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Abstract

Background: Phosphoribosyl pyrophosphate (PRPP) is a central compound for cellular
metabolism and may be considered as a link between carbon and nitrogen metabolism. PRPP is
directly involved in the de novo and salvage biosynthesis of GTP, which is the immediate precursor
of riboflavin. The industrial production of this vitamin using the fungus Ashbya gossypii is an
important biotechnological process that is strongly influenced by substrate availability.

Results: Here we describe the characterization and manipulation of two genes of A. gossypii
encoding PRPP synthetase (AGR37/C and AGLO80C). We show that the AGR37/C and AGLO8OC
gene products participate in PRPP synthesis and exhibit inhibition by ADP. We also observed a
major contribution of AGLO8OC to total PRPP synthetase activity, which was confirmed by an
evident growth defect of the Aagl080c strain. Moreover, we report the overexpression of wild-
type and mutant deregulated isoforms of Agr37Icp and Agl080cp that significantly enhanced the
production of riboflavin in the engineered A. gossypii strains.

Conclusion: It is shown that alterations in PRPP synthetase activity have pleiotropic effects on the
fungal growth pattern and that an increase in PRPP synthetase enzymatic activity can be used to
enhance riboflavin production in A. gossypii.

Background

Ashbya gossypii is a filamentous hemiascomycete, which
has been considered a paradigm of sustainable "white"
biotechnology through its use in the industrial overpro-
duction of riboflavin and other vitamins [1]. During the
late growth phase, when maximum biomass has been
reached, A. gossypii naturally exhibits high levels of ribo-
flavin production as a detoxifying and protective mecha-
nism [2]. However, we have recently described that
riboflavin production can be enhanced considerably by
genetic and metabolic engineering of the purine pathway,

which provides the precursor for riboflavin biosynthesis
[3.4].

Riboflavin is synthesized from GTP and ribulose 5-phos-
phate through a multi-step pathway controlled by the RIB
genes (RIB1 to RIB5 and RIB7 in A. gossypii) [5]. GTP, the
immediate precursor for riboflavin production, is synthe-
sized through the de novo purine pathway (Figure 1),
which starts with the formation of PRPP. Alternatively,
GTP can be formed through the purine salvage pathways
(Figure 1), which recycle purines with the consumption of
PRPP [6].
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Metabolic contribution of PRPP to the purine biosynthesis and other anabolic pathways. The purine pathway is
shaded; the de novo purine pathway starts with PRPP biosynthesis, while salvage pathways use PRPP to transform purine bases
to monophosphate nucleotides. Dashed arrows indicate a multi-step pathway; sAMP, adenylosuccinate.

PRPP, synthesized from ribose-5-phosphate and ATP, is
therefore a key compound for purine and riboflavin bio-
synthesis, and it is also an important cellular metabolite
because it represents a link between carbon and nitrogen
metabolism. PRPP is a biosynthetic precursor of histidine
and tryptophan, and it is also required for the de novo and
salvage pathways of purine, pyrimidine and pyridine
(NAD+, NADP+) nucleotides. It has been calculated that
approximately 80% of the metabolic flux through PRPP is
directed to purine and pyrimidine synthesis [7].

The formation of PRPP is catalyzed by the enzyme PRPP
synthetase, which is encoded by PRS genes. It has been
shown that mutations in human PRS genes can either acti-
vate or inactivate the enzyme, leading to different heredi-
tary disorders including hyperucemia, mental retardation,
developmental delay, and other neurological pathologies
[8-11].

According to the Ashbya Genome Database (AGD, http://
agd.vital-it.ch/index.html) [12] there are four putative
annotated genes encoding PRPP synthetase in A. gossypii.
In constrast, Saccharomyeces cerevisiae is equipped with a
set of five unlinked PRS genes (PRS1-PRS5) [13,14]. Thus,
in S. cerevisiae PRPP synthetase is organized in two inter-
acting complexes or functional entities: a heterodimer
comprising Prs1p-Prs3p; and a heterotrimer consisting of
Prs2p-Prs4p-Prs5p [15]. Furthermore, systematic analyses

