro-
vides a number of advantages over existing commercial
methods for complex mutagenesis projects.

Methods
The following three-step protocol for one round of MALS
can be easily adapted for all types of ds target DNA and

Efficiency of MALSFigure 4
Efficiency of MALS. A series of sequence insertions of different lengths (indicated on the top of each graph) were introduced 
into the target DNA during four rounds of mutagenesis. After each round the percentage of mutants with the correct nucle-
otide alterations specific for particular round (round efficiency) and after all rounds (overall efficiency) were calculated. Vertical 
scale is percentage of mutants containing correct nucleotide alterations. Bottom scale denotes the number of rounds per-
formed.
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used for the sequential generation of multiple mutations
in the same template.

Step 1: PCR
1 ng of genomic DNA (λ phage) was amplified separately
with two pairs of oligonucleotides SO1/IR1, and SO2/IF1
(Table 1) in a 50 micro liter reactions containing 1× Pfu
Ultra polymerase reaction buffer (Stratagene, La Jolla,
USA), 250 μM of each dNTP, 10 picomoles of each for-
ward and reverse oligonucleotides, and 1 unit of Pfu Ultra
High-Fidelity DNA polymerase (Stratagene, La Jolla,
USA). Cycling parameters were: 98°C for 10 sec, 60°C for
20 sec, 72°C for 5 min a total of 20 cycles. After amplifi-
cation, the resulting DNA fragments were extracted from
PCR mixtures using Wizard PCR Preps DNA Purification
System (Promega, Madison, USA). This purification pro-
cedure is required for separation of specific DNA frag-
ments from primer dimers if they are formed during PCR.

Step 2: Ligation
Equimolar amounts of DNA fragments obtained in Step 1
were ligated to each other in a 20 μl reaction containing
50 ng of SO1/IR1 DNA fragment, 200 ng of SO2/IF1 DNA
fragment, 1× T4 DNA ligase reaction buffer and 1 μl of
high concentrated (30,000 Weiss units/ml) T4 DNA ligase
(#M0202 M, New England Biolabs, Ipswich, USA) for 15-
30 min at room temperature. An aliquot of this ligation
mixture was then diluted 100 fold for subsequent sup-
pression PCR.

Step 3: Suppression PCR
Ligated DNA fragments from Step 2 were amplified with
SO1 and SO2 suppression oligonucleotides in a 50 μl
reaction containing 1 μl of diluted ligation mixture, 1×
Pfu Ultra polymerase reaction buffer (Stratagene, La Jolla,
USA), 250 μM of each of the dNTP, 10 picomoles of each
SO1 and SO2 oligonucleotides, and 1 unit of Pfu Ultra
High-Fidelity DNA polymerase (Stratagene, La Jolla,
USA). PCR reactions were done under conditions as fol-
lows: 98°C for 10 sec, 68°C for 6 min for a total of 20
cycles. An aliquot of final PCR mixture was diluted 100
fold and mutagenesis procedure was sequentially
repeated with other mutagenic oligonucleotides listed in
Table 1.

After completion the last round of mutagenesis, the sup-
pression sequences were removed from DNA fragments
with HindIII and NheI restriction endonucleases. The
resulting DNA fragments were ligated with HindIII/NheI
linearized plasmid vector and subcloned. Vector inserts
were then sequenced in both directions using BigDye Ter-
minator v3.1 chemistry and a 3130xl Genetic Analyzer
(Applied Biosystems, CA, USA) to verify the presence of
desired mutations.
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SDM: Site-Directed Mutagenesis.
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