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Abstract

Background: Biological actions of estrogens are mediated by the two specific estrogen receptors ERo and ERP. However, due
to the absence of adequate cellular models, their respective transcriptional activities are still poorly understood. For instance,
the evaluation of such differing properties on the transcription of responsive genes using ChIP experiments was hindered by the
deficiency of cells exhibiting the same genotypic background and properties but expressing only one of the ERs. We describe
here the generation of such cells, using an estrogen receptor negative HELN cell line that was derived from Hela cells stably
transfected with an ERE-driven luciferase plasmid. These HELN-Fa. and HELN-F cell lines stably express either the alpha or
beta (full length) estrogen receptor tagged with the FLAG epitope. The use of antibodies directed against the FLAG epitope
allowed a direct comparative evaluation of the respective actions of both ERs using ChlP.

Results: HELN-Fo and HELN-F3 cell lines were found to express comparable levels of their corresponding tagged receptors
with a Kd for estradiol binding of 0.03 and 0.27 nM respectively. The presence of a stably transfected ERE-driven luciferase
plasmid in these cells allowed the direct evaluation of the transcriptional activity of both tagged receptors, using natural or
synthetic estrogens. FLAG-ERa and FLAG-ERf were found to exhibit similar transcriptional activity, as indicated by a kinetic
evaluation of the transcriptional activation of the luciferase gene during 10 hrs of treatment with estradiol. The validity of these
model cells was further confirmed by the predictable transcriptional regulations measured upon treatments with ERa or ERf3
specific ligands. The similar immunoprecipitation efficiency of both tagged receptors by an anti-FLAG antibody allowed the
assessment of their kinetic recruitment on the synthetic luciferase promoter (containing an estrogen response element) by ChlIP
assays during 8 hours. A biphasic curve was obtained for both FLAG-ERa and FLAG-ER, with a peak occurring either at 2 hr
or at | hr, respectively, and a second one following 4 hr of E2 stimulation in both cases. In MCF-7 cells, the recruitment of ERa
also exhibited a biphasic behaviour; with the second peak however not so important than in the Hela cell lines.

Conclusion: In HELN derived cell lines, no fundamental differences between kinetics were observed during 8 hours for FLAG-
ERa and FLAG-ER, as well as for polymerase Il recruitment. However, the relative importance of recruitment between | hr
and 4 hr was found to be different in Hela cell line expressing exogenous tagged ERa and in MCF-7 cell line expressing
endogenous ER.
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Background

Estrogen receptors (ERa and ERp) are ligand-activated
transcription factors encoded by two different genes,
located respectively on chromosome 6 and 14 [1,2]. Since
the discovery of ERp [3], numerous studies tried to clarify
its biological roles in addition to those mediated by ERa
[4-6]. Nevertheless, the complex interplays between the
two receptors are far from being fully understood. The
specific tissue and cell distribution of each receptor is a
primary level of such complexity; some tissues preferen-
tially expressing one type of receptor (for instance, ERa
was primarily found in the uterus and ERp in the ovary),
and others like breast expressing both receptors [7].

Secondly, both receptors are expressed in several iso-
forms, and especially the ERP for which at least 6 isoforms
have been found [8-11]. The original ERP} clone encoded
a protein of 485 amino acids (ERB1 short) and later on, a
longest form of 530 amino-acids (ERB1 long) has been
cloned and is currently considered as the full-length wild-
type ERB [12]. The analysis of transgenic mice lacking
either ERa or ERP or both receptors provided a picture of
the specific roles of these receptors. The prominent role of
ERa was confirmed in most classic estrogen target tissues,
including the mouse mammary gland during develop-
ment, whereas ER} was found to achieve the terminal dif-
ferentiation of this organ [13]. A role for ERB has also
been found in ovary and cardiovascular system [5].

A third level of complexity is linked to the subtly differing
transcriptional potentialities of these receptors. Some of
these dissimilarities may obviously be linked to the
respective intracellular level of each receptor, but also to
their ability to heterodimerize and to interact with the
complex battery of transcriptional coregulators. In many
instances, ERB seems to oppose the actions of ERa, as it is
for instance exerting a concentration dependent reduction
of ERa transcriptional potency [14]. A precise analysis of
the mechanisms involved in transcriptional regulation in
intact cells has become possible with the emergence of the
chromatin immunoprecipitation (ChIP) approach, which
was used by several kinetic studies of nuclear receptor
recruitment to their response elements, along with the
myriad of associated coregulators [15]. Some studies,
focused on ERa and performed on short time scales of
hormone treatment, demonstrated a cyclic recruitment of
the receptor and some associated cofactors on the estro-
gen-responsive elements (EREs) from the pS2 or cathep-
sin D genes [15-19]. Later on, it was shown that cyclic
methylation of the pS2 promoter was also associated with
the cyclical recruitment of ERa and cofactors, making the
picture of transcriptional events far more complex than
imagined [20].

Concerning the study of the recruitment of ERf} on DNA,
the existence of both various ER(+) and ER(-) cellular
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models and receptor isoforms [21] added a combinatorial
complexity for determining experimental strategies.
Except the personal "LBD" antibody used by Liu [22],
most currently available antibodies for ERB did not
appear suitable for ChIP assays. So far, few cellular models
expressing ERa. and ERP alone or in combination have
been described. A first series of cellular models has been
engineered by transfecting the ERa positive MCF-7 cell
line with a plasmid expressing an inducible FLAG-tagged
version of ERB. Such MCF-7 based models have been used
by Matthews to study the recruitment of ERa in the pres-
ence or absence of the short ERB1 isoform [23], by Liu for
Chip-on-chip analysis of ERa- and ERB-binding DNA
regions [22], and by Murphy for transcriptional and
growth responses analysis [24]. A second kind of model
has been engineered by transfecting the ER negative breast
cancer Hs578T cell line with a FLAG-tagged and inducible
version of ERa, ERB or ERB cx, and was used for microar-
ray analysis of gene expression [25].

In the present study, we generated two independent cell
lines (HELN-Fo and HELN-F B) by introducing FLAG ver-
sions (stable transfection) of either ERo. or ERB (long
form: 530 amino acids) in an ER negative HelLa cell line
previously stably transfected with an ERE-driven luciferase
reporter gene. These cellular models combine the ease of
bioluminescence analysis of estrogen inducible reporter
transgene transcription with the power of ChIP analysis of
both receptors (ERa and B) recruitment in an identical cell
context and with the same antibody.

Results

Characterization of HELN-Fa and HELN-F/ cell lines
Expression and binding properties of tagged receptors
Generation of HELN-FLAG-ERa. (HELN-Fa) and HELN-
FLAG-ERB (HELN-FB) cell lines was performed in two
steps. An estrogen-responsive reporter gene in which luci-
ferase expression is driven by an estrogen-responsive ele-
ment (ERE) in front of the BGlobin promoter (ERE-
BGlobin-Luc-SVNeo) was first stably introduced into
human cervix adenocarcinoma cells (HeLa) cells generat-
ing the HELN cell line [26]. In a second step, HELN cells
were stably transfected with plasmids encoding human
FLAG-ERa or FLAG-ER (full length version of 530 amino
acids) to obtain HELN-Fa and HELN-Ff cell lines, respec-
tively.

The 3x FLAG epitope (FLAG) fused to the N-terminus of
the receptors (Figure 1A) was used to analyse their expres-
sion by Western blotting in the different clones of HELN-
Fa and HELN-Ff obtained. Two cell lines that displayed
comparable levels of FLAG-ERa and FLAG-ERp (Figure
1B) were selected and then used for all following experi-
ments. FLAG-ERa and FLAG-ER receptor protein levels,
as well as their respective affinities for estradiol, were
more precisely determined using 3H-estradiol in satura-
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Structure, expression and binding properties of the FLAG-ERo/f3 proteins. A) Representation of FLAG-ERo/3 pro-

teins showing the amino acid sequence length of ERa and ERp,

as well as their different domains, and the position of the FLAG

tag. B) Western blot using the M2 anti-FLAG antibody to probe the relative amounts of FLAG-ERa or FLAG-ERP present in
40 pg of total protein extracts prepared from HELN-Fa or HELN-Ff3 stable cell lines cultured in 3% DCC (in absence of phe-
nol red). C) Scatchard plot analysis of specific binding of [3H]-E2 to FLAG-ERa or FLAG-ERJ during 6 hours in a whole cell

assay. Dissociation constant (Kd) is indicated.

tion experiments (Figure 1C). Scatchard analysis per-
formed in whole cell assays, led to a protein
determination of 50 fmoles/mg and 159 fmol/mg and a
dissociation constant of 0.03 nM and 0.27 nM for FLAG-
ERo and FLAG-ERP respectively. These dissociation con-
stant values were similar to those previously found for
untagged receptors [27]. Indeed, in HELN-ERo and
HELN-ERB cell lines, Kd were 0.04 and 0.11 nM respec-
tively thus indicating that the FLAG tag do not interfere
with estradiol binding. In the parental HELN cell line, ERs
(o or B) were not detected by binding experiments [27].

Transactivation analysis of tagged receptors

A comparative study of the transactivation properties of
each of the tagged receptors was next undertaken by ana-
lysing the luciferase activity of HELN-Fo and HELN-Fp cell
lines upon estradiol treatments. Firstly, we performed a
kinetic analysis of ERE-driven luciferase gene induction
during prolonged estradiol stimulation (10 hr), which is
an agonist ligand for both receptors. As shown in Figure
2A, a significant and similar induction of luciferase activ-
ity was detected in both cell lines containing the respective

tagged version of each receptor. Luciferase activities
expressed per mg of protein also confirm the homogene-
ity of the hormonal response obtained in these two cell
lines (data not shown).

We next determined ECs, values for estradiol and various
agonist selective synthetic ligands. Propylpyrazoletriol
(PPT) has been described in the literature as an ERa selec-
tive agonist with a relative binding activity (RBA) of 49,
(as compared to an RBA = 100 for estradiol), whereas the
diarylpropionitrile compound (DPN) displays ERP ago-
nist selectivity (RBA = 18) [28,29]. Concerning E2 dose
response curves (Figure 2B), we found an EC;, for ERB
(0.13 nM) higher than for ERa (0.011 nM). As expected,
DPN showed a selective activation of ER when used at a
concentration less than 10 nM, with an ECy, of 2.7 nM
(Figure 2C) and PPT activated only ERa (EC50 = 0.15 nM)
(Figure 2D). These results are consistent with those
obtained in our laboratory using HELN cells transfected
with untagged version of ERa or ERB [27]. Collectively,
these results showed that HELN-Fo and HELN-FB cell
lines exhibit similar features than HELN cell lines contain-
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Kinetic analysis of luciferase induced expression in HELN-Fa/f} cells and effect of selective agonist ligands on
transcriptional activity. A) Kinetic analysis of luciferase expression of HELN-Fo. and HELN-Ff stable cell lines stimulated by
10 nM E2 during 10 hours. Luciferase activity was then recorded every hour and expressed as the percentage of maximal activ-
ity. HELN-Fa or HELN-Ff stable cell lines were stimulated 16 hr with either E2 (B), DPN (C) PPT (D) at indicated concen-
trations. Maximal activities (100%) correspond to the activity obtained with a 10 nM E2 stimulation. Values are mean * S.D.
from quadruplicate experiments. In A, B, C, D, filled circle were for HELN-Fa and empty circles for HELN-Fp.

ing the corresponding untagged version of the receptors
[27].

ChIP analysis of ERc, ER[ kinetics recruitment during
sustained E2 stimulation

The main objective of this work was to create cellular
models allowing a facilitated comparative analysis of
some cellular properties of ERa and ER, when placed in
an identical context. The results described above sug-
gested that these models were relevant and could be useful
to further compare hormone-dependent chromatin medi-
ated recruitment of these receptors.

Preliminary experiments

We first verified that the efficiencies of immunoprecipita-
tions (IPs) of FLAG-ERa or FLAG-ERp proteins using the
anti-FLAG antibody were comparable. As shown in Figure
3A, signals obtained after Western blotting using extracts
from HELN-Fo or HELN-FB cell lines were of similar
amplitude when IPs were done either in absence or pres-
ence of the formaldehyde crosslink step which is required

for ChIP assays. It should be noted that the immuno-
précipitations using cross-linked chromatin had a lower
efficiency probably due to the worse accessibility of the
FLAG epitope in these conditions.

ChIP specificity was then addressed using extracts from
HELN-Fo. and HELN-Ff cells that were cross-linked with
formaldehyde (as described in methods), either at time
zero or after 1 hr of E2 treatment. ChIPs were performed
using the specific anti-ERa. HC-20 antibody (Santa Cruz
Biotechnology) and PCR amplifications with a set of spe-
cific oligonucleotides corresponding to a region sur-
rounding the ERE driving luciferase expression. As
expected, DNA amplification occurred only on chromatin
originating from HELN-Fa cells and not at all with that
from HELN-FJ (Figure 3B). When amplifications were
realised with specific oligonucleotides corresponding to
the estrogen-inducible pS2 promoter (which is the most
studied in the literature), no signal was observed in both
HELN-Fa and HELN-Fp although it was apparent in MCF-
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Compared efficiencies of FLAG-ERo/f3 immunopre-
cipitations. A) Soluble chromatin was prepared from
HELN-Fo. or HELN-FB cells stimulated | hr with 10 nM of
E2, either by using chromatin cross-linked with the same
procedure as that used for kinetic ChIP experiments (named
"+cross"), or by using uncrosslinked chromatin solubilized in
a mild buffer (named "-cross"). Then, 40 ug of + cross-linked
chromatin were subjected to a 10% slab gel electrophoresis
before (Inputs) or after (IP) immunoprecipitation with the
anti-FLAG antibody. B) HELN-Fa or HELN-F cells were
stimulated | hr with 10 nM of E2, then, soluble chromatin
preparation and immunoprecipitation (with the HC20 anti
ERa antibody) were performed by using an identical proce-
dure than that used for ChlIP-kinetics experiments. Real time
PCR quantification of either IP chromatin or input was per-
formed at each incubation time. Amplified signals from IP
chromatin were calculated as the percentage of amplified
input signals obtained during the same amplification. Corre-
sponding values plotted at indicated time were expressed as
a percentage of the maximum value obtained in this experi-
ment. Values are mean * SD of two independent immuno-
precipitation assays.

7 cells, indicating that this promoter could not be used in
these cells for such experiments (data not shown).

ChlP kinetic experiments

The ultimate aim of these experiments was to analyse the
respective characteristics of ERa. and ERP recruitment on
the estrogen inducible stably transfected luciferase trans-
gene within an identical cell context. The time scale that
has already been studied with great details in the literature
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concerned the recruitment of ERa on the pS2 promoter
during the first 180 minutes of stimulation [19]. In our
study, we have chosen to focus on events that operate on
a longer time scale (0-8 hr) on the luciferase transgene
promoter. Transcription of cells was first reset by an a-
amanitin treatment in order to synchronize and maximize
the signal obtained after E2 stimulation. In fact, the effect
of a-amanitin treatment is probably more important dur-
ing the first two hours of estradiol stimulation, and has
been used for the detailed analysis of cyclical recruitment
of ERa in MCF-7 cells during this time scale [19]. After
two hours of a-amanitin treatment, cells were treated with
10 nM of E2 during 8 hours, and cross-linked at indicated
times (see methods and figure legend). One difficulty that
was encountered was the strict reproducibility of the range
of the % input scale when two independent kinetics of
recruitment were compared, even though curves shapes
were comparable. This can reveal subtle differences in the
cell population which may occur among cell cultures (cell
passages, cell density...). One representative kinetic ChIP
experiment from two independent IPs performed on the
same chromatin is shown (Figure 4 and 5). The range of
variation of the maximum average value of one curve for
all kinetics is indicated (see figure legend).

The common and reproducible feature emerging from
these experiments is the biphasic character of the curves
that was observed for either FLAG-ERa or FLAG-ERp
recruitment in HELN derived cells, as well as for untagged
ERa in MCF-7 cells (Figure 4, 5 and 6). A first peak occurs
between 1 and 2 hr of E2 stimulation, and a second one
around the fourth hour. The curve shape suggests that a
third peak might occur around the ninth hour if the treat-
ment had been extended. Interestingly, we found that
when observed with a greater time scale than what was
previously studied [19], the recruitment of both receptors
still appeared cyclical. Such biphasic curves were also
observed for the recruitment of the RNA-polymerase II
(Pol II).

Protein levels of either the untagged or tagged estrogen
receptor were analyzed by Western blot experiments in
MCF-7 or HELN-derived cell lines respectively (Figure 4
and 6). Interestingly, for ERa (tagged or not), the protein
level decreased during the first three hours and then
remained stable until the eighth hour (Figure 4A). For
FLAG-ERp, the protein level also decreased but with a
lower amplitude and an earlier stabilization (Figure 4B).
No correlation was found between the level of the FLAG-
ERa or FLAG-ER( receptor protein and the efficiency of
their recruitment on the luciferase transgene promoter in
HELN cells. However, in MCF-7 cells, the level of the
endogenous ERa receptor recruitment on the pS2 pro-
moter was low between the fourth and eighth hour of
estradiol treatment which was precisely the time period
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Figure 4
Recruitment of ERa/f} to the promoter of the luciferase transgene in HELN-Fa/f cells. Kinetic ChIP experiments

were performed using the anti-FLAG antibody. HELN-Fa (A) or HELN-F (B) cells were cultured in 3% dextran-charcoal
treated FCS. Twenty four hours before experiment, they were deprived of serum and subsequently treated for 2 hr with 2.5
UM a-amanitin, and then with 10 nM E2. Cells were cross-linked at indicated times. Soluble chromatin was prepared on sam-
pled cells at indicated times as described in material and methods. Real time PCR quantification of either IP chromatin or input
was performed at each incubation time. Amplified signals from IP chromatin were calculated as the percentage of amplified
input signals obtained during the same amplification. Corresponding values plotted for one curve were expressed as the per-
centage of the maximum value of % input (% input max) obtained for that curve and for one IP. One ChlP kinetic curve shown
is representative of at least two independent experiments and values are mean + SD of two independent immunoprecipitation
assays using the same preparation of chromatin. The % input max average value (corresponding to the two IPs) of one curve
may fluctuate among different independent experiments corresponding to the same kinetic. The corresponding amplitudes of
variation are: in A (HELN-Fa) Imin = 2.1, Imax = 4.3; in B (HELNP) Imin = 1.4 Imax = 3.5. Flag-ERa. (A) or Flag-ER[ (B) pro-
tein levels were analyzed by Western blot experiments. Cell treatments for ChiP assays and Western blot experiments were
identical. Extracts were prepared at indicated times, and Western blotted with antibodies for FLAG (F3165) or actin.
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Recruitment of Pol Il to the promoter of the luci-
ferase transgene in HELN-Fo/p cells. Kinetic ChIP
experiments were performed using anti-Pol |l antibody.
Chromatin samples were obtained and data processed as
described in Figure 4. The corresponding amplitudes of varia-
tion are: in A (HELN-Fa) Imin = 1.5, Imax = 3.1;in B
(HELNB) Imin = 2.5 Imax = 3.0.

that correspond to a low estradiol receptor level
(Figure 6).

Apart from a shift concerning the second peak of FLAG-
ERa (Figure 5), the recruitment of Pol II and FLAG-ERs
were almost concomitant. Biphasic shapes were also
observed when ERa and Pol II recruitments were analyzed
on the pS2 gene promoter in MCF-7 cells (Figure 6). How-
ever, in that case, the recruitment of ERa as well as that of
Pol II was predominant during the first 2 hours of estra-
diol treatment.

Discussion

During the past few years, a highly complex picture of hor-
mone-regulated transcription has begun to emerge from
the literature [15,30]. Fluorescence recovery after photob-
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Recruitment of ERa and Pol Il to the pS2 promoter
in MCF-7 cells. ChlIP-kinetic experiments were performed
using anti ERa antibody (HC-20) (A) or anti-Pol Il antibody
(B). Cells were cultured in 10% FCS and then in 3% dextran-
charcoal treated FCS for three days. Twenty four hours
before experiment, cells were deprived of serum and subse-
quently treated for 2 hr with 2.5 pM o-amanitin, and then
with 10 nM E2 during 8 hours. Chromatin was prepared as in
Figure 4 or 5. Values are mean * SD of two independent
immunoprecipitation assays of the same chromatin, and
expressed as in Figure 4. ERa (A) protein levels were ana-
lyzed by Western blot experiments. MCF-7 treatments for
ChiP assays and Western blot experiments were identical.
Extracts were prepared at indicated times, and Western
blotted with antibodies for ERa. (HC-20) or actin.

leaching (FRAP) as well as chromatin immunoprecipita-
tion (ChIP) technologies have allowed a rapid evolution
of knowledge. Gene transcription now appear to be a very
dynamic process that involves a complex interplay
between transcription factors, their associated cofactors
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and chromatin [15]. Concerning estrogen receptors, ChIP
studies have begun to address this complex topic by ana-
lyzing recruitment kinetics. A pioneering study performed
by Shang and collaborators [17] has specified the time
course of ERa and associated cofactors interaction on the
cathepsin D gene ERE in MCF-7 cells. In that case, one
peak occurred at 45 min and a second one at 135 min of
E2 stimulation. The recruitment of ERa was also analyzed
on the pS2 gene promoter in MCF-7 cells [16]. In this
work, three peaks were detected, one at 30 min, a second
at 75 min and the last at 135 min after E2 stimulation.
However, in a similar study on the pS2 gene promoter in
MCEF-7 cells, Subramanian and collaborators showed that
a sustained recruitment was maintained from 30 min to
90 min [31]. In all the above-mentioned studies, the use
of a-amanitin to reset the transcription was not men-
tioned. Two major studies performed by Métivier and col-
laborators led to a more precise picture of ERa
recruitment on the pS2 promoter along with a myriad of
cofactors, either in MCF-7 [19] or in MDA:hERa cells [20].
In these studies, the dynamics of associated cofactors
recruitment as well as of CpG methylation were character-
ized in detail [20,32]. In MCEF-7 cells, ERa exhibited a
cyclical recruitment with an unproductive peak at 20 min,
and a second productive one at 60 min and then at 100
and 140 min, with determinations done every 5 minutes.
In ER-negative MDA-MB231 cells (MDA::hERa), ERa
introduction led to recruitment cycles that mirror those
observed in ER-positive MCF-7 cells [20]. By contrast, in
our HELN-Fa or HELN-FB cell lines, we found that ERa
was not significantly recruited to the pS2 gene promoter.
Finally, a recent study described the recruitment of ERa
on the ERRa gene promoter with a major peak was
observed at 30 min of stimulation and a second one at
120 min [33].

In the present study, we used the promoter of the luci-
ferase transgene to compare the recruitment of FLAG-ERa.
and FLAG-ERP. Some discrepancies, both in the number
and the time of appearance of recruitment peaks were
apparent in the literature cited above, which probably
reflect the complexity of all the parameters that could
influence the time course of binding to chromatin such as
differences between promoters, parameters of cell culture,
cell passages, cell densities, pre-treatment or not with a-
amanitin, origin of the cell line, mycoplasma contamina-
tions etc... Despite these variable parameters, the differ-
ences that were found between the recruitment kinetics of
FLAG-ERa. and FLAG-ERP were relatively modest, all
experiments showing a biphasic interaction with the max-
imum percent of input for the two tagged receptors
included in similar ranges. One difficulty to fully interpret
the data during long-term stimulations is the fact that the
curves we obtained might correspond only to a few points
of a curve that have in reality a greater oscillation fre-
quency, the former one being an envelope curve of the lat-
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ter. However, synchronism differences between the
transcription effects of both tagged receptors could be
attained by our experimental procedure.

An interesting although still debated question is the pos-
sible relationship between ERa expression level and the
efficiency of both its recruitment on promoters and the
resulting transcription. In our study, after amanitin treat-
ment of MCF-7 cells, the global ERa decrease was con-
comitant with a reduction of the recruitment of the
receptor (Figure 6). However, this was not the case for
FLAG-ERaq, B receptors in HELN cell lines (Figure 4), yet
the FLAG-ERa protein level was 50 fmol/mg in HELN-Fa
and was similar to the endogenous ERa protein level (98
fmol/mg) in a MCF-7 derived cell line that was generated
from our MCF-7 (personal communication from P Bala-
guer). The very similar down-regulation observed after
estradiol stimulation of both FLAG-ER-o and ERa in
HELN-Fo. and MCEF-7 cell lines respectively, could not
explain the differences observed for the second peak (4
hr) of the receptor recruitment curve (Figure 4A and Fig-
ure 6A). It has been suggested that proteasome-mediated
degradation is required for ERo-mediated transcription.
For instance, in HeLa cells, the MG132-mediated stabili-
zation and up-regulation of transiently transfected ERa
lead to attenuation of E2-responsive gene expression [34].
Moreover, it was shown that a high level of tetracycline
inducible estrogen receptor in MCF-7 cells could activate
transcription through non canonical mechanisms [35].
Furthermore, in the study of Park et al, the stabilization
and up-regulation of ERa by Akt was accompanied by a
simultaneous reduction in its transcriptional activity [36].
On the other hand, Reid et al demonstrated that in MCF-
7 cells, ERa-mediated cycling on the pS2 promoter was
dependent upon the efficiency of the proteasome-induced
degradation process [18]. However in that case, the level
of total immunoprecipitated ERa was found unchanged
during the time course of the experiment (120-180 min),
suggesting that the global level of the receptor was not the
driving force for this phenomenon. Conversely, in our
laboratory, we observed a dissociation of stress-inducing
agents on the accumulation of ERa and on its transactiva-
tion [37]. These data suggest that other parameters than
simply the ERa protein level are required to clarify links
that exist between ER processing and transactivation effi-
ciency or receptor recruitment. As mentioned above, accu-
mulation of estrogen receptor protein (induced by
MG132 or Akt) can lead, depending on the context, to a
decrease of transactivation, but on the contrary, the
threshold under which the ER protein level reduction
could alter its recruitment to promoters is not clearly
defined and might be dependent upon the cellular con-
text.

Another point of this study concerned the position of the
Pol II recruitment peaks relative to those of ERs. More par-
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ticularly, the second Pol II recruitment peak (maximum at
6 hr) was delayed compared to the one of ERa (maximum
at 4 hr) in HELN-Fa but not in the HELN-Fp cells. One can
hypothesize that when the time period analyzed is very
close from the time zero of a-amanitin release (during the
first 2 hours of estradiol treatment), the binding of both
Pol IT and ER (a or B) is practically concomitant in all cell
types, whereas when the time period analyzed is more dis-
tant, this synchronization is abolished in a cell specific
manner. In addition, the decrease of the receptor protein
level might also influence the lost of synchronization for
the binding of these factors.

In a study following the influence of ERB on ERa tran-
scription, a model of estrogen positive T47D cell line con-
taining a tet-off inducible FLAG-ERP (corresponding to
the short ERP1 isoform) was used [23]. One cannot in
principle, exclude the possibility that in such model, the
presence of endogenous ERa can alter the kinetic of FLAG-
ERP recruitment. However, ChIP kinetics performed dur-
ing 150 minutes, showed one recruitment peak of FLAG-
ERP on pS2 and PR gene promoters, between 60-75 min-
utes. This time scale is in agreement with the first peak we
observed in our HELN-Ff cell line. When ERP was not
expressed, only one recruitment peak of endogenous ERa
lasting from 60-75 min of E2 stimulation was detected,
this kinetic profile being not significantly affected when
FLAG-ERp was coexpressed [23]. According to the authors,
no oscillatory recruitment was observed for either recep-
tor subtype whose kinetics of recruitment were similar
during the time course analyzed.

Three other expression models for ERB have been created,
but were not used for ChIP kinetics experiments: a first one
was a stable MCF-7 expressing tet-off inducible FLAG-ERB2
(also termed ERP cx) as well as stable HEK293 expressing
Tet-on inducible FLAG-ERB2 [38], the other by Hodges-
Gallagher being a stable MCF-7 expressing Tet-off inducible
ERP full length (530AA) [39]. The comparison of ChIP
kinetics in these different model systems would be inform-
ative concerning the links between cellular context and ER
transcriptional competence. In our study, the comparison
of the kinetics measured in MCF-7 or HELN-Fa/3 (Figure 4
and 6) evidences a difference in the amplitude of the sec-
ond recruitment peak for the receptors as well as for Pol II.
One can hypothesize that such differences might affect
responses during sustained stimulations.

Conclusion

In conclusion, HELN-Fa/f cells are proven here to be use-
ful models to analyse the recruitment of tagged version of
ERa and ERP through the ChIP approach. The measure-
ment of cell luminescence allowed a rapid and easy deter-
mination of the transactivation properties of the tagged
receptors. In these models, the kinetics of recruitment of
FLAG-ERa and FLAG-ERB did not reveal major differences
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when analyzed during 8 hours. However, although the
biphasic shape of the curve was a constant feature, the rel-
ative maximum value of both peaks were different when
ERa recruitment was compared between HelLa and MCF-
7 cell lines, suggesting a role for cell specificity in the proc-
ess. More work could be done with these cellular models
in order to refine the sophisticated picture of transcription
that has begun to emerge. In particular, the kinetic studies
of cofactor recruitment by each tagged receptor together
with the comparison of full and partial agonist ligands
should provide new interesting data.

Methods

Materials

Materials for cell culture came from Life Technologies
(Cergy-pontoise, France). Luciferin (sodium salt) was pur-
chased from Promega (Charboniéres, France). 17f3-estra-
diol (E2) was from Sigma-Aldrich (Saint-Quentin
Fallavier, France), 4-hydroxytamoxifen was from Zeneca
(Macclesfield, UK). DPN and PPT were from Tocris (Ellis-
ville, MO). Anti ERo. (HC-20; sc-543) and anti Pol II (N-
20; sc-899) antibodies were from Santa-Cruz Biotechnol-
ogy. Anti-FLAG M2 agarose was from Sigma-Aldrich. Pro-
tein A sepharose CL4B was from GE-Healthcare Bio-
Sciences AB. DMEM-F12 (21041) was from Invitrogen
(France). Monoclonal M2 Anti-FLAG antibody (F3165)
was from Sigma (France).

Plasmid construction

A 3x FLAG sequence was inserted in front of the ERa or
ERp full-length (530 amino acids) sequence by using a set
of oligonucleotides whose sequence was in between the
3x FLAG and the 5' part of ERa or ERp. For 3x FLAG-ERa.
construct, a first set of oligonucleotides was used for 3x
FLAG amplification:

(S.1) ACCTGGATCCGCCGCCACCATGGACTACAAA-
GACCATGACG;

(AS.1) gactggtaccgatatcagatcTATCGATGA. A second set of
oligonucleotides was used to amplify ERa sequence:
(S.2) GATCTGATATCGGTACCAGTCaccatgaccctccacac-
caaagc

(AS.2) ATACGCGGATCCTCAGACTGTGGCAGGGAAAC-
CCTC (part in bold: BamH1 sites, part in small: overlap-
ping parts). A second round of PCR was done by using
S.1+AS.2, and the resulting PCR containing the fused
sequences was cloned in the BamH1 site of a pSG5-puro
plasmid. The 3x FLAG-ERp construct was done by using
the same procedure with the following oligonucleotides:
S.1 and AS.1 were identical.

(S.2) was GATCTGATATCGGTACCAGTCgatataaaaaact-
caccatctag;
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(AS.2) was ATACGCGGATCCTCACTGAGACTGTGGGT-
TCTGGG. Expression of receptors is under the control of
a CMV promoter.

Cell culture

HELN-Fa,/B cells were routinely grown in DMEM-F12
(phenol red free) supplemented with 3% of dextran-
coated charcoal-treated fetal calf serum (DCC medium)
and serum was deprived 24 hr before kinetics ChIP analy-
sis. MCF-7 cells were routinely grown in DMEM-F12 con-
taining phenol red supplemented with 10% fetal calf
serum (FCS medium). Before ChIP-kinetic analysis, cells
were placed in DCC medium during three days, then
serum deprived during 24 hr.

ER« and ER/ transactivation assays

HELN-Fo,/ cells were seeded at a density of about 4 x 104
cells/well in 96-well white opaque tissue culture plates
(Greiner CellStar, D. Dutscher, Brumath, France) and
maintained in 3% DCC medium. Cells were incubated
with compounds for 16 h. At the end of the incubation,
effector containing medium was removed and replaced by
0.3 mM luciferin containing 6% DCC-FCS. At this concen-
tration, luciferin diffuses into the cell and produces a sta-
ble luminescent signal. The 96-well plate was then
introduced in a microplate luminometer (Microbeta, Wal-
lac) and intact living cell luminescence measured for 2 s.
EC50 values were evaluated using Graph-Pad Prism Statis-
tics software (version 4.0; Graph-Pad Software Inc., San
Diego, CA, USA).

Western blot analysis

Proteins were resolved using a 10% SDS-PAGE. Gels were
transferred to nitrocellulose using a Tris-glycine refriger-
ated transfert buffer, for 45 min at 100 V. Blots were incu-
bated for 4 hr and 1 hr with the appropriate dilution of
the first and second antibody, respectively. Detection was
carried out using the ECL detection system according to
the manufacturer's instructions.

Ligand binding analysis

HELN-Fo,/B cells were seeded at a density of 105 cells/well
in 24-well tissue culture plates and grown in 6% DCC-
FCS. Cells were labeled with 0.01-3 nM [3H]-E2 (84 Ci/
mmol specific activity) at 37°C for 6 h in the absence or
presence of 100 nM of non-radioactive E2. The final incu-
bation volume was 400 pl and each dilution was per-
formed in duplicate. After incubation, unbound material
was aspirated and cells washed three times with 400 pl of
cold PBS. Then, 250 pl lysis buffer (400 mM NaCl, 25 mM
Tris phosphate pH 7.8, 2 mM DTT, 2 mM EDTA, 10%
glycerol, 1% triton X-100) was added and plates were
shaken for 5 min. Supernatant (200 pl) was mixed with 4
ml of LSC-cocktail (Emulsifier-Safe, Packard BioScience)
and [3H] bound radioactivity was liquid scintillation
counted (Packard Tri-Carb 2100TR, Perkin Elmer France).

http://www.biomedcentral.com/1472-6750/9/77

Protein concentration was determined by Bio-Rad protein
assay. Specific binding was determined by subtracting
nonspecific binding from total binding and free ligand
concentration was estimated by subtracting total bound
ligand from added ligand. The dissociation constant (Kd)
value was calculated as the free concentration of radiolig-
and at half-maximal binding by fitting data to the Hill
equation and by linear Scatchard transformation.

ChIP Assays

ChIP assays were performed as described by Metivier et al.
[19] with minor modifications. Cells were cross-linked with
1.5% formaldehyde at 37°C for 5 min and resuspended in
the Cell buffer (100 mM Tris-HCI, pH 9.4, 100 mM DTT).
They were incubated on ice for 10 min and subsequently at
30°C for 15 min. After cell lysis and sonication, immuno-
clearing was performed in the presence of 5 ng of sheared
salmon sperm DNA (Sigma), Immunoprecipitations were
performed overnight in the presence or not of 2 ug of
selected antibody. Complexes were recovered by a 2 hr incu-
bation with protein A sepharose CL4B saturated with salmon
sperm DNA. Beads were sequentially washed in buffer I (2
mM EDTA, 20 mM Tris-HCI, pH8.1, and 150 mM Nad(l),
buffer II (2 mM EDTA, 20 mM Tris-HCI, pH 8.1, 0.1% SDS,
1% Triton X-100, and 500 mM NacCl), buffer III (1 mM
EDTA, 10 mM Tris-HCI, pH 8.1, 1% Nonidet P-40, 1% deox-
ycholate, and 250 mM LiCl), and three times with Tris-EDTA
buffer. Washed resin was resuspended in elution buffer (1%
SDS, 0.1 M NaHCO;) with 30-min incubation and the cross-
link was reversed at 65 °C overnight. DNA was purified with
QIAquick columns (Qiagen, France). After immunoprecipi-
tation with either anti FLAG, anti ERa, or anti Pol II antibod-
ies, PCR where performed with the following
oligonucleotides: pS2/TFF1 promoter: (S) GCCATCTCT-
CACTATGAATCACTT; (AS) GGGCAGGCTCTGTTT GCTTA.
Luciferase transgene promoter: (S) CGACTCTAGCGGAG-
GACIGT; (AS) TTGGCGTCITCCATTTTACC.
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