of all possible combinations of PRS deletions in S. cerevi-
siae have revealed three possible phenotypes: synthetic
lethality, when PRS1 or PRS3 deletions are combined with
a disruption in PRS5, and the simultaneous deletion of
PRS2 and PRS4 in either the Aprs1 or Aprs3 strains. A sec-
ond phenotype is characterized by growth impairment
and reduced enzymatic activity; this phenotype is found
in mutants containing disruptions in PRS1 and PRS3,
either together or in combination with Aprs2 or Aprs4.
Finally a third phenotype, which only consists of a reduc-
tion in enzymatic activity, is encountered in single or
combined deletions of PRS2, PRS4 and PRS5. This com-
plex scenario can be explained in terms of the existence of
three minimal subunits capable of sustaining the required
PRPP intracellular pool in S. cerevisiae: namely, Prs1-Prs3;
Prs2-Prs5 and Prs4-Prs5 [15].

Based on their enzymatic properties, so far three classes of
PRPP synthetases have been described: Class I PRPP syn-
thetases, which are dependent on phosphate ions for
activity, are inhibited by purine ribonucleotide diphos-
phates and exclusively use either ATP or dATP as a diphos-
phoryl donors. PRPP synthetases from Escherichia coli, S.
cerevisiae and mammals belong to class I [16-18]. Class II
enzymes are specific from plants and are characterized by
their independence of phosphate ions, their lack of allos-
teric inhibition, and their broad specificity for diphospho-
ryl donors [19]. Finally, a class Il enzyme has recently
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been described in the archaeon Methanocaldococcus jannas-
chii, which is activated by phosphate and uses ATP as
diphosphoryl donor, but lacks an allosteric site for ADP
[20]. In a recent publication, a novel allosteric site for
SO,?-, whose residues are strictly conserved in eukaryotic
class I enzymes has been reported to stabilize the active
site of PRPP synthetase [21].

Here we report the characterization of AGR371C and
AGL080C genes encoding PRPP synthetases from A. gos-
sypii and their effects on riboflavin production and
growth. We found that PRPP synthetases from A. gossypii
are inhibited by ADP. Furthermore, by combining AgPRS
gene deletions we were able to define three different phe-
notypes that mimicked those previously encountered in
yeast Aprs mutants. Finally, we describe the metabolic
engineering of A. gossypii strains whose PRPP synthetase
regulatory properties have been modified to significantly
enhance the productivity of riboflavin.

Methods

Strains, media and techniques for A. gossypii culture

The A. gossypii ATCC 10895 strain was used and was con-
sidered as a wild-type strain. A. gossypii was cultured at
28°C using MA2 rich medium [22], synthetic complete
media [23] or synthetic minimal media [24]. A concentra-
tion of 250 pg/ml of geneticin (G418) (Sigma, Steinheim,
Germany), or 200 pg/ml of hygromycin B (Phytotechnol-
ogy Laboratories, Shawnee Mission, USA), was used when
specified. A. gossypii transformation, genomic DNA and
RNA isolation, Southern-blot and northern-blot analyses,
spores isolation, cell protein extraction, and HPLC deter-
mination of total riboflavin contents were carried out as
previously described [24,25].

PCR-based cloning of AGR371C and AGL080C genes from
A. gossypii

Based on the annotated sequences for AGR371C and
AGL080C in the AGD database http://agd.vital-it.ch/
index.html[12], two pairs of primers were designed to
PCR-amplify two genomic regions (approx. 3 Kb each)
containing AGR371C- and AGL080C- coding DNA
sequences. Both genomic fragments were cloned into a
pBluescript-SK+ vector (Stratagene) as Kpnl-Hindlll
(AGR371C) and EcoRI (AGL080C) fragments respectively.
The resulting clones were shown to be correct by DNA
sequencing of the entire fragments (data not shown).

