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Abstract

Background: Human cholinesterases can be used as a bioscavenger of organophosphate toxins
used as pesticides and chemical warfare nerve agents. The practicality of this approach depends on
the availability of the human enzymes, but because of inherent supply and regulatory constraints, a
suitable production system is yet to be identified.

Results: As a promising alternative, we report the creation of "hairy root" organ cultures derived
via Agrobacterium rhizogenes-mediated transformation from human acetylcholinesterase-expressing
transgenic Nicotiana benthamiana plants. Acetylcholinesterase-expressing hairy root cultures had a
slower growth rate, reached to the stationary phase faster and grew to lower maximal densities as
compared to wild type control cultures. Acetylcholinesterase accumulated to levels of up to 3.3%
of total soluble protein, ~3 fold higher than the expression level observed in the parental plant. The
enzyme was purified to electrophoretic homogeneity. Enzymatic properties were nearly identical
to those of the transgenic plant-derived enzyme as well as to those of mammalian cell culture
derived enzyme. Pharmacokinetic properties of the hairy-root culture derived enzyme
demonstrated a biphasic clearing profile. We demonstrate that master banking of plant material is
possible by storage at 4°C for up to 5 months.

Conclusion: Our results support the feasibility of using plant organ cultures as a successful
alternative to traditional transgenic plant and mammalian cell culture technologies.

Background

Bioscavenging of organophosphate (OP) by human
cholinesterases (ChEs) is emerging as a promising medi-
cal intervention for prophylaxis and post-exposure treat-
ment against chemical warfare nerve agents and
pesticides, meeting considerable success in pre-clinical
studies [1,2]. ChEs are very efficient in sequestering OPs
that become esterified to a serine residue at the active site.
This covalent bond is very stable and in the case of certain
OPs is further stabilized by subsequent "aging" reactions.
With the phosphorylated enzymes having negligible reac-

tivation rates, ChEs are effectively "single-use molecular
sponges" requiring the application of stoichiometric
rather than catalytic doses for effectiveness. Thus a pro-
duction system capable of supplying the forecasted
demand for large amounts of active ChEs is needed.

Several strategies for production of ChEs were evaluated.
Of the two ChEs in humans, only the serum enzyme
butyrylcholinesterase (BChE) can be obtained from natu-
ral sources, and large-scale purification efforts from out-
dated blood-banked human plasma were demonstrated
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[2-4]. Expression in recombinant systems is the only way
for producing the physiological target of OPs, acetylcho-
linesterase (AChE), which is abundant in muscle and
nerve tissues but is normally absent from serum. Several
mammalian-based recombinant production systems were
described including engineered cell cultures [e.g. [5-7]]
and the milk of transgenic goats [8]. As an alternative to
these systems that are confronted with being supply-
restricted, of limited scalability, high cost and risk of
human pathogen contamination, we have introduced
plants as a production system for human AChE [9]. We
carefully optimized the expression constructs [10], and
purification protocols [11] and demonstrated that plant
derived AChE-Ry; from Nicotiana benthamiana, which
retains all of the catalytic properties of a mammalian-
derived enzyme and furthermore that plant-derived
AChE-Ryy is capable of completely ameliorating all of the
gross clinical symptoms and some of the long-term
molecular consequences implicated in OP poisoning
[12].

Despite their promise, there are currently some concerns
among regulatory agencies and the public at large, regard-
ing the use of transgenic plants (grown in open fields or
in greenhouses) for the production of protein pharmaceu-
ticals [13]. Among the raised issues is that of environmen-
tal containment (both in term of transgene escape and
inadvertent contamination of non-transgenic plant mate-
rial). A further perceived difficulty is the regulatory uncer-
tainty whether the lack of tightly controlled growth
conditions typical of plant cultivation can satisfy the strict
requirements of good manufacturing practice. In this con-
text plant cell or organ cultures grown in bioreactors may
prove more adept at clearing the regulatory hurdles asso-
ciated with plant-based heterologous production systems
while maintaining their most important advantages -
inexpensive medium consisting of salts and sugar and
devoid of mammalian proteins, growth factors and hor-
mones; equivalent purification costs; and unmatched
biosafety bearing minimal risk of human pathogens and
prions [13].

While several plant cell lines are available for use, more
organized organ culture, such as "hairy root" cultures may
present additional benefits e.g. genetic and biochemical
stability and faster growth rates resulting in larger mass/
medium ratios [14,15]. Hairy root cultures are obtained
by Agrobacterium rhizogenes mediated transformation of
plant tissue (explants). A. rhizogenes is a common phy-
topathogenic and naturally-transforming soil bacterium
(for a review see Guillon et al. [16]. It induces neoplastic
growth and differentiation of infected plant tissue to form
"hairy roots" by activation of genes on a DNA fragment
(T-DNA) that is transferred from the bacterial Ri plasmid
and integrated into the plant nuclear genome. The trans-

http://www.biomedcentral.com/1472-6750/8/95

formed plant tissue quickly grows into a highly branched
mass in a medium consisting of simple salts and sucrose
and useful compounds such as secondary metabolites or
recombinant proteins can be recovered from the medium
or extracted from the plant tissue [16].

Here we demonstrate the feasibility of producing human
AChE-Ry in hairy root cultures derived from transgenic
N. benthamiana plants expressing the protein via A. rhizo-
genes mediated transformation. Hairy root lines were
screened for level of expression of AChE-R and the pro-
tein was subsequently purified and its biochemical prop-
erties studied and its circulation half-life determined.

Methods

Cloning, Tissue Culture and Initial Screening

A codon-optimized cDNA encoding human AChE-R with
a C-terminal SEKDEL (Fig. 1) was as previously synthe-
sized by de novo assembly and stable N. benthamiana
lines were established [12]. Explants derived from these
parental plant lines, along side untransformed wild type
(WT) plants, were co-cultivated with Agrobacterium rhizo-
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a: Expression cassette driving the production of
human AChE-Rg; in transgenic plants and hairy-root
cultures. L, left border; R, right border; Ag7, the nopaline
synthase gene's 3' UTR; nptll, the kanamycin resistance gene;
NOS, the nopaline synthase gene's promoter; 2 x 35S, cauli-
flower mosaic virus 35S promoter with duplicated enhancer;
TEV, the translation enhancer region of the tobacco etch
virus; AChE-Rgg, codon-optimized coding region for human
AChE-R containing the C-terminal SEKDEL ER retention sig-
nal; VSP, the 3' UTR of the soybean vegetative storage pro-
tein. b: Levels of AChE-RER expression in several
independent hairy-root clones.
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genes (R 1000) for 48 hr in the dark at room temperature
on plates containing MS medium containing MS basal salt
mixture with vitamins (Phytotechlabs, 4.3 g/L), 3%
sucrose (Sigma) and 0.2% phytagel (Sigma). Explants
were then moved to fresh MS medium supplemented with
50 mg/L kanamycin (Phytotechlabs) and 300 mg/L
Timentin (Phytotechlabs). Hairy roots thus obtained were
grown on solid MS medium or and in 1 L flasks contain-
ing 500 mL liquid culture shaken at 100 RPM.

For initial screening, root samples (100 mg) were lysed in
3 vol of extraction buffer (50 mM Tris, pH 8, 1 M NaCl,
1% Triton X-100) using a FastPrep machine (Qbiogene).
Lysates were then clarified by centrifugation at 14,000 x g
for 10 min at 4°C. Supernatants were removed and enzy-
matic activity of AChE-R was measured (see below).

Determination of Growth Kinetics and 4°C storage
protocol

Liquid culture growth rate and maximum culture density
were determined for hairy roots lines expressing AChE-Rx
as well as WT roots. MS liquid medium (500 mL) was
spiked with 1.5 g hairy root tissue that had been grown on
solid media for 2 weeks. Roots were removed from liquid
culture and dried briefly on paper towels at the corre-
sponding time points. For AChE purification experiments,
hairy root cultures were typically harvested between 4-6
weeks following culture initiation, ensuring maximum
culture density. For 4°C storage experiments, roots were
grown on 1.5% agar (Sigma) slants containing MS salts
and 3% sucrose and allowed to grow at room temperature
for 3 weeks in the dark. Slants were then moved to 4°C.
At the indicated times, slants were removed and roots
were sterilely transferred to 50 mL of liquid MS medium
and cultured on a shaker at RT for 3 weeks. Roots were
then removed, patted-dry, inspected and weighed.

