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Abstract

Background: Platinum nanomaterial is one of the significant noble metal catalysts, and the interaction of
platinum with microbe is one of the key factors in influencing the size and the distribution of the platinum
nanoparticles on the microbial biomass. Some properties of Pt(IV) adsorption and reduction by resting
cells of Bacillus megatherium DOI biomass have once been investigated, still the mechanism active in the
platinum biosorption remains to be seen and requires further elucidating.

Result: A further insight into the biosorption mechanism of Pt(IV) onto resting cells of Bacillus
megatherium D02 biomass on a molecular level has been obtained. The image of scanning electron
microscopy (SEM) of the D02 biomass challenged with Pt(IV) displayed a clear distribution of bioreduced
platinum particles with sizes of nanometer scale on the biomass. The state of Pt(IV) bioreduced to
elemental Pt(0) examined via X-ray photoelectron spectroscopy (XPS) suggested that the biomass reduces
the Pt(IV) to Pt(ll) followed by a slower reduction to Pt(0). The analysis of glucose content in the
hydrolysates of DO02 biomass for different time intervals using ultraviolet-visible (UV-vis)
spectrophotometry indicated that certain reducing sugars occur in the hydrolyzed biomass and that the
hydrolysis of polysaccharides of the biomass is a rapid process. The infrared (IR) spectrometry on D02
biomass and that challenged with Pt(IV), and on glucose and that reacted with Pt(IV) demonstrated that
the interaction of the biomass with Pt(IV) seems to be through oxygenous or nitrogenous chemical
functional groups on the cell wall biopolymers; that the potential binding sites for Pt species include
hydroxyl of saccharides, carboxylate anion and carboxyl of amino acid residues, peptide bond, etc.; and
that the free monosaccharic group bearing hemiacetalic hydroxyl from the hydrolyzed biomass behaving
as an electron donor, in situ reduces the Pt(IV) to Pt(0). And moreover, the binding of the Pt(IV) to the
oxygen of the carbonyl group of peptide bond caused a change in the secondary structure of proteins; i.e.
a transformation, in polypeptide chains, of B-folded to a-helical form; it might be expected to be more
advantageous than B-folded form to the platinum nanoparticles under shelter from gathering although the
both special conformations of proteins could be much probably responsible for the stabilization of the
particles.

Conclusion: That knowledge could serve as a guide in the researches for improving the preparation of
highly dispersive supported platinum catalyst and for fabricating new advanced platinum nanostructured
devices by biotechnological methods.
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Background

The roles the microorganisms play in biotechnological
applications including effective recovery of noble metal
ions [1-3], creation of nanoscale materials with advanced
structures [4,5] and preparation of highly dispersive sup-
ported noble metal catalysts [6,7] have been followed
with a growing recent interest. Platinum nanomaterial is
one of the significant noble metal catalysts, and the inter-
action of the platinum with the microbe is one of the key
factors in influencing the size and the distribution of the
platinum nanoparticles on the microbial biomass. Some
properties of the interaction of Pt(IV) with resting cells of
Bacillus megatherium D01 biomass were described previ-
ously [8], and yet the biosorption mechanism involved is
still disputable and requires further expounding. The aim
of our current research is based on our previous studies to
make a further investigation into the mechanism respon-
sible for the platinum biosorption by resting cells of Bacil-
lus megatherium D02 biomass using IR and other
spectroscopic techniques.

The strain D02 was screened out from different bacterial
strains that were isolated from soils and waters of mining
areas, because it has a relatively strong ability to adsorb
and reduce Au(III), Ag(1), Pt(IV), Pd(II) and Rh(III). The
strain is Gram-positive and identified as Bacillus megath-
erium D02 and easy to obtain and culture. It was cultured
in an aqueous solution containing beef gels, peptone, salt,
etc. [9]. The adsorptive capacity of the resting cells of the
strain for Pt(IV) attained 76.6 mg/g when the biomass sus-
pension (pH 3.5, 1 mg/ml) mixed with a 0.5 mM chloro-
platinic acid (H,PtCl, - 6H,0) aqueous solution at pH 3.5
and 37°C for 2 hours (h).

The chloroplatinic acid in an aqueous solution is gener-
ally in the form of PtCl 2 anion, i.e. six-coordinate, octa-
hedral complex. While the contact with D02 biomass
suspension at pH 3.5, the liberation of chloride ion from
the platinum complex occurred and the rate of the release
was essentially as fast as that of the adsorption of the
metal [10]. The interaction is thought that the functional
groups locating in the cell wall biopolymers were easy of
protonation and positively charged at this pH condition,
and could rapidly adsorb the PtCl,2- anion due to electro-
static interactions. The process therefore is believed to
involve the initial formation of an ion pair between nega-
tively charged PtCl2- and positively charged oxygenous or
nitrogenous functional groups on the biomass, followed
by elimination of chloride [10]; thus the resultant adsorb-
ate on cell walls should be the Pt(IV) cation and the rem-
nant, i.e. the free platinum species remaining in the
aqueous solution, is still the PtCl,-2anion at early stage. As
the interaction of the D02 biomass with the platinum
occurred mainly between the functional groups of the bio-
mass and their adsorbate, i.e. the Pt(IV) cation, it there-
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fore was described to replace the PtCl;2 in the text.
Similarly Pt(II) for PtCl,2.

The appearance of Pt(IV) challenging D02 biomass was
observed by SEM examination; the reducing ratios of
Pt(IV) to Pt(II) and Pt(II) to Pt(0) by the biomass were
determined using XPS and the hydrolysates of the bio-
mass for different time intervals were analyzed for glucose
content via UV-vis spectrophotometry. The interaction of
chemical functional groups from the cell wall surfaces of
the biomass with Pt(IV) was further studied by means of
IR spectroscopic technique.

Methods

Biosorbent preparation

The biosorbent was prepared after a reported method [9].
The harvest of the cultural cells of D02 biomass was con-
trolled at the growth stage. The D02 biomass sample was
obtained by centrifuging at 3500 rings per minute (r./
min) for 10 min on a centrifuge, washing with deionized
water to remove any soluble substances that could inter-
fere with the Pt(IV) studied, and then drying under vac-
uum at 80°C for 3 days (d). The dried sample was ground
into powder and the resulting fine powder was then
stored in a desiccator for use.

SEM and XPS examinations

SEM examination: Two samples of (I) blank D02 biomass
powder and (II) that challenged with Pt(IV) at pH 3.5 and
37°C for 48 h followed by drying under vacuum at 80°C
and then by grinding were sprayed with gold prior to
examination. The specimens were then examined under a
LEO-1530 scan electron microscope (Germany).

XPS examination: Two samples of the D02 biomass pow-
der challenged with Pt(IV) at pH 3.5 and 37°C, respec-
tively, for 12 and 24 h were dried under vacuum at 80°C
to be pressed into pellets prior to examination. The speci-
mens were then determined on a PHI Quantum 2000 X-
ray photoelectron spectrometer (USA). The spectra were
recorded by monochromatized Al Ka radiation with hv of
1 486.60 eV and using the binding energy of 284.7eV of
the amorphous carbon C1s as a reference point.

UV-vis spectrophotometry

Two 30 mg samples of the D02 biomass powder were sus-
pended separately in 6 ml of diluted HCI with final bio-
mass concentration of 5 mg/ml and the pH adjustment at
3.5. Two milliliters of the biomass suspension (10 mg bio-
mass) was placed separately into 6 test tubes followed by
centrifugation to remove the supernatants. A 2 ml of
deionized water at pH 3.5 was added to each of the six
samples of the biomass followed by shake at 130 r/min in
an incubator at 37 °C; two sections of three samples each
for the respective reaction times of 10 min and 24 h were
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centrifuged at 3500 r./min for 8 min. The supernatant of
each tube, i.e. the hydrolysate of the biomass, was ana-
lyzed for glucose content by a phenol-sulfuric acid
method [11,12] at 488 nm using a 752 UV-visible spectro-
photometer (China).

IR spectrometry

Generally, biological samples contain much water that
strongly interferes with IR absorptions; in order to get rid
of the water disturbing, the samples must be dried as
much as possible to thoroughly eliminate the liquid water
prior to examination. Two samples of (I) the hydrolysate
of D02 biomass on hydrolysis for 24 h, just from the
above sample for analyzing the glucose content and (II)
that challenged with Pt(IV) at pH 3.5 and 37°C for 2 h;
and six samples of (III) D02 biomass powder (IV) that
challenged with Pt(IV) at pH 3.5 and 37°Cfor2d (V) 4d
(VI) 6 d (VII) 8 d and (VIII) 10 d were analysed. Three
other samples of (IX) chloroplatinic acid powder (X)
anhydrous glucose powder and (XI) a close to saturated
aqueous solution of chloroplatinic acid powder fully
mixed with anhydrous glucose (1.4: 1 in gravimetric ratio)
were heated respectively in an oil-bath at 100°C for 60
min followed by drying prior to examination. The sam-
ples for IR analysis were prepared by pressing powdered
KBr pellets mixed intimately with about 5% - 10% of
finely ground powder of the each sample, and then deter-
mined on a Nicolet 740SX FTIR spectrophotometer with a
MCT-B detector (USA). The spectra were recorded in the
range 4 000 ~ 625 cm'! at a resolution of 4 cm-! with 32
scans.

Figure |
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Results and discussion

SEM and XPS Characterizations of Pt(lV) biosorption
Under the scan electron microscope, the blank D02 bio-
mass hadn't any small metallic particles to be seen (Figure
1A), but that challenged with Pt(IV) showed a clear distri-
bution of tiny, bright, bioreduced platinum particles with
sizes of a few to more than a hundred nanometers (nm)
on the biomass (Figure 1B). Further analysis of the speci-
mens of the Pt(IV) challenging the biomass for different
time intervals was preformed by XPS technique, which
gave spectra with peaks of binding energy of 75.2, 74.7
and 71.7 eV corresponding, respectively, to Pt(IV) (4f, 7/
2), Pt(I) (4f, 7/2) and Pt(0) (4f, 7/2). It was estimated at
about 27.1% Pt(IV), 57.8% Pt(Il) and 15.1% Pt(0) for 12
h; and 16% Pt(IV), 61.2% Pt(II) and 22.8% Pt(0) for 24 h
by analyzing the peak areas. Thus, the reductive ratio of
Pt(11) is 57.8%, Pt(0) 15.1% for 12 h and Pt(II) 61.2%,
Pt(0) 22.8% for 24 h; indicating that the biosorption of
the Pt(IV) by the biomass involves the reduction of Pt(IV)
to Pt(II) followed by a slower reduction to Pt(0). The both
examinations reflected that the bioreduction of Pt(IV) to
elemental Pt(0) at near normal temperature was evidently
catalyzed by D02 biomass and that certain enzymes orig-
inating from the biomass could be much responsible for
this catalysis. The result suggests that the biomass must
have served as a catalyst as well as a role in sheltering the
platinum nanoparticles from gathering for helping the
stabilization of the particles to a certain extent besides as
an electron donor in the Pt(IV) bioreduction.

Analysis for glucose content in D02 biomass

The UV-vis spectra of the hydrolysates of D02 biomass on
hydrolysis for 10 min and 24 h respectively displayed an
absorption band near 488 nm arising from glucose (Fig-

SEM images of (A) Bacillus megatherium D02 biomass and (B) that challenged with Pt(IV) for 48 h. (Mag = 30.00

Kx).
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ure 2). It showed that the glucose content in the hydro-
lysate corresponded to 2.52% of the biomass dry weight
on hydrolysis for 10 min (curve 1), and to 3.78% of that
for 24 h (curve 2). As a general rule, the hydrolysate of the
biomass also contains other reducing sugars including oli-
gosaccharides, dioses, monoses, etc. besides the glucose,
so the amount of the total reducing sugars in the hydro-
lyzed biomass must be far larger than 2.52% and 3.78%,
respectively, for 10 min and 24 h. The glucose content on
hydrolysis for only 10 min had already approached 67%
of that for 24 h, showing that the hydrolysis of the
polysaccharides of the biomass is a rapid process and may
limit on the cell wall surfaces. This behavior of the bio-
mass provided a favorable condition for the following
Pt(IV) bioreduction and then the formation of the plati-
num nanoparticles.

IR Characterization of Pt(IV) biosorption

For better understanding of the action of the platinum on
both carboxylate anion group (O = C-O-) and free
hydroxyl (C-O-H) of the cell walls, an IR comparative
study between the hydrolysate of D02 biomass and that
challenged with Pt(IV) was performed. The use of the
hydrolysate in this case would avoid any insoluble impu-
rities that could interfere with the IR spectra studied. The
spectrum of the hydrolysate displayed absorptions near 1
593 and 1 404 cm! (Figure 3, curve 1), respectively,

stretch-

assigned to asymmetric and symmetric C(--O ),

ing bands of the carboxylate anion group [13,14]. After
the contact with Pt(IV) at pH 3.5, the protons came into
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Figure 2

UV-vis spectra of hydrolysates of Bacillus megath-
erium D02 biomass on hydrolysis for (1) 10 min and
(2) 24 h.
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Figure 3

FTIR spectra of (1) hydrolysate of Bacillus megath-
erium D02 biomass on hydrolysis for 24 h and (2) that
challenged with Pt(1V) at pH 3.5 for 2 h.

existence in the system; the hydrolysate exhibited a spec-
trum with clear changes at 1 593 and 1 404 cm! due to the
complexation of the carboxylate anion group by coordi-
nation with Pt(IV) [15]. The binding of Pt(IV) to the oxy-
gen of the carboxylate resulted respectively in a blue

(higher frequency) shift of the asymmetric C(.-O),

absorption as well as a red (lower frequency) shift of the
symmetric band [15], which could be correlated with cov-
alent bond formation between Pt(IV) and oxygen; thus

the disappearance of the asymmetric C(:-O) , band near

1 593 cm!and a decrease in the intensity of the symmetric
at 1 404 cm! (Figure 3, curve 2). Here must be pointed
out that the carbonyl absorption of carboxyl (O = C-OH),
a most sensitive to IR absorption, should be at about 1726
cm! if occurring; but it wasn't found in Figure 3, curve 2
after the hydrolysate in contact with the protons. The rea-
son for the absence of the carboxyl absorption is likely
that the carboxylate anion of the hydrolysate reacted with
the protons was through electrostatic attractions and still
retained its ionic character. Thus, there was naturally no
the carbonyl absorption of the carboxyl in IR. This just
indicates that the action of the protons on the carboxylate
anion is only ionic interaction and the protons being in
the system cannot possibly influence the IR absorption of
carboxylate anion or carboxyl in this case. The result
serves as an important basis for the following discussion
about the mechanism of the redox reaction of the biomass
with Pt(IV). Another change can be observed on the
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appearance of one new band at 1 048 cm! besides the
other at 1 075 cm'! (Figure 3, curve 2), due to the interac-
tion of the oxygen of the hydroxyl from saccharides with
the platinum [13], which led to a red shift of the band
from 1 075 to 1 048 cm!. The cases of metal uptake and
binding by both carboxylate anion group and hydroxyl
from the cell wall tissues of the biomass have also been
found in Saccharomyces cerevisiae [2], Lactobacillus sp.
strain A09 [3], Bacillus licheniformis R08 [16] and so forth.

The IR spectrum of D02 biomass displayed an absorption
at 1 551 cm! corresponding to the 8y ; + Ucn, @ coupled
vibration including N-H in-plane bending and C-N
stretching modes of the amidellband originating from the
C-N-H group of the peptide bond (HNC = O) [13,17]
(Figure 4, curve 1). After the contact with Pt(IV) for 48 h,
there had been Pt(II) and Pt(0) besides Pt(IV) in this sys-
tem and the biomass exhibited the spectrum with a clear
shift of the 8 j; + Ug y from 1 551 to 1 537 cm! (Figure 4,
curve 2), due to the binding of Pt species to the nitrogen
of the peptide bond; a similar aspect for the same reason
can be observed in the situation of the amide III band
(major contribution from a mixed vibration involving C-
N and N-H modes), in which two shifts occurred from
1297 and 1227 cm!to 1276 and to 1220 cm! [13] respec-

3410
3288

Absorbance —
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tively (Figure 4, curve 2). Another decrease in the intensity
of the Uy band of the bonded N-H from the peptide
bond can be observed at 3 288 cm-! [13], which is also
because of the binding of the platinum to the nitrogen.
One shoulder peak near 3 089 cm! originating in an over-
tone of the amidellband was also associated with the N-H
mode [13], its intensity showed nearly unchanged rather
than obviously decreased and finally missing as prolong-
ing the reaction time [8]; so the band can be neglected in
this case.

As indicated earlier, two clear increases in the intensities
of absorptions of the saccharide hydroxyl at 3 410 cm-!
(Uo.p) and 1 053 ecm! (8 4 + Ug.o) can be found in Fig-
ure 4, curve 2. The reason in chief resulted from an
increase in quantity of the free hydroxyl, namely, the
hydrolysis of some polysaccharides to shorter saccharides
[2,16] such as oligosaccharides, dioses, monoses, etc.;
most of which have the free monose group bearing the
hemiacetalic hydroxyl and are of the reducing property
like glucose and are referred to generally as reducing
sugar. This further supported the existence of certain
reducing sugars in this system. Therefore, one of the prin-
cipal reasons for the two other intensifications of the car-
boxyl absorptions at 1 726 cm! (Ui _ ) and 979 cm! (8.
1) in IR must have resulted from the oxidation of reducing

1652

1

3500 3000

2500

2000 1500 1000

Wavenumber / cm’

Figure 4

FTIR spectra of (1) Bacillus megatherium D02 biomass and (2) that challenged with Pt(IV) at pH 3.5 for 48 h.
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sugars to their corresponding acids by platinum cations
[2,16].

In order to verify the above inference; glucose, the com-
monest reducing sugar, was examined by IR for the inter-
action with Pt(IV). To be in comparison with each other;
IR spectra of chloroplatinic acid, glucose and that chal-
lenged with Pt(IV) were shown in Figures 5, curve 1-3
respectively. In the 2 000 ~ 1 500 cm-! range, it can be
observed that the spectra of chloroplatinic acid and glu-
cose showed only a single band of H,O at 1 622 and 1 645
cm! respectively, and the glucose reacted with Pt(IV) dis-
played a spectrum with the occurrence of the Ui _ of the
carboxyl at 1 715 cm-! besides one absorption of H,O at 1
642 cm-!. The result meant that the free aldehyde group
shifted from the cyclic hemiacetalic hydroxyl of the glu-
cose had already been oxidized to the carboxyl by the plat-
inum cation. Further analysis of this sample using X-ray
powder diffractometry gave a pattern with peaks corre-
sponding exactly to those of the elemental Pt(0), which
proved that the Pt(IV) had been reduced to the Pt(0) by
the glucose under the reaction conditions. The redox reac-
tion of the Pt(IV) with the glucose can be expressed as fol-
lows:

H,PClg - 6H,0 + 2 HOCH,(CHOH), — CHO — Pt(0) + 2 HOCH,(CHOH), — COOH + 6 HCl + 4 H,0

As a matter of fact, this is a model reaction of the Pt(IV)
with the D02 biomass, the mechanism of the bioreduc-
tion of Pt(IV) to Pt(0) by the biomass can be assumed to
be the same as that by the glucose. The biomass fulfilled
the roles as a catalyst as well as an electron donor in this

oN
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=
T 2 3
3
3
C
8 S 2
o e
n
£
1
I T T T T 1
2000 1900 1800 1700 1600 1500
Wavenumber / cm’”
Figure 5

FTIR spectra of (1) chloroplatinic acid (2) glucose
and (3) glucose reacted with chloroplatinic acid after
being heated respectively in an oil-bath at 100°C for
60 min.
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redox reaction. Both UV-vis and IR analyses testified that
in the system some polysaccharides of the biomass had
been hydrolyzed to reducing sugars; so when they met the
Pt(IV) adsorbed on the cell wall surfaces, the reduction of
Pt(IV) to Pt(Il) followed by a slower reduction to Pt(0)
occurred:

Pt(IV) + R — CHO + H,O — Pt(II) + R — COOH + 2H*

Pt(Il) + R — CHO + H,0 — Pt(0) + R — COOH + 2H*

The free aldehyde group shifted from the cyclic hemiace-
talic hydroxyl of various reducing sugars was oxidized to
the carboxyl along with the Pt(IV) being reduced, hence
two clear increases in the respective intensities of the car-
boxyl absorptions at 1 726 and 979 cm'! (Figure 4, curve
2). This similar microcosmic process of the metal biore-
duction has also been found in some cases of Au3+in Sac-
charomyces cerevisiae [2], Ag*in Lactobacillus sp. strain A09
[3], Pd2* in Bacillus licheniformis RO8 [16], etc. It is very
probable that the analogous mechanism would be
responsible to different kinds of various microbes for the
bioreduction of the noble metals.

It has been reported that the carbonyl absorption of the
carboxyl at 1726 cm-! disappeared after the contact with
Pt(IV) [8], this result seems to be in contradiction with the
mention made in just the above paragraph and requires
further elaborating. The intensities of both U _ (1 726
cm!) and 6 4 (979 cm!) from the carboxyl absorptions
were found to change with prolonging the exposure time
of the D02 biomass to Pt(IV). The ratios of the intensity of
the U _ 5 of the carboxyl at 1 726 cm! to that of the U _
o (the amidelband) of the peptide bond at 1 652 cm'! (i.e.
I1756/11652- @ method for the semi-quantitative assessment
of the carboxyl; because the quantity of the carbonyl of
the peptide bond is far larger than that of the carboxyl,
from the statistical viewpoint, the carbonyl absorption of
the peptide bond can be generally regarded as an almost
changelessness in its absorption intensity while binding
the Pt species) for different time intervals are shown:
0.637 (2 d), 0.706 (4 d), 0.739 (6 d), 0.581 (8 d) and
0.423 (10 d). As seen from the values, the carbonyl
absorption of the carboxyl becomes the most intense as
the biomass challenged Pt(IV) for 6 days, and it becomes
lower for 8 days and lowest for 10 days. Fourest et al. [18]
noted that the protonated Sargassum biomass showed the
IR spectra with an obvious decrease in the intensity of the
free U _ o of the carboxyl at 1738 cm-! after the contact
with Cd(II), the absorption became weak and finally dis-
appeared with increasing the concentration of Cd(II). The
result reflected that the carboxyl is also an active group for
binding Cd(II) and there is not the occurrence of the
redox reaction but only the binding action between Sar-
gassum biomass and Cd(II). Based on electronegativity
and steric effect points of view, the carboxyl could success-
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fully compete with the peptide bond for binding Pt spe-
cies [3]; but, after all, it is amino acid residues and a small
quantity as compared with the peptide bond, so that the
amido linkage still had the chance to bind Pt species any-
way from the viewpoint of statistics. The above IR spec-
trum (Figure 3, curve 2) showed that in the present system
the existence of protons cannot interfere in the carboxyl
absorption; so we can generally infer that when the rate of
both Pt(IV) and Pt(II) bioreduction was more rapidly
than that binding to the carboxyl, the carbonyl absorption
of the carboxyl must have tended to a progressive intensi-
fication (as the above, this process lasted 6 days). While 6
days later, as the bioreducing rate was slower than the
binding to the carbonyl; or as the redox reaction was close
to equilibrium, the carboxyl wouldn't be yielded any
longer and it was going on binding Pt species [8]; both
cases must have resulted in a red shift of the carbonyl
absorption at 1726 cm'!, which caused a decrease in the
intensity of this band.

It is of interest to note that the amideIband, due to the car-
bonyl stretching absorption of polypeptides, can be found
to split into two peaks at 1 658 and 1 635 cm'! (Figure 4,
curve 1), arising respectively from conformations of -
helical and B-folded in proteins [17], characterized largely
by the respective periodic arrays of intra- and inter-molec-
ular hydrogen bonds in polypeptide chains [19]. After the
contact with Pt(IV), the biomass exhibited the spectrum
with clear shifts of the U _ , from the both 1 658 and 1
635 cm!to 1 652 cm'! (Figure 4, curve 2), which is attrib-
uted to the interaction of the carbonyl of the peptide bond
with the platinum [17]. The shifts from the both to 1 652
cm-! suggested that the action of Pt species on the oxygen
of the carbonyl of polypeptides must have resulted in a
rupture of the inter-chain (i.e. inter-molecular) hydrogen
bond linking neighboring peptide chains to destroy the
original pleated structure of B-folded and led to the occur-
rence of a-helical conformation that has the regular arrays
of intra-chain (i.e. intra-molecular) hydrogen bond. So a
change in the secondary structures of proteins, namely, a
transformation of B-folded to a-helical conformation,
took placed. In general; a-helical form, the most content
and the commonest secondary structure in proteins, bear-
ing 169 atoms of both carbon and nitrogen in each of the
helical rings closed by intra-molecular hydrogen bonding,
has a fixed nanometer diameter and a pitch of 0.54 nm
between the helices [20]. And B-folded, the second most
quantity in the secondary structures of proteins, has the
form of pleated sheet with regularity. At the initial rapid
adsorption stage; most of the free PtCl;2 anion, i.e. an
octahedral coordinated complex with diameter of about
0.65 nm, was quickly attracted on the surface of the pro-
teins of the biomass and the release of chloride ion from
the platinum complex took place simultaneously with the
adsorption of PtCl;2[10], so that the resultant adsorbate
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on the cell walls was just the Pt(IV) cation with diameter
of about 0.248 nm. In the meantime, a transformation of
B-folded to a-helical conformation was occurring; and the
Pt(IV) cation bound by the oxygen of the carbonyl of the
B-folded form on polypeptides might easy be carried
through the pitches into the helical circles along with the
change in the secondary structure of proteins. While the
proteins with folded and helical conformations of
polypeptide chains could much probably contribute to
the stabilization of the platinum nanoparticles; from the
structural point of view, a-helical form might be expected
to be more advantageous than B-folded to the particles
under shelter from gathering. If the best part of the Pt spe-
cies could have been bound continuously to the chemical
functional groups on the cell walls of the biomass or, the
better, into the respective helices of polypeptides, or the
pores of net-like structural polysaccharides [1], etc.; we
could have obtained very homogenous platinum nano-
particles. However, the biosorption of the metal is highly
pH dependence with the maximum adsorptive capacity
near pH 3.5. When pHs < 3.5, most of the protons were
able to compete with Pt(0), Pt(II) and Pt(IV) for the bind-
ing sides of active groups on cell walls, so that the adsorp-
tive capacity of the biomass for Pt species decreased with
the pH falling; when pHs > 3.5, it caused the precipitation
of platinum hydroxides, which could also disturb the
adsorption and led to reduce the adsorptive capacity.
Actually, rather part of uneven nanoparticles can be found
on the biomass (Figure 1B). One of the primary reasons
for this is likely due to a decrease in pH of the biosorption
system because both processes of Pt(IV) bound and
reduced by the biomass usually cause the liberation of
protons [3,16], thus resulting in further acidification of
the present system. The drop in pH value from 3.5 to 2.5
occurred in a matter of 1 h after the biosorption, this
being equal to a ten times the initial concentration of pro-
tons; and it was going on falling following the biosorption
proceeding. In this case, the excessive protons could cap-
ture the binding sites of active groups from Pt species;
which would cause rather part of Pt(0) to be separated
from the biomass and no longer sheltered by the biologi-
cal macromolecules. Then, the free nanoparticles would
likely gather each other. To avoid the drop of Pt species
from the biomass, the pH adjustment may have to be
made in good time and the value has to be maintained at
pH 3.5 during the biosorption process. Thus, there is hope
of attaining more homogenous platinum nanoparticles;
the work improving the size of the metallic nanoparticles
remains to be done still further.

Conclusion

The biosorption mechanism of Pt(IV) onto Bacillus
megatherium D02 biomass on a molecular level has further
been investigated mainly by infrared spectrometry in this
report. The findings of the Pt(IV) bioreduced by the bio-
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mass to elemental Pt(0) at near normal temperature fol-
lowed by the formation of platinum nanoparticles show
that the biomass must have behaved as a catalyst as well
as a role in sheltering the particles from gathering besides
as an electron donor in this redox reaction. Further analy-
sis suggests that the binding of the Pt(IV) to proteins led
to a change, in polypeptide chains, of B-folded to a-heli-
cal form in that the latter might be expected to be more
advantageous than the former to the nanoparticles under
shelter from gathering, although the both special second-
ary structures of proteins could be much probably respon-
sible for the stabilization of the particles. At all events,
both patterns of the secondary constructions of proteins
(e. g. a-helical, B-folded, etc.) and pores of the net-like
structural polysaccharides on peptidoglycan layers of cell
walls of the biomass may perform a significant function
for stabilization and uniformity of the particles by having
the pH under control in process of the biosorption. A bet-
ter understanding of the biosorbent mechanisms respon-
sible for Pt(IV) binding and reduction could contribute to
the development of a method for fabrication of platinum
nanoscale devices, and for an improvement of prepara-
tion of highly dispersive supported platinum catalysts by
biotechnological methods.

Authors' contributions

RX carried out the SEM examination, participated in the
interpretation of the SEM images. YY carried out the XRD
examination, participated in analysis and interpretation
of XRD patterns. JZ and ZX carried out biosorption exam-
inations, participated in the analyses of both adsorptive
efficiency and capacity of the biomass. ZL conceived of the
study and carried out the IR examinations and performed
further synthetic analyses and drafted the manuscript. All
the authors read and approved the final manuscript.

Acknowledgements

We thank Mr. Yao Bingxin and Prof. Weng Shengzhou from the Depart-
ment of Biology at Xiamen University for their advices about the character-
istics of the bacterial growth phases in this study.

References

1. Volesky B, Holan ZR: Biosorption of heavy metals. Biotechnol Prog
1995, 11(3):235-250.

2. Lin ZY, Wu JM, Xue R, Yang Y: Spectroscopic characterization
of Au3* biosorption by waste biomass of Saccharomyces cere-
visiae. Spectrochim Acta Part A 2005, 61(4):761-765.

3. LinZY, Zhou CH, Wu JM, Zhou JZ, Wang L: A further insight into
the mechanism of Ag* biosorption by Lactobacillus sp strain
AO09. Spectrochim Acta Part A 2005, 61(6):1195-1200.

4. Klaus-Joerger T, Joerger R, Olsson E, Granqvist CG: Bacteria as
workers in the living factory: metal-accumulating bacteria
and their potential for materials science. Trends Biotechnol
2001, 19(1):15-20.

5. Naik RR, Stringer S|, Agarwal G, Jones SE, Stone MO: Biomimetic
synthesis and patterning of silver nanoparticles. Nature Mater
2002, 1(3):169-172.

6.  Liu YY, Fu JK, Zhou ZH, Lin ZY, Li RZ: Highly dispersive sup-
ported palladium catalyst prepared by microbial reduction.
Chem | Internet 2000, 2(3):13.

http://www.biomedcentral.com/1472-6750/9/62

7.  Fu K, Weng SZ, Yao BX, Liu YY, Fu JY, Yu XS, Hu RZ, Zeng JL, Lin
ZY, Gu PY: Preparation of supported gold catalyst by a
method of bacterial reduction. Chinese Patent 2002.

8. Liu YY, Fu JK, Zhou ZH, Yu XS, Yao BX: A study of Pt4*-adsorp-
tion and its reduction by Bacillus Megatherium DOI. Chem Res
Chinese Universities 2000, 16(3):246-249.

9. LiuYY, Fu JK, Hu RZ, Yao BX, Weng SZ: Studies on reduction of
Au3* by bacteria for preparing gold catalyst. Acta Microbiol Sin
1999, 39(3):260-263.

10. Greene B, Hosea M, Mcpherson R, Henzl M, Alexander MD, Darnall
DW: Interaction of gold (I) and gold (Ill) complexes with
algal biomass. Environ Sci Technol 1986, 20(6):627-632.

I'l. Zhou CJ, Wang ], Gao WL: Phenol-sulfuric acid method for the
determination of polysaccharide in shenshixiao capsule. Chin
Herbal Drugs 1998, 29(1):15-16.

12.  Cuesta G, Suarez N, Bessio M|, Ferreira F, Massaldi H: Quantitative
determination of pneumococcal capsular polysaccharide
serotype 14 using a modification of phenol-sulfuric acid
method. | Microbiol Methods 2003, 52:69-73.

13.  Bellamy LJ: The infra-red spectra of complex molecules. 3rd
edition. London: Chapman and Hall; 1975:183-185, 107-125 and
231-246.

14.  Silverstein RM, Bassler GC, Morrill TC: Infrared spectrometry. In
Spectrometric identification of organic compounds 5th edition. Edited by:
Sawicki D, Stiefel J. New York: Wiley; 1991:118. Chapter 3

15. Zhou WJ, Wang Y: Applications of infrared spectroscopy in
basic research of inorganic and coordination chemistry. In
Modern Fourier-transform infrared spectroscopy and its applications (Part
Il) Ist edition. Edited by: Wu JG. Beijing: Literature of Science and
Technology Press; 1994:273-274.

16. Lin ZY, Zhou CH, Wu JM, Cheng H, Liu BL, Ni ZM, Zhou JZ, Fu JK:
Adsorption and reduction of palladium (Pd?*) by Bacillus
licheniformis R08. Chin Sci Bull 2002, 47(15):1262-1266.

17.  Zhou JM, Shi N: Applications of Fourier transform infrared
spectroscopy in biochemistry. In Modern Fourier-transform infra-
red spectroscopy and its applications (Part Il) st edition. Edited by: Wu
JG. Beijing: Literature of Science and Technology Press; 1994:193-206.

18. Fourest E, Volesky B: Contribution of sulfonate groups and algi-
nate to heavy metal biosorption by the dry biomass of Sar-
gassum fluitans. Environ Sci Technol 1996, 30(1):277-282.

19. Rao CNR: Chemical applications of infrared spectroscopy. |st
edition. New York: Academic Press Inc; 1963:485-488.

20. Shen T, Wang JY, Zhao BT, Li JW, Xu CF, Zhu SG, Yu MM, Yang D,
Yang FY: Biochemistry. Book One. 2nd edition. Beijing: Higher
Education Press; 1990:146-150.

Publish with Bio Med Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."
Sir Paul Nurse, Cancer Research UK
Your research papers will be:
« available free of charge to the entire biomedical community
« peer reviewed and published immediately upon acceptance
« cited in PubMed and archived on PubMed Central
« yours — you keep the copyright

Submit your manuscript here:

O BioMedcentral
http://www.biomedcentral.com/info/publishing_adv.asp

Page 8 of 8

(page number not for citation purposes)



	Abstract
	Background
	Result
	Conclusion

	Background
	Methods
	Biosorbent preparation
	SEM and XPS examinations
	UV-vis spectrophotometry
	IR spectrometry

	Results and discussion
	SEM and XPS Characterizations of Pt(IV) biosorption
	Analysis for glucose content in D02 biomass
	IR Characterization of Pt(IV) biosorption

	Conclusion
	Authors' contributions
	Acknowledgements
	References