AGR371C and AGL080C gene disruption and
overexpression

For AGR371C and AGL080C disruption, an integration
cassette was constructed for each ORF (see below for fur-
ther details). Briefly, for AGR371C disruption we obtained
a kanMX4 selection module for geneticin resistance
(G418r) with Sall ends from the plasmid pAG-110 [26],

http://www.biomedcentral.com/1472-6750/8/67

which were subsequently treated with Klenow enzyme
(Roche) to generate blunt ends. The kanMX4 blunt-ended
fragment was inserted between Hincll and EcoRV sites in
the AGR371C ORF. The complete replacement module
was obtained by digestion with Ncol and Kpnl and was
used to transform spores of the A. gossypii ATCC 10895
strain. For AGL0O80C disruption, a hygromycin resistance
(Hyg") marker was obtained with BamHI-Kpnl ends, which
were subsequently treated with Klenow enzyme (Roche).
The resulting Hyg" marker was inserted between two EcoRV
sites present in the AGLOS8OC OREF. Finally, the AGL0O80OC
disruption module was obtained by EcoRI digestion and
was used to transform either spores of the A. gossypii ATCC
10895 strain, for the single disruption, or spores of the A.
gossypii Aagr371c strain, for the double disruption. Correct
integrations were verified by analytical PCR and South-
ern-blotting experiments.

For the overexpression of different alleles of AGR371C
and AGL080C, each ORF was inserted as an Ndel-BamHI
fragment into the overexpression cassette described
below. Briefly, the overexpression cassette comprised: (i)
a selection module for geneticin resistance, (ii) an integra-
tion module for stable integration of the cassette into the
AgLEU?2 locus, and finally (iii) an overexpression module
based on the AgGPD promoter and terminator sequences,
which have been reported to provide constitutive and
high expression levels [3]. The overexpression modules
were used to transform spores of the A. gossypii ATCC
10895 strain and positive clones were selected in media
containing geneticin. Additionally, positive clones were
verified for their leucine auxotrophy and analyzed by
Southern-blotting.

PRPP synthetase activity assay

A method previously described by Jensen et al. [27] was
used for the quantification of PRPP synthetase activity. We
measured the conversion of 32P-labelled ATP into 32P-
labelled PRPP according to the following reaction:

32P-ATP + ribose 5-P — 32P-PRPP + AMP

The reaction mix contained 50 mM potassium phosphate,
pH 7.5, 1 mM [y-32P] ATP (10 Ci/mmol), 50 mM trieth-
anolamine, 5 mM ribose 5-P, 5 mM MgCl,, 20 mM NaF,
15 mM phosphoenolpyruvate and 1 pmol/min of pyru-
vate kinase. We used 5-10 mg of total protein extract and
the reaction was incubated at 28°C, taking 10 pl aliquots
every 5 min over 1 hour. Samples were mixed with 5 ul of
0.33 M formic acid and immediately applied to a polyeth-
ylenimine-cellulose-coated plate (Sigma-Aldrich) for
thin-layer chromatography. Separation of radiolabeled
ATP and PRPP was carried out in 0.85 M potassium phos-
phate, pH 3.4. The radiolabeled spots corresponding to
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ATP and PRPP were cut and the associated radioactivity
was quantified by liquid scintillation counting methods.

Site-directed mutagenesis of AGR371C and AGL080C and
inhibition of PRPP synthetase

Residue substitutions in the AGR371C and AGL080C
ORFs were introduced by site-directed mutagenesis
through PCR techniques using the primers listed in the
Additional file 1. The inhibition assays were performed
with different concentrations of ADP in the PRPP syn-
thetase activity analyses. The inhibition rate was calcu-
lated as the percentage of specific activity in the presence
of ADP with reference to the absence of ADP.

Results

Cloning and sequence analysis of the AGR371C and
AGL080C genes from A. gossypii

We have previously shown that substrate availability is a
limiting factor for riboflavin overproduction in A. gossypii
and that increases in metabolic flux through the purine
pathway significantly enhance riboflavin production
[3,4,28]. PRPP is an important metabolite for purine bio-
synthesis because it is required in both the de novo and sal-
vage pathways. This prompted us to wonder whether
alterations in the PRPP intracellular pool might affect
riboflavin production in A. gossypii.

In the AGD database there are four annotated genes
encoding PRPP synthetase in A. gossypii that are syntenic
homologues of the PRS genes from S. cerevisiae. A protein
sequence alignment of A. gossypii and S. cerevisiae PRPP
synthetases revealed a high degree of similarity (see Addi-
tional file 2). Furthermore, AGR371C is an ortholog of
ScPRS2 and ScPRS4, suggesting that AGR371C is a com-
mon ancestor of both ScPRS2 and ScPRS4, which proba-
bly originated in a gene duplication event (Fig. 2). Thus,
in accordance with the PRPP synthetase interacting com-
plexes described in S. cerevisiae [15], we assumed that two
homologous heterodimers might exist in A. gossypii,
formed by Aer083cp-Agl080cp and Agr371cp-Adr314cp.

In order to study the specific contribution of each het-
erodimer to the overall PRPP synthetase activity and also
to the production of riboflavin, for our next experiments
we chose one member of each functional entity
(AGR371C and AGL080C). For simplicity, AGR371C and
AGLO080C are henceforth referred to as PRS2,4 and PRS3,
respectively, due to their homology with the S. cerevisiae
PRS genes.

We amplified by PCR and cloned two genomic regions
where PRS2,4 and PRS3 map and sequenced them. In
good agreement with the nucleotide sequence deposited
in the AGD database [12], PRS2,4 ORF comprised 957 bp
encoding a protein of 318 amino acids, and PRS3 ORF

http://www.biomedcentral.com/1472-6750/8/67
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Relationship between the PRS genes from A. gossypii
and S. cerevisiae. Phylogenetic tree of the PRS proteins
from A. gossypii and S. cerevisiae. The alignment of the protein
sequences was performed using the W-CLUSTAL program
included in the DNAStar package. In bold AGR371/C
(AgPRS2,4) and AGLO8OC (AgPRS3).

consisted of 963 bp and coded for a protein of 320 amino
acids. Both the Prs2,4 and Prs3 proteins contained most
of the residues identified as being essential for catalysis,
the maintenance of three-dimensional structure or pro-
tein-protein interactions in previously characterized PRPP
synthetases [21,29] (see Additional file 2 for details).

Analysis of the 5'-non coding regions of AgPRS2,4 and
AgPRS3 using the MatInspector program included in the
GenomatixSuite 3.1.1 software http://www.genom
atix.de/ unveiled several TATA boxes (not shown) and,
more importantly, one putative binding site for the tran-
scription activator Baslp in both the AgPRS2,4 and
AgPRS3 sequences (positions -38 and -197 from ATG,
respectively) (not shown). However, our previous work
demonstrated that the expression of AgPRS2,4 and
AgPRS3 is unaffected upon AgBAS1 deletion, suggesting
that the presence of only one binding site is not sufficient
to ensure transcriptional regulation by Bas1p [4].

AgPRS2,4 and AgPRS3 gene disruptions affects PRPP
synthetase activity and growth

In order to elucidate the precise contribution of AgPRS2,4
and AgPRS3 to the overall PRPP synthetase activity in A.
gossypii, we next disrupted both genes by inserting a dom-
inant marker into each ORF. We used a kanMX4 selection
module for geneticin resistance (G4187) to disrupt
AgPRS2,4 and an hygromycin resistance (Hyg") marker to
disrupt AgPRS3 (Fig. 3). The final disruption modules
comprised the G418 or Hyg selection cassettes flanked by
the AgPRS2,4 or AgPRS3 sequences, respectively, to enable
homologous recombination and genomic insertion [30]
(Fig. 3). With the disruption modules A. gossypii ATCC
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Gene disruption of AgPRS2,4 and AgPRS3. A) Left, schematic representation of the strategy followed to achieve the dis-
ruption of the AgPRS2,4 gene (AGR371C). Right, Southern blot analysis to confirm correct PRS2,4 disruption. Genomic DNA
was digested with Hindlll and a genomic Kpnl-Hindlll fragment was used as a radioactive probe: lane |, wild-type strain; lane 2,
heterokaryotic disruptant; lane 3, mutant Aprs2,4. B) Left, schematic representation of the strategy for AgPRS3 (AGL0O80C) gene
disruption. Right, Southern blot analysis to verify correct PRS3 disruption. Genomic DNA was digested with Sacl and a genomic
EcoRI fragment was used as a radioactive probe: lane |, wild-type strain; lane 2, mutant Aprs3. HIll, Hindlll; N, Ncol; HIl, Hincll;

EV, EcoRV; K, Kpnl; El, EcoRl; S, Sacl.

10895 spores were transformed by electroporation as pre-
viously described [25]. Homokaryotic G418" and Hyg"
transformants were obtained after sporulation and clonal
selection of the primary heterokaryotic transformants.
AgPRS2,4 and AgPRS3 disruption was confirmed by
Southern-blot analysis using specific radiolabeled probes

(Fig. 3).