Purification of Human Acetylcholinesterase

All purification steps were preformed at 4°C. After 4-6
weeks of growth remaining media was removed from the
growth flask and roots were washed once with 500 mL
extraction buffer (10% sucrose, 5 mM MgCl,, 15 mM
Na,$S,0;5in PBS, pH 8.0). Root samples were disrupted in
a commercial blender with 2 volumes of fresh extraction
buffer and subjected to centrifugation at 20,000 x g for 20
minutes to pellet cellular debris. The supernatant was fil-
tered first with Miracloth (Calbiochem) followed with a
Grade 50 filter paper (2.7 um, Whatman). The clarified
supernatant was then diluted with PBS to two times initial
volume to reduce the metabisulfite concentration and
processed by affinity chromatography using 8 mL pro-
cainamide-agarose (Sigma) in a 2.5 cm L.D. Econo-col-
umn (Bio-Rad). The column was washed with 80 mL PBS
and the bound enzyme eluted with 60 mL elution buffer
(0.2 M acetylcholine chloride in PBS) into 2 mL fractions.
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Fractions displaying AChE activity (2-18) were pooled,
ammonium sulfate was added to 55%, and the suspen-
sion incubated for 1 hr. The protein pellet obtained by
centrifugation (20,000 x g, 15 min) was re-suspended in
20 mL buffer 1 (20 mM Na,PO,/NaHPO,, 20 mM NaC(l,
pH 7.4), dialyzed extensively against buffer 1 for 12 hr in
a 50 kDa MWCO cellulose dialysis tubing (Spectrum),
and concentrated in a Macrosep 10 kDa MWCO concen-
trator (Pall) to a final volume of 3 mL. Sodium azide
(0.02%) was added and solution was stored at 4°C until
further use.

Biochemical characterization of AChE-R

Enzymatic activity of AChE-R was measured using
acetylthiocholine iodine (ATChI, Sigma) as the substrate
in a SpectraMax 340PC spectrophotometer (Molecular
Devices) by the method of Ellman [17] as previously
described [9]. The specific activity of pure preparations of
plant-derived AChE (~3000 U/mg protein [12]) was used
to convert activity protein equivalent. Total protein levels
were derived using the Bio-Rad Protein Assay Reagent
(Bio-Rad) with BSA as the standard. The Michaelis con-
stant (K) was determined by measuring and plotting
AChE activity as a function of ATChI concentration and
non-linear regression analysis (Prism software, Graph-
Pad). Inhibition curves were generated by plotting resid-
ual AChE activity (measured in the presence of 1 mM
ATChI) as a function of inhibitor's concentration using
the following acetylcholinesterase inhibitors: neostig-
mine bromide (Sigma), 1,5-bis(allyldimethylammoni-
umphenyl)pentan-3-one dibromide (BW, Sigma), diethyl
p-nitrophenyl phosphate (Paraoxon, Sigma) and the
butyrylcholinesterase specific irreversible inhibitor, tetra-
isopropyl pyrophosphoramide (ISO-OMPA, Sigma).

Protein samples were resolved by SDS-PAGE and visual-
ized using a Silver Snap II kit (Pierce) according to manu-
facturer's instructions.

Pharmacokinetics

Groups of five 6-8 week old male FVB/N mice were
injected with 30 U of hairy root-derived AChE-R; in PBS
(100 pL) or 100 pL PBS as vehicle control. Blood samples
(25 pL) were drawn by tail vein knick. Serum was sepa-
rated from clotted blood by centrifugation (6,000 x g, 30
min, 4°C). Serum samples were assayed for AChE activity
in the presence of 50 uM of the butyrylcholinesterase-spe-
cific inhibitor Iso-OMPA. Data derived from AChE-
injected mice was normalized to data derived from vehi-
cle-treated mice.

Results and Discussion

Creation of hairy root cultures

Previously we described the creation of transgenic N.
benthamiana plants expressing the "readthrough” isoform
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of human AChE (AChE-R) [11,12]. This isoform is the
monomeric and soluble product of one of the mRNA
splice variants of the single human ACHE gene, which is
up-regulated during exposure to anticholinesterase agents
[18]. The human enzyme was engineered to contain the
endoplasmic reticulum (ER) retention signal KDEL (Fig.
1a). This modification, as well as codon optimization of
the gene, enabled the recombinant protein to accumulate
to high levels in leaves [10,12]. We selected one of the
highest expresser line, 2D, harboring (at least) four copies
of the transgene and expressing AChE-Rg at 0.3%-1% of
total soluble protein (TSP) as the parental source of
explants for the generation of hairy root cultures [11,12].

Thirteen independent hairy root lines were generated by
A. rhizogenes infection and screened for the presence of the
transgene and for levels of recombinant protein, assayed
by its enzymatic activity (Fig. 1b). These kanamycin-resist-
ant clones displayed a wide distribution of recombinant
protein accumulation, with the highest clone accumulat-
ing the transgenic product at 3.3% TSP while the lowest
confirmed positive clones expressed at levels that were at
least 100 fold lower. We observed a similarly wide distri-
bution of recombinant protein accumulation levels in
hairy-root clones derived from a single parental plant with
the synaptic AChE isoform (data not shown).

The differences in the apparent expression levels of AChE-
R between the hairy root cultures and the parental plants
can be explained by several, non-mutually exclusive
explanations. For example it is reasonable to expect differ-
ences in the size of total soluble protein fraction in roots
vs. leaves. It can also reflect a less restrained transgene
expression under the pampered culture conditions as
opposed to expression levels that can be expected of pot-
ted plants in the greenhouse. Regardless of the explana-
tion, the higher % TSP observed in hairy roots presents
itself as a bonus when purification is concerned.

Growth kinetics of AChE-Rgg hairy root cultures

Following selection and initial screening, the clone with
the highest AChE-R;; accumulation (clone 10) was
selected for further studies and was cultured in liquid
medium. Under identical growth conditions, transgenic
hairy root cultures were slower to grow and reached sta-
tionary phase earlier and at lower densities than WT cul-
tures (Fig. 2b). Thus, transgenic cultures reached peak
density (76 g/L, Fig. 2) already at 5 weeks, when growth
rate tempered while the WT cultured continued to grow at
a vigorous pace up to 7 weeks after inoculation and
achieved roughly twice that density (161 g/L, Fig. 2). Such
differences between the growth rates of the transgenic vs.
WT cultures were not evident when hairy roots were
grown on solid medium. This may indicate that the rate-
limiting factor is aeration, although any other number of
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Growth profile of hairy root cultures derived from
clone 10 (Fig. 1) as compared to hairy-root cultures
derived from untransformed N. benthamiana plants.
Shown are fresh weight gains and accumulation of AChE
activity in tissue. Plotted values indicate the mean + S.E.M of
three independent repeats.

factors may contribute as well. Further optimization of
growth conditions may increase the growth rates of the
cultures and alleviate the observed limitations. Regarding
production of recombinant AChE-Rgy, the culture produc-
tivity also peaked at week 5, when AChE specific activity
in the crude extract was 70 U/mg (or about 2.3% TSP).
Although the stationary phase culture remained viable,
accumulation levels of the recombinant protein dropped
sharply, possibly reflecting decreased stability of the
enzyme due to senescence-induced proteases potentially
coupled to decreased translation.

WT hairy roots remained viable when stored at 4°C on
solid medium (agar slants) and could be used to inoculate
new suspension cultures for at least 6 months. However,
and correlating well to its diminished growth characteris-
tics, AChE-expressing hairy roots remained viable for only
15-20 weeks. Methods for longer-term clone banking are
still being pursued.

Purification of AChE-Rgg from hairy root cultures

Following growth in liquid culture for 4-6 weeks, the
recombinant protein was purified by affinity chromatog-
raphy and concentrated by ammonium sulfate precipita-
tion. The enhanced accumulation of AChE-Ry; in hairy
root cultures compared with the parental plants made
additional purification steps [e.g. anion-exchange chro-
matography, see [11,12]] unnecessary to achieve compa-
rable purity and yield to our previously published results
[Fig. 3, Table 1. For comparison see [11,12]]. This isola-
tion procedure resulted in an electrophoretically pure
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Protein samples from successive purification steps
were subjected to SDS-PAGE and visualized by silver
staining as follows: lane | - crude extract; lane 2 -
procainamide affinity chromatography flow-through;
lane 3 - eluate after extensive dialysis; M — molecular
weight standards.

AChE-Ry; with an overall 50-fold purification (Fig. 3,
Table 1). Importantly, neither the choice of the hairy root
system, nor the abbreviated purification protocol had any
effect on the catalytic characteristics of the recombinant
molecule. The hairy root derived enzyme's affinity to the
substrate, approximated by the Michaelis constant (K,),
was identical to that of AChE-Ry derived from the paren-
tal plant (0.23 + 0.04 mM, mean + SEM), and is also very
similar to the native enzyme's value [19,20] (Fig. 4). Sim-
ilarly, binding of substrate to the peripheral anionic site of
AChE, responsible for its characteristic allosteric inhibi-

Table I: Hairy-root derived recombinant AChE-Rgg purification.
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Transgenic plant-produced (leaf) and hairy-root
derived (hairy-root) AChE-Rgz enzymes have identi-
cal Ky values (Lineweaver-Burke analysis, insert) and
substrate inhibition profiles.

tion, was apparent at concentrations higher than 2.5 mM
regardless of the source of the enzyme.

As the goal of cholinesterase therapy is to provide a broad-
spectrum bioscavenger of anti-cholinesterase toxins, bind-
ing of inhibitors to the enzyme was monitored by obtain-
ing inhibition profiles for several cholinesterase
inhibitors. The hairy-root derived enzyme showed nearly
identical IC50 values with representatives of several
classes of inhibitors including paraoxon, the active OP
metabolite of the insecticide parathion), the AChE-spe-
cific bis-quaternary inhibitor BW 284-c51, and neostig-
mine bromide, a carbamate (Fig. 5a-c). As expected,
Tetra(monoisopropyl)pyrophosphortetramide (Iso-
OMPA), a butyrylcholinesterase-specific OP, had no effect
on the plant-derived AChE (Fig. 5d).

The purification results presented here, demonstrate the
potential for further improvements in increasing the yield.
A relative simple modification may be, for example, using

Total Protein Total Activity Specific Activity Yield Purification
(mg) (units) (units/mg protein) (%) (fold)
Crude Extract 40,000 2,300 57 100 |
Affinity Chromatography 60 2,800 7 49
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Recombinant AChE-R derived from either leaves of
transgenic plants or hairy-root cultures have identi-
cal sensitivities to various cholinesterase inhibitors.

Residual activities were measured following incubation with
the indicated concentration of the indicated inhibitors.
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Figure 6

Pharmacokinetics of hairy-root derived AChE-Rgg.
Groups of 5 mice were injected with either 100 U recom-
binant AChE-Rg or an equivalent volume of PBS. Plasma
samples were collected and assayed for AChE activity in the
presence of Iso-OMPA, a selective BChE inhibitor. In the
insert, results are fitted to two exponential elimination equa-
tions: |stphase: y = 30.8e-0.043tand 2nd phase: y = 2.97e-001It,

a variant of the protein devoid of the ER retention signal,
which should allow the protein to be secreted to the apo-
plast. It is yet to be seen if such approach would allow the
~70 kDa protein to be released into the medium (as
opposed to being trapped within the plant cell wall and
subsequent uptake and degradation) as the existing litera-
ture is ambivalent about the issue [21-23].

Pharmacokinetics of Hairy Root-Derived AChE-Rgy

The levels of AChE activity in serum are typically very low
but increase following various stressful insults as is dem-
onstrated here with mice injected with vehicle (saline).
Following the injection, the mice experienced a ten-fold
increase in their serum AChE activity, which declined rap-
idly (Fig. 6). To determine the rate of circulatory clearance
of hairy root-derived AChE-Ry;, we injected (i.v.) mice
with 25 U of the recombinant enzyme and tested plasma
samples for residual AChE activity in the presence of Iso-
OMPA (to inhibit serum BChE activity, Fig. 6). The hairy
root-derived human enzyme was cleared rapidly with a
two-phase exponential decay kinetics (Fig. 6 insert, K; =
0.0433 + 0.0037 min! and K, = 0.0109 + 0.0022 min-!
corresponding to half-life values of 16 min and 64 min,
respectively). The kinetics of serum clearance of the hairy
root-derived AChE-R is not appreciably different than that
of the endogenous enzyme, probably reflecting the exist-
ing mechanisms to retain the normally low levels of activ-
ity in the serum [24]. Stability can be increased by
decorating the enzyme with polyethylene glycol on sur-
face exposed lysine residues [24].
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Conclusion

Previously, we reported the creation of transgenic plants
that accumulate recombinant human AChE-R; to com-
mercially viable levels [12]. Here we demonstrate that the
enzyme can be efficiently produced in hairy root cultures
derived from those transgenic plants, that it can be readily
purified and that it is 'biosimilar’, i.e. biochemically and
functionally equivalent to its transgenic plant-derived
counterpart with respect to substrate hydrolysis, OP bind-
ing and pharmacokinetics [12]. It is anticipated, but yet to
be demonstrated, that the hairy root enzyme can provide
similar protection to OP challenged enzymes. Thus organ
cultures can provide both the high level of expression
achieved with transgenic plants, with the additional con-
tainment and uniformity coming from contained clonal
propagation in well-defined culture medium and condi-
tions.
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