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Abstract

Background: Short interfering RNAs (siRNAs) have become the research tool of choice for gene
suppression, with human clinical trials ongoing. The emphasis so far in siRNA therapeutics has been
the design of one siRNA with complete complementarity to the intended target. However, there
is a need for multi-targeting interfering RNA in diseases in which multiple gene products are of
importance. We have investigated the possibility of using a single short synthetic duplex RNA to
suppress the expression of VEGF-A and ICAM-I; genes implicated in the progression of ocular
neovascular diseases such as diabetic retinopathy.

Results: Duplex RNA were designed to have incomplete complementarity with the 3'UTR
sequences of both target genes. One such duplex, CODEMIR-I, was found to suppress VEGF and
ICAM-I by 90 and 60%, respectively in ARPE-19 cells at a transfected concentration of 40 ng/mL.
Use of a cyan fusion reporter with target sites constructed in its 3'UTR demonstrated that the
repression of VEGF and ICAM-| by CODEMIR-I was indeed due to interaction with the target
sequence. An exhaustive analysis of sequence variants of CODEMIR-| demonstrated a clear
positive correlation between activity against VEGF (but not ICAM-1) and the length of the
contiguous complementary region (from the 5' end of the guide strand). Various strategies,
including the use of inosine bases at the sites of divergence of the target sequences were
investigated.

Conclusion: Our work demonstrates the possibility of designing multitargeting dsRNA to
suppress more than one disease-altering gene. This warrants further investigation as a possible
therapeutic approach.

Background mRNA leads to catalytic cleavage of the mRNA and sup-
The different triggers eliciting RNAi all ultimately lead to ~ presses gene expression [1]. Endogenous microRNAs
the formation of short (~21 nucleotide) RNA duplexes  (miRNAs) are also small duplex RNAs with diverse and
termed short interfering RNAs (siRNAs). Complete com-  critical roles in gene regulation [2]. miRNAs share many of
plementarity between the guide strand and the target the features of siRNAs including the loading of the guide
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strand into a RNA induced silencing complex (RISC) [3].
In contrast to siRNAs, mammalian miRNAs do not gener-
ally exhibit high complementarity to their cognate target
sites. Binding of miRNAs to their target sites may induce
target degradation or may prevent translation and reduce
gene expression at the protein level [4]. In mammals,
miRNAs are thought to bind to partially complementary
sites predominantly located in the 3' untranslated regions
(UTRs) of target mRNAs [2,4,5], thereby enabling the
coordinate regulation of genes containing such sites.

Whilst the factors affecting siRNA activity have been
extensively studied [3,6-8], the parameters affecting
miRNA-mediated translational suppression have not yet
been definitively elucidated. Binding of the 5' end of the
guide strand to the target mRNA appears to be critical,
with an almost absolute requirement for complementa-
rity at the so-called "seed site" from positions 2-7 (meas-
uring from the 5' end of the guide strand) [9-11]. miRNA
target sites appear to be almost exclusively located in the
3'UTRs of target genes [11,12], and miRNA target sites
may be functionally restricted to 3' UTRs, since binding of
miRNAs to other sites in the transcript does not induce
translational suppression.

The present study demonstrates proof of concept for the
design of artificial short RNAs with at least partial comple-
mentarity to multiple unrelated transcripts, and which sup-
press the expression of the corresponding unrelated genes.
The interfering RNAs described herein were designed to tar-
get expression of VEGF-A and ICAM-1, two genes involved
in ocular neovascular disease [13]. We found that for sup-
pression of VEGF-A, the length of complementarity to the
seed region, as well as the total complementarity of the
guide strand to the target were important determinants of
activity. This relationship was not observed for ICAM-1,
however this discrepancy appeared to result from specific
sequence motifs in those guide strands with high ICAM-1
complementarity. Thus, the length of seed complementa-
rity, and overall complementarity between the guide strand
and the target should be considered in the design of multi-
target interfering RNAs.

Results

Transcript sequences corresponding to the 3' UTRs of
VEGF-A and ICAM-1 (ensembl IDs ENST00000356655
and ENST00000264832, respectively) were used to search
for a suitable seed of at least 6 contiguous bases present in
both genes. A pool of all possible seeds of 6 bases or
greater was generated using the specified length as a win-
dow and advancing the window in a stepwise fashion 1
base at a time. Low complexity seeds were eliminated and
the pool was further restricted to those for which at least
3 contiguous bases were predicted to bind to an unpaired
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region in at least 50% of optimal and suboptimal (within
-1 kcal/mol of optimal) folded structures (as determined
using the Vienna RNA package [14]).

Two different seeds were selected for experimental testing:
one of 12 bases in length and one of 7 bases that was
within a genetic context that favoured the design of "con-
sensus target sequences" (comprising the seed sequence
and a consensus of the sequence adjacent to the seed
sequence from the desired targets, in this instance, VEGF-
A and ICAM-1). Multiple consensus target sequences were
generated for both seeds by first aligning the target
sequences (VEGF-A and ICAM-1) relative to their shared
seed sequences. Then, extensions 5' to the seed sequences
were proposed to a length of 21 nucleotides. The exact
complements of these 21 nucleotide consensus target
sequences were assessed in silico for hybridisation to the
target sequences, and one sequence for each seed was
selected for experimental testing. "Passenger" strands were
designed to be complementary to the selected "guide"
strands over a duplex length of 19 nt with 3' overhangs of
2 nucleotides (UU added in the case of the passenger
strand).

Annealed RNA duplexes or single-stranded RNA oligonu-
cleotides were purchased from Sigma-Proligo. Where
required, 100 uM oligonucleotides were annealed in 50
puM Tris, 100 mM NaCl by heating to 90°C and cooling to
4°C over 3-4 hours. Control siRNA sequences are shown
in Additional file 1.

Because of the complexity of human disease, we sought to
determine if it was possible to develop novel interfering
RNA that can multi-target one or more pre-selected thera-
peutic targets. We achieved this by identifying short
regions of homology in pre-selected target RNA with bio-
informatic techniques. These "seeds" were then used to
design short duplex RNAs having one strand that binds
with at least partial complementarity to each target RNA
sequence. Examples of such COmputationally DEsigned
Multi-targeting Interfering RNAs (CODEMIRs) were
sought to simultaneously target two genes (VEGF-A and
ICAM-1) that are associated with ocular neovascular dis-
ease [13]. Two candidate seeds (7 and 12 contiguous
bases) that are present in the 3' UTRs of both target mRNA
were identified and used to design "consensus target
sequences" (see Methods and Fig. 1a). The sequences
complementary to these consensus target sequences (cor-
responding to the theoretical guide strands of
CODEMIRs) were evaluated for binding to the target
mRNAs using RNAhybrid software [15]. Two of these
guide strands, one targeting each seed, were chosen for
experimental testing; each having strong predicted bind-
ing to both target genes (Figs. 1b, ).
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a Seed

5|
VEGF-A GGGAUUCCUGUAGACACACCCACCCACAUA
ICAM-1 ACCUUUGUUAGCCACCUCCCCACCCACAUA

UAGAGACACCCCACCCACAUA
UUAGACCACCCCACCCACAUA
AGACACCACCCCACCCACAUA
UUAGACUCACCCACCCACAUA
AGACACUCACCCACCCACAUA

Consensus
target sequences

b CODEMIR-1

Passenger 5' AGACUCACCCACCCACAUAUU 3'
Guide 3' AAUCUGAGUGGGUGGGUGUAU 5'

VEGF-A 5' G A ¢ 3
UAGAC CACCCACCCACAUA
AUCUG GUGGGUGGGUGUAU

Guide 3' A A
ICAM-1 5' G CCAC c 3"
UUAG CUC CCCAcCCccAcCAUA
) AAUC GAG GGGUGGGUGUAU
Guide 3' U U B
c CODEMIR-2

Passenger 5' CAUAUGUAACAACAAAACAUU 3'

Guide 3' CAGUAUACAUUGUUGUUUUGU 5'
VEGF-A 5' U A AL 3¢
UUAUAUGUAA AACAAAACA
) AGUAUACAUU UUGUUUUGU
Guide 3' C G
ICAM-1 5' A U @ 3

CAUGUGUAGCA CAAAACA
. GUAUACAUUGU GUUUUGU
Guide 3' CA U 5

Figure |

Design of CODEMIRs targeting VEGF-A and ICAM-I.
() Example of seed site alignment and consensus target
sequence design for VEGF-A and ICAM-| using a 12 nucleotide
seed. (b) and (c) Schematic illustration of CODEMIR-1 and -2
(respectively) and guide strand binding to the VEGF-A and
ICAM-1 mRNAs. Top strand represents the target mRNA (5'
to 3'), bottom strand indicates the guide strand (3' to 5').

Transfection of these CODEMIRs into the retinal epithe-
lial cell line ARPE-19 induced significant suppression of
both VEGF-A and ICAM-1 (Fig. 2a), demonstrating the
feasibility of designing synthetic RNAs that suppress the
expression of more than one gene at the protein level. The
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effects were qualitatively similar whether stimulation with
deferoxamine or IL-1p was used or cells were cultured
without stimulation. However, stimulation afforded a
much greater dynamic range for the measurement of both
VEGF-A and ICAM-1 enabling improved discrimination
between CODEMIR designs. Thus, stimulation conditions
were used in all experiments reported herein. CODEMIR-
1 (which demonstrated greater efficacy than CODEMIR-
2) was further characterised. CODEMIR-1 demonstrated
dose-dependent suppression of VEGF-A and ICAM-1
expression in ARPE-19 cells (Fig. 2b). In contrast, the irrel-
evant cytokine IL-8, as measured by ELISA of culture
supernatant (R&D Systems) was not affected by
CODEMIR-1 under similar conditions, demonstrating the
specificity of the effect. In order to confirm that seed bind-
ing was required for the activity of CODEMIR-1 against
VEGF-A and ICAM-1, nucleotide substitutions introduced
at positions 4, 4 and 6, or 4, 6 and 8 of the guide strand of
CODEMIR-1 were tested in ARPE cells (Additional file 1).
With the exception of CODEMIR-122 (position 4 mis-
match), these had significantly impaired suppression of
both VEGF-A and ICAM-1 relative to CODEMIR-1 at the
protein level (Fig. 2c). Moreover, expression of a cyan flu-
orescent reporter gene containing the CODEMIR-1 target
site in the 3'UTR was suppressed by CODEMIR-1 in a
manner that correlated well with the observed suppres-
sion of endogenous VEGF-A and ICAM-1 (Fig. 2d), dem-
onstrating that the observed suppression of VEGF-A and
ICAM-1 was mediated by the binding of the guide strand
of CODEMIR-1 to its predicted target sites. The above
results all relate to expression at the protein level, how-
ever, at the mRNA level, CODEMIR-1 also caused signifi-
cant suppression of both VEGF-A and ICAM-1, and this
suppression was reduced by mismatches in the seed
region (Fig. 2e).

Because the CODEMIR-1 target site appeared particularly
amenable to suppression, we focused on variants of this
CODEMIR. In a systematic approach, 32 variants of
CODEMIR-1 were designed by developing a consensus
sequence for the VEGF-A and ICAM-1 target sites and
alternating between the VEGF-A and ICAM-1 complemen-
tary base at mismatched positions (Additional files 1 and
2) with the exception of mismatches that could be accom-
modated for by wobble base pairing with the eventual
guide strand (eg G binding to either C or U). All 32 of
these CODEMIRs were tested for the ability to suppress
both endogenous VEGF-A and ICAM-1 (Fig. 3) and a cyan
fluorescent protein reporter (Additional file 2) in cell cul-
ture. Suppression of the endogenous genes correlated well
with suppression of the reporter (Additional file 2), par-
ticularly for VEGF-A where the range of suppression was
greater. For VEGF-A, there was a clear positive correlation
between activity and the length of the contiguous comple-
mentary region (from the 5' end of the guide strand) and
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Figure 2

Suppression of VEGF-A and ICAM-I expression by CODEMIR-1 and -2. Unless otherwise indicated, VEGF-A (ELISA)
or ICAM-| (FACS) were assayed in ARPE-19 cells 48 hours post-transfection and 24 hours post-stimulation with 130 uM
Deferoxamine or | ng/mL IL-1 respectively. All data points indicate the mean of triplicate samples. Error bars show standard
deviation. Statistical significance was determined by two-way ANOVA using a Bonferroni post-test (* p < 0.00| as compared to
either untransfected and/or irrelevant siRNA; ** p < 0.001 as compared to untransfected and p < 0.01 as compared to irrele-
vant siRNA; 1 p < 0.001 compared to CODEMIR-1). (a) Gene suppression by CODEMIR-| and -2. (b) Dose responsiveness of
gene suppression by CODEMIR-I. Cells were transfected at the indicated concentrations. (ND = not determined). (c) Effect of
mismatches on gene suppression by CODEMIR-1. (d) Suppression of VEGF-A and ICAM-I reporter constructs by CODEMIR-

I ARPE-19 cells were co-transfected with the AmCyan reporter and AsRed control plasmids and 40 nM indicated RNA
duplexes. Fluorescence was assessed by FACS 48 hours post-transfection. (e) Suppression of VEGF-A and ICAM-I mRNA
expression by selected CODEMIRs. For VEGF-A, stimulation was performed 24 hours post-transfection using 65 M Deferox-
amine and the QuantiGene® assay was performed on cell lysates prepared 24 hours post-stimulation. For ICAM-| the Quanti-
Gene® assay was performed on cell lysates prepared 24 hours post-transfection.
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a clear negative correlation between activity and the
number of mismatches between the target and the
CODEMIR (Additional file 2). By contrast, there was no
such correlation between ICAM-1 suppression and the
length of the contiguous stretch of complementarity and
the correlation between activity and the number of mis-
matches between the target and the CODEMIR was, in this
case, reversed (Additional file 2). Indeed, the variant
(CODEMIR-64) which was completely complementary to
the ICAM-1 mRNA exhibited very poor activity against
ICAM-1. However, those CODEMIRs with high comple-
mentarity to the ICAM-1 mRNA all contained a region of
at least 5 contiguous G nucleotides, a feature that is
known to be detrimental to siRNA activity [8]. Substitu-
tion of the G at position 14 of the guide strand with an A
in CODEMIR-56 and CODEMIR-76 (replacing the pre-
dicted G:U wobble base with an A:U base pair; Additional
file 1) significantly improved the suppressive activity of
these CODEMIRs against both the endogenous and
reporter genes (Fig. 4a, b); confirming that runs of G
nucleotides impair CODEMIR activity.

As confirmation that the length of 5' complementarity
between CODEMIR-1 and the VEGF-A mRNA was critical
to suppressive activity, we compared the activity of an
interfering RNA complementary to the CODEMIR-1
VEGF-A target site (siVAIC) with 5 variants containing
introduced mismatches at positions 9, 10, 11 and/or 12 of
the guide strand (Additional file 1 and Fig. 5a). Mis-
matches at any of these positions reduced suppressive
activity from >90% to 50-60%. This suggested that these
central mismatches abrogated RISC-mediated cleavage of
the mRNA, but that translational suppression, causing the
retained moderate reduction in VEGF-A protein levels,
was less dependent upon complementarity at these cen-
tral positions. This was confirmed by semi-quantitative
RT-PCR detection of the VEGF-A mRNA (Fig. 5b) which
demonstrated reduction of VEGF-A transcript level with
an siRNA (siVAIC) directed to the CODEMIR-1 site, but
not with any of the central mismatch containing variants.

Since the length of 5' complementarity appeared to be rel-
evant to activity on VEGF-A, we investigated CODEMIRs
which contained inosine bases (which are capable of base
pairing with all 4 naturally occurring ribobases, albeit
with varying affinities) at crucial points (sites that cannot
be matched to all transcripts and are near the RISC cleav-
age site). Three variants of CODEMIR-1 were designed
which included inosine bases at positions 13 and/or 15 of
the guide strand (CODEMIRs 100-102; Additional file 1).
These CODEMIRs showed comparable ICAM-1 suppres-
sive activity to CODEMIR-1 (which contains a mismatch
at position 13), but reduced VEGF-A suppression relative
to CODEMIR-1 in the case of CODEMIR-100 and
CODEMIR-102 (Fig. 6a). The comparable activity against
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ICAM-1 may simply reflect the fact that translational
repression against [CAM-1 is largely dependent upon the
seed binding alone, and so is not affected by alterations in
the 3' tail. The VEGF-A suppressive activity of inosine-con-
taining variants of CODEMIR-1 was also compared to
similar variants of CODEMIR-1 with mismatches to the
VEGF-A mRNA at positions 13 and/or 15 (CODEMIRs
68-71; Additional file 1). None of the inosine-containing
variants demonstrated substantially improved activity
compared to the corresponding mismatched variant (Fig.
6b). This indicates that inosine base pairs, although toler-
ated in some positions, may not necessarily be useful in
overcoming mismatches between guide strand and target,
although our analysis may not be generalizable given that
the binding of dI to each base varies and is context-
dependent.

There are 3 bases common to both ICAM-1 and VEGF-A
immediately downstream (3') of the CODEMIR-1 target
site. We investigated whether increasing the length of the
complementary region (to both targets) would increase
activity. Three variants of CODEMIR-1 were designed
such that the guide strand sequence was shifted 1-3 bases
5' of the CODEMIR-1 sequence (Additional file 1). How-
ever, none of these were as active as CODEMIR-1 against
either target (Fig. 7). Whilst the variants shifted 1 and 2
bases (CODEMIRs 11 and 12) would be predicted to have
compromised strand loading due to the introduction of a
G:C base pair close to the 5' end of the guide strand, the
variant shifted 3 bases (CODEMIR-13) would be pre-
dicted to retain a strong loading bias towards the guide
strand.

Mammalian miRNAs have generally been shown to bind
in the 3' UTRs of target genes, and the CODEMIRs
described above all targeted 3' UTRs. To assess whether
the targeting of 3' UTR regions is advantageous when
there is incomplete complementarity between the target
and the guide strand of a duplex RNA in the central region
(known to be required for Ago-2 cleavage in the case of
siRNA) dsRNA duplexes were designed such that they
were completely complementary to the VEGF-A mRNA,
excepting the nucleotides at positions 10 and 11 of the
guide strand (Additional file 1). To minimize variations in
efficacy due to sequence composition or strand-loading
bias, each of these duplexes contained a similar bulge
composition (CU) and was relatively GC rich at the 3' end
of the guide strand. Of these 16, 3 targeted the VEGF-A 5'
UTR, 5 targeted the VEGF-A ORF and 8 targeted the VEGF-
A 3'UTR. In general, the duplexes targeting regions in the
5" UTR or ORF displayed poor VEGF-A suppression,
whereas those targeting regions in the 3' UTR displayed
strong suppression (Fig. 8a). Moreover, there was a signif-
icant difference in activity between the duplexes targeting
the ORF and those targeting the 3'UTR (p < 0.01; Fig. 8b).
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VEGF-A and ICAM-I suppressive activity of 32 variants of CODEMIR-I. ARPE-|9 cells were transfected with 40 nM of
the indicated RNA duplex, and VEGF-A (ELISA) and ICAM-I (FACS) were assayed 48 hours post-transfection and 24 hours
after stimulation with 130 pM Deferoxamine or | ng/mL IL-1f respectively. The guide strand of each CODEMIR is shown in
the 5' to 3' direction, with blue bases indicating mismatches to the VEGF-A target sequence and red bases indicating mismatches
to the ICAM-| target sequence. Data points represent the mean of triplicate samples. Error bars indicate standard deviation.

This demonstrates that the 3' UTR of VEGF-A mRNA is,
relative to other regions of the mRNA, more suited to sup-
pression through miRNA-like translational repression,
which in part is likely to account for the high activity of
CODEMIR-1 and its variants against this target.

The use of RNA duplexes is potentially confounded by off-
target inflammatory cellular responses [16]. To confirm
the specificity of action of CODEMIR-1 we examined the
expression of IFNfS and STAT1. After transfection with

CODEMIR-1, no evidence of up-regulation of either of
these genes was observed (Additional file 2). In a recent
separate study to be reported elsewhere, we studied the
activation of TLR7/8 by 207 siRNA sequences when trans-
fected with DOTAP into fresh human PBMCs at concen-
trations up to 100 nM. CODEMIR-1 belonged to the least
active subset of sequences (with ICs,> 100 nM), confirm-
ing low propensity of this sequence for activation of RNA-
sensing innate receptors.
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Comparison of CODEMIR-1 variants with (#56 and
#76) and without (#120 and #121) 7 G motifs. (a)
ARPE-19 cells were transfected with 40 nM duplex RNA and
VEGF (ELISA) or ICAM (FACS) were assayed 48 hours post-
transfection (*p < 0.001, **p < 0.0 as compared to
CODEMIR-56; 1+ p < 0.01, 11 p < 0.05 as compared to
CODEMIR-76). (b) Normalised fluorescence of ARPE-19
cells transfected with AmCyan/CODEMIR-1 reporter and
AsRed plasmids and CODEMIR variants with and without 7
G motifs. ARPE-19 cells were co-transfected with | ug of the
plasmids and 40 nM indicated RNA duplexes. Fluorescence
was assessed by FACS 48 hours post-transfection (*p < 0.001
as compared to CODEMIR-56, **p < 0.001 as compared to
CODEMIR-76). Each bar represents the mean of triplicate
samples. Error bars indicate standard deviation. Statistical sig-
nificance was determined by two-way ANOVA using a Bon-
ferroni post-test.

Discussion

The present study demonstrates proof of concept for the
approach of using short interfering RNAs with at least par-
tial complementarity to two target transcripts for suppres-
sion of the expression of unrelated genes. Although we
have only presented data for two seed sequences in two
genes here, we have successfully used the same approach
to target unrelated genes implicated in diverse disease

http://www.biomedcentral.com/1472-6750/9/57

o‘°b 0“"‘@-‘\}&'\ 06\ v°°\ S PSS I\
& ¥ FNFEE ST R
&V # &L
2 &> O & 2. L &

5 S LS L
FoS E EF F
D \Q‘"q:@q:"“\ q-'&b SN
N NP N )
& é‘;@‘* ST &
OOV OV OV
T O
CLR

&
&

VEGF

GAPDH

Figure 5

Central mismatches at the CODEMIR-| target site
impair VEGF-A suppressive activity. (a) ARPE-19 cells
were transfected with 40 nM of the indicated RNA duplex,
and VEGF-A secretion was measured by ELISA 48 hours
post-transfection (*p < 0.001 by ANOVA as compared to
CODEMIR-I). All data points represent the mean of tripli-
cate samples. Error bars indicate standard deviation. (b)
VEGF mRNA expression in ARPE-19 cells transfected with
centrally mismatched variants of CODEMIR-|. Semi-quantita-
tive RT-PCR performed on RNA from ARPE-19 cells trans-
fected with 40 nM indicated RNA duplexes demonstrated
impaired degradation of VEGF-A mRNA by CODEMIRs mis-
matched relative to a perfectly complementary control
(siVAIC). Gel is representative result from duplicate experi-
ments.

states including oncology, virology and inflammation
[17]. Thus, this approach can be used as a general tech-
nique for the suppression of multiple genes using a single
interfering RNA.

Current pharmaceutical research is dominated by a reduc-
tionist "one-disease one-target" paradigm. However, the
complex nature of many diseases has increasingly led to the
realisation that activity against multiple targets may be
required for effective treatment [18]. Practically, this can be
achieved through the use of multiple agents, and a number
of combination drugs have recently become available for
the treatment of heart disease and HIV infection, amongst
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(a) VEGF and ICAM expression in ARPE-19 cells
after transfection with inosine containing CODEMIRs
(#100-102). ARPE-19 cells were transfected with 40 nM
duplex RNA and VEGF-A (ELISA) or ICAM-I (FACS) were
assayed 48 hours post-transfection. (b) Comparison of VEGF-
A suppressive activity of CODEMIRs containing inosine bases
or mismatches at positions |3 and/or 15 of the guide strand.
ARPE-19 cells were transfected with 10 nM duplex RNA and
VEGF-A (ELISA) was assayed 48 hours post-transfection.
Each bar represents the mean of triplicate samples. Error
bars indicate standard deviation.

other indications. However, the combination of multiple
agents can lead to unforseen interactions [19]. Alterna-
tively, agents with activity against multiple targets can be
developed [20]. Indeed, many successful drugs in different

http://www.biomedcentral.com/1472-6750/9/57
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Figure 7

Suppression of VEGF-A and ICAM-I expression by var-
iants (shifted 5' of the guide strand) of CODEMIR-I.
ARPE- 9 cells were transfected with 40 nM of the indicated
duplex RNA. 24 hours after transfection cells were stimu-
lated with 130 uM Deferoxamine (VEGF-A) or | ng/ml IL-1§3
(ICAM-1). Gene expression was assayed 48 hours after trans-
fection by ELISA on cell supernatant (VEGF-A) or FACS
(ICAM). All data points indicate the mean of triplicate sam-
ples. Error bars indicate standard deviation.

areas of medicine (eg clozapine, imatinib) are active pre-
cisely because of their promiscuity of action [21,22]. To
date, the RNAi-based drugs that have been investigated
have been designed for single specific targets, with efforts
taken to reduce non-specific effects [23,24]. However, in
some instances, the processes they target are distinctly poly-
genic (eg cholesterol metabolism and angiogenesis), and
the targeting of multiple genes seems likely to be therapeu-
tically beneficial. Whilst the targeting of multiple genes
could be achieved through the use of a mixture of active
siRNAs, we believe that using a single active has a number
of possible advantages. First, having a single active reduces
the complexity of clinical and product development. Sec-
ondly, mixtures of siRNA can have disappointing effects
because of competition for the RISC machinery [25].
Thirdly, a single active may have reduced off-target effects
relative to a pool of actives, since each siRNA has a unique
pattern of off-target effects and a mixture may thus increase
the magnitude and/or scope of off-target effects.

Our finding that the length of seed complementarity
affects CODEMIR activity independent of overall comple-
mentarity is surprising given the current understanding of
microRNA-target interactions [4,9,11]. Mismatches to the
target in the central positions of the CODEMIR-1 guide
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Figure 8

Analysis of target site selection. (a) VEGF-A suppression
by 21 nt RNA duplexes (with central mismatches) targeting
different regions of the VEGF-A mRNA. ARPE-19 cells were
transfected with 40 nM indicated RNA duplexes. VEGF-A in
cell culture supernatant was measured by ELISA 48 hours
post-transfection and 24 hours post-stimulation with 130 uM
Deferoxamine. Each point represents the mean of triplicate
samples. Error bars indicate standard deviation. (b) Statistical
analysis of data for VEGF-A suppression depicted in Panel (a).
There was a significant difference (p < 0.05) between the
means for molecules targeting the 3'UTR as compared to
molecules targeting the ORF as determined by one-way
ANOVA with a Bonferroni post-test.

strand decreased VEGF-A suppression at the protein level
to 50-60%, and largely abrogated suppression at the RNA
level. This suggests that complementarity to the target at
the 5'-end and in the centre of the guide strand is suffi-
cient to induce target cleavage, and that CODEMIRs with
central mismatches to the targets may act primarily
through translational repression. As such, CODEMIRs
with longer 5' regions of contiguous complementarity
may exhibit higher efficacy. However, suppression of mul-
tiple genes related to the same phenotype is likely to have
significant advantages over targeting a single gene, and
thus CODEMIRs with central mismatches will still be of
significant utility.

http://www.biomedcentral.com/1472-6750/9/57

Conclusion

The present study validates the approach of using a short
dsRNA molecule specifically designed with a single guide
strand to suppress the expression of multiple unrelated
genes implicated in a particular medical condition. We
have shown that synthetic duplex RNAs with at least par-
tial complementarity to multiple transcripts are capable of
specific suppression of multiple target genes. Given the
multi-genic nature of many disease states, such multi-tar-
geting interfering RNAs may offer significant therapeutic
benefits relative to single target siRNAs. Our findings also
have relevance to the biology of miRNA-target interac-
tions, particularly with respect to the effect of unpaired
bases on miRNA-mediated suppression of translation.

Methods

Cell culture and transfection

ARPE-19 cells were cultured in Dulbecco's Modified
Eagle's Medium supplemented with 10% Fetal bovine
serum and 10 mM glutamine (Gibco). Duplex RNA trans-
fection was performed using Lipofectamine 2000 (Invitro-
gen), at a ratio of 260 ng siRNA per 1 uL Lipofectamine,
according to the manufacturer's instructions. Cells were
transfected 24 hours after seeding at a density of 1.25 -
104 cells per cm?in 96, 48 or 24-well plates. RNA duplex
and plasmid co-transfection was performed with 1 pg
reporter plasmid (AmCyan based - see below), 1 pg con-
trol plasmid (pAsRed-C1 - Clontech) and 40 pmol RNA
duplex together complexed with 10 pg Lipofectamine
2000 and applied to cells in a 12 well plate.

ELISA and FACS analysis of gene expression

VEGF-A concentrations in cell supernatants were assayed
48 hours after transfection and 24 hours after stimulation
with 130 uM Deferoxamine (Sigma) using a commercially
available ELISA kit (R&D Systems) according to the man-
ufacturer's instructions. Cell surface ICAM-1 was assayed
by flow cytometry. Cells seeded into 12 well plates were
transfected with RNA duplexes 24 hours after seeding.
ICAM-1 expression was assayed 48 hours after transfec-
tion and 24 hours after stimulation with 1 ng/mL recom-
binant human Interleukin-1p (R&D systems): cells were
trypsinized, stained with 0.5 pg anti-human ICAM-1
mouse IgG, antibody (Becton Dickinson) at 4°C for 20
minutes, washed with PBS, stained with 0.2 pg Phyco-
erythrin-labelled anti-mouse IgG, antibody (Becton Dick-
inson) at 4°C for 20 minutes, washed with PBS and
analysed using a FACScalibur flow cytometer (Becton
Dickinson). IFNf production was assayed using a com-
mercially available ELISA (InVitrogen) according to the
manufacturer's instructions. For detection of fluorescent
reporter expression, mean fluorescence in the reporter
channel (FL-1) was normalised to mean fluorescence in
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the control channel (FL-2). Statistical analysis was per-
formed using Prism software (GraphPad Software Inc.)

RNA quantification

For semi-quantitative RT-PCR, total cellular RNA was
extracted using the RNeasy kit (Qiagen) according to the
manufacturer's instructions. Reverse transcription was
performed on 1 pg total RNA using a commercially avail-
able kit (First-Strand cDNA Synthesis Kit, Marligen Bio-
sciences). PCR of GAPDH was used to standardise the
amounts of starting cONA. PCR was performed in 1x PCR
buffer II (Applied Biosystems) supplemented with 3.75
mM MgCl,, 250 uM each dNTP, 250 nM each primer and
0.125 U/uL AmpliTaq gold (Applied Biosystems). VEGF-
A was amplified by 30 cycles of 95°C - 30 seconds, 60°C
- 30 seconds and 72°C - 30 seconds, using the primers
(5'to 3"): TTCTTG CTG CTA AAT CAC CGA and GAA CAT
TCC CCT CCC AAC TCA. GAPDH was amplified by 18
cycles of 95°C - 30 seconds, 65°C - 30 seconds and 72°C
- 30 seconds, using the primers (5' to 3'): CTG CIT CAC
CAC CIT CIT GAT GTC ATC ATA and GAC CCC TTC ATT
GAC CTC AACTAC ATG GT.

VEGF-A, ICAM-1, IFN p, STAT1 and GAPDH RNA were
quantified using a Quantigene® branched DNA assay
(Panomics), according to the manufacturer's instructions.

Plasmid construction

Fluorescent reporter vectors were constructed by cloning
target sites into the 3'UTR of the AmCyanl1 fluorescent
protein gene in the pAmCyan1-C1 vector (Clontech). A
stop codon was inserted by cloning the duplex oligodeox-
ynucleotide pair GAT CTC TCG AGT GAT AGG and AAT
TCC TAT CAC TCG AGA into the BglII and EcoRI sites of
pAmCyan1-C1. Specific CODEMIR-1 target site reporters
were generated by cloning the duplex oligonucleotide
pairs AAT TTC CTG TAG ACA CAC CCA CCC ACA TAC
and GAT CGT ATG TGG GTG GGT GTG TCT ACA GGA
(VEGF-A), and AAT TTG TTA GCC ACC TCC CCA CCC
ACA TAC and GAT CGT ATG TGG GTG GGG AGG TGG
CTA ACA (ICAM-1) into the EcoRI and BamHI sites of the
stop codon-containing pAmCyan1-C1 vector. The full-
length VEGF-A 3'UTR (including stop codon) was cloned
from ARPE-19 cells by RT-PCR using the primers GGG
CTC GAG TGA GCC GGG CAG GAG G (Forward) and
GGG GTC GAC TAC GGA ATA TCT CGA AAA ACT
(Reverse) and cloned into the Xhol and Sall sites of the
pAmCyan1-C1.

Western blot analysis

Total protein lysates were obtained by lysing cells in RIPA
buffer (150 mM NaCl, 0.1% sodium dodecyl sulphate,
1% nonidet P-40, 0.5% sodium deoxycholate, 50 mM
Tris-Cl, pH 8). Protein concentrations were determined by
the Lowry protocol using the Bio-Rad D Protein Assay.

http://www.biomedcentral.com/1472-6750/9/57

Total proteins (10 pg) were separated by electrophoresis
on NuPage 4-12% Bis-Tris gels (Invitrogen) and trans-
ferred onto nitrocellulose membranes. Membranes were
blocked with 3% BSA in TBST (10 mM Tris pH 8, 30 mM
NaCl, 0.05% Tween) for 20 min at room temperature.
After rinsing with TBST twice, anti-STAT1 mouse IgG,
(1:400; Santa Cruz Biotechnology) and anti-B-actin
mouse IgG, (1:2000; Sigma-Aldrich) in TBST-MLK (TBST
containing 5% dried skim milk) were added and incu-
bated for 1 hour at room temperature. After 3 — 5 min
washes in TBST, membranes were incubated with horse-
radish peroxidase conjugated anti-mouse Ig (1:2000 in
TBS-MLK; Dako Cytomation) for 45 min at room temper-
ature. The membrane was washed in TBST (3 - 5 min) and
analysed by chemiluminescence using ECL Western blot-
ting detection (Amersham).
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