None of the Aprs mutants showed any nutritional require-
ment, confirming that the intracellular PRPP pool in both
mutants was sufficient to support growth. Nevertheless,
while the mutant agAprs2,4 did not show any visible phe-
notype when grown on solid media, the agA4prs3 strain
revealed a clear growth alteration, exhibiting mycelium-
condensed and smaller colonies (Fig. 4). In addition,
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T T

Growth pattern of Aprs2,4 and Aprs3 mutant strains. Left, A. gossypii wild-type and prs mutant strains were grown in lig-
uid MA2 rich medium. At the indicated time-points, mycelia were harvested and weighed. Data are represented as an average
of mycelium dry-weight per volume of culture. Error bars represent SD. Right, colony photographs of the wild-type, Aprs2,4
and Aprs3 strains grown on solid MA2 rich medium during 48 hours.

agAprs3 displayed a significant reduction in the sporula-
tion ability, this being 10-fold lower than that of the wild-
type strain. We therefore analyzed liquid cultures of both
agAprs2,4 and agAprs3 and determined the mycelial mass
produced along growth. After four days of culture, the
agAprs3 strain displayed an initial growth delay with
respect to the wild-type, although after 24 hours of culture
its biomass was higher than that of the wild-type strain

(Fig. 4).

Next we wished to examine the growth alteration of
agAprs3 strain in greater detail by microscopic analysis.
Again, agAprs2,4 and wild-type strains were indistinguish-
able from each other, both of them showing an initial
monopolar hyphal growth and a later bipolar growth,
with branched hyphae (Fig. 5). Conversely, Aprs3 disrup-
tion caused a shortening on the hyphal length, and an
abundant early branching was observed (Fig. 5). This
higher branching index could explain the condensed myc-
elia of the agAprs3 strain observed on solid media.

PRPP synthetase activity was altered in both agAprs2,4 and
agAprs3 strains, but disruption of PRS3 resulted in a more
marked decrease in the overall enzymatic activity, which
in the agAprs3 strain represented only 14% of the PRPP

synthetase activity observed in the wild-type strain. Fur-
thermore, riboflavin production was also partially
impaired in the agAprs3 mutant (Table 1). Taken together,
these results suggest a major contribution of the PRS3 par-
alog to PRPP synthetase activity.

In order to obtain a Aprs2,4-Aprs3 double mutant, spores
of the Aprs2,4 strain were transformed with the Aprs3 dis-
ruption cassette described above. Selection of primary het-
erokaryotic clones was made in rich medium containing
both geneticin and hygromycin. However, after clonal
analysis of 200 homokaryotic strains derived from the
previous heterokaryotic clones we failed to find any
mutant strain showing resistance to both geneticin and
hygromycin, suggesting that the double disruption of
PRS2,4 and PRS3 may result in a synthetic lethal pheno-
type. To verify this hypothesis, we analyzed the initial het-
erokaryotic transformants (G418 and Hyg') by Southern-
blotting and confirmed the presence of both single dis-
ruptant Aprs2,4 nuclei and double mutant Aprs2,4-Aprs3
nuclei (not shown). However, none of the homokaryotic
transformants analyzed showed the double Aprs2,4-Aprs3
disruption. Additionally, the spores of the heterokaryotic
Aprs2,4-Aprs3/Aprs2,4 were isolated by micromanipula-
tion and analyzed individually; the same results described
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Aprs2,4 WT

Aprs3

Figure 5

Microscopic phenotype of A. gossypii wild-type, Aprs2,4 and Aprs3 strains. Micelia of the A. gossypii wild-type, Aprs2,4
and Aprs3 strains grown on liquid rich medium were visualized under optical microscopy at 12, 24 and 48 hours of culture. Bar
indicates | mm.

above were obtained. Apparently, the PRPP synthetase =~ AgPRS2,4 and AgPRS3 overexpression enhances riboflavin

activity provided by Aprs2,4 nuclei is sufficient to main-  production

tain an adequate pool of PRPP and to allow the survival of ~ In a recent paper we reported that PRS2,4 and PRS3

the heterokaryotic transformants. mRNA levels did not change during the trophic and pro-
ductive phases of A. gossypii growth. Furthermore, PRS2,4

Table I: PRPP synthetase activity and riboflavin production in the A. gossyppi strains used

Strain PRPP synthetase activity Riboflavin
(nmol PRPP mg-! min-!) (mglL)
Wild type (ATCC 10895) 10.0 28.0
Aprs2,4 (agr371c¢) 7.8 27.0
Aprs3 (agl080c) 1.4 20.7
GPD-PRS2,4 (AGR371C) 11.2 424
GPD-PRS3 (AGL080C) 17.0 404
prs2,4-1Q 12.2 48.6
prs3-1Q 17.9 51.6
Page 7 of 12
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and PRS3 show constitutive low expression levels, sug-
gesting a housekeeping function of these genes [4].

We therefore decided to strongly enhance the expression
of PRS2,4 and PRS3 and analyze the effect of their overex-
pression on riboflavin production. Accordingly, we
designed a stable overexpression cassette based on the
promoter and terminator sequences of A§GPD (see Mate-
rials and Methods for details) (Fig. 6). This cassette allows
stable genomic integration into the AgLEU2 locus and
selection for G418". PRS2,4 and PRS3 ORFs were PCR-
amplified as Ndel-BamHI fragments and were inserted
into the overexpression module. Following this, the final
constructs were used to transform spores of the A. gossypii
ATCC 10895 strain and heterokaryotic transformants
were selected in medium containing geneticin. After
sporulation and clonal selection, homokaryotic G418"

integration selection overexpression

http://www.biomedcentral.com/1472-6750/8/67

transformants were obtained and checked for their leu-
cine auxotrophy. Additionally, integration into the
AgLEU?2 locus of each overexpression cassette was con-
firmed by Southern-blotting (Fig. 6).

Transcriptional analysis of the GPD-PRS2,4 and GPD-
PRS3 strains by northern-blotting revealed that mRNA
levels of both genes were increased by 30-fold (Fig. 6).
However, the increase in PRPP synthetase activity did not
correlate with the transcriptional levels (see Table 1), sug-
gesting a regulatory mechanism of the enzymatic activity,
as described for other PRPP synthetases [16-18]. Never-
theless, when we quantified the riboflavin yield of the
strains overexpressing PRS2,4 and PRS3 we observed a sig-
nificant improvement in the riboflavin production of
both strains (Table 1).

Pm S S N B S Pm
AgLEU2 G418 GPmeGPDt m

Ps Ps

—0.95 Kb—

integration Kb 1 2 3
10—
5 -
1.5

Ps
14

0.5
GPD- GPD-

WT PRS2,4 WT  PRS3

Q . AgPRS2,4 AgPRS3

S Bl | rRNA 285 W e | RVAZ8S

Figure 6

Overexpression of A. gossypii PRS2,4 and PRS3 genes. Top-left, scheme of the modular cassette used for PRS2,4 and
PRS3 overexpression. The integration, selection and overexpression modules are indicated. Top-right, Southern blot analysis
to confirm correct integration of the overexpression cassettes into AgLEU2 locus. Genomic DNA of the wild-type (lane 1),
GPD-PRS2,4 (lane 2) and GPD-PRS3 (lane 3) strains was digested with Pstl and a genomic Pstl fragment was used as a radioactive
probe. Pm, Pmel; S, Sall; N, Ndel; B, BamH]; Ps, Pstl. Bottom, northern blot analysis of A. gossypii total RNA (25 Lg) obtained
from cultures of the wild-type, GPD-PRS2,4 and GPD-PRS3 strains grown in MA2 rich medium. rRNA 28S was used as a loading

control.
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Effect of enzymatic deregulation of AgPRS2,4 and AgPRS3
PRPP synthetases are subject to feed-back regulation by
ADP. Furthermore, the amino acids directly involved in
inhibitor binding have been elucidated in several PRPP
synthetases [21,29] and it has been reported that specific
subtitutions of the leucine 128 and histidine 192 residues
of human PRS1 induce allosteric deregulation and
enzyme superactivity [9]. In the A. gossypii Prs2,4 and Prs3
proteins, those residues are strictly conserved and corre-
spond to leucines 133 and 132; and histidines 196 and
195 in the Prs2,4 and Prs3 proteins respectively.

We therefore designed mutagenic primers (see Additional
file 1) to introduce two point mutations in both PRS2,4
and PRS3 genes. The amino acid substitutions carried out
were as follows: the leucines at positions 133 and 132 in
Prs2,4 and Prs3, respectively, were substituted by an iso-
leucine; and the histidines at positions 196 and 195 in
Prs2,4 and Prs3 proteins were changed to glutamine. As
previously mentioned, both transversions have been
reported to cause PRPP synthetase superactivity in
humans [9]. After we had amplified the mutant prs2,4 and
prs3 ORFs by mutagenic PCR, we cloned the mutant alle-
les (prs2,4-1Q and prs3-IQ) in the overexpression cassette
described above and followed the same strategy to inte-
grate them into the AgLEU2 locus. Correct genomic inte-
grations in homokaryotic transformants were verified by
Southern-blotting (not shown).

The functionality of the amino acid substitutions were
analyzed by PRPP synthetase enzymatic assays in the
prs2,4-1Q and prs3-IQ mutant strains, testing the inhibi-
tory effect of different concentrations of ADP. As shown in
figure 6, PRPP synthetase activity was strongly inhibited
by ADP in the GPD-PRS2,4 and GPD-PRS3 strains, while
the PRPP synthetase activity of the strains carrying the
mutant isoforms prs2,4-1Q and prs3-IQ was highly refrac-
tory to the inhibitory effect of ADP. Finally, we analyzed
the production of riboflavin in the prs2,4-IQ and prs3-1Q
strains to compare it with that obtained in the wild-type
and also in the strains overexpressing the wild-type
PRS2,4 and PRS3 genes. Both strains harboring the dereg-
ulated prs2,4-1Q and prs3-1Q attained fairly high produc-
tion levels, with an 80% greater riboflavin yield than the
wild-type strain (Fig. 7). However, riboflavin production
did not increase substantially in the prs2,4-IQ and prs3-1Q
strains with respect to the yield obtained after the overex-
pression of the wild-type alleles, suggesting that other reg-
ulatory mechanisms may affect the PRPP intracellular
pool and riboflavin production.

Discussion

Riboflavin is currently employed as an additive in human
foodstuffs and animal feeds. Indeed, the industrial pro-
duction of riboflavin exceeds 3000 tons/year, and the
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Effect of overexpression of A. gossypii PRS alleles on
PRPP synthetase activity and ADP inhibition. The
inhibitory effect of increasing concentrations of ADP was
determined using protein extracts from different strains of A.
gossypii: GPD-PRS2,4, GPD-PRS3, prs2,4-1Q and prs3-1Q. Results
are means of three independent experiments.

chemical production has now been replaced by biotech-
nological processes using the natural overproducer A. gos-

sypii [28].

Riboflavin biosynthesis relies on the purine pathway,
because GTP is the immediate precursor. Accordingly, it
seems reasonably that redirecting metabolic flux toward
purine biosynthesis might improve riboflavin production.
In fact, previous studies described that supplementation
with riboflavin precursors can enhance the production of
the vitamin in A. gossypii cultures [3,31]. PRPP is an essen-
tial metabolite in the de novo and salvage purine pathways
and it has been reported that a considerable fraction of the
intracellular pool of PRPP is consumed by the purine
pathways [7]. We therefore explored the effect of increas-
ing the activity of PRPP synthetase on riboflavin produc-
tion in A. gossypii.

AGL080C gene is a syntenic ortholog of PRS3 from S. cer-
evisiae and their gene products share 88% of the amino
acids. On the other hand, AGR371C shows a high degree
of similarity with both PRS2 and PRS4 from S. cerevisiae
and displays 80% of identity at protein level. Further-
more, AGR371C is flanked by the UBP9 and UBCG6 genes,
thus exhibiting a high level of synteny with regard to the
genomic locations of PRS2 and PRS4 in S. cerevisiae. This
redundancy between PRS genes and their chromosomal
synteny supports the idea that a genome duplication
event of ancestral yeast genome would have occurred to
originate the S. cerevisiae genome [32].
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The homology between PRS genes from A. gossypii and S.
cerevisiae together with our results concerning the
AgPRS2,4 and AgPRS3 disruptions indicate that two PRPP
synthetase interaction complexes may also exist in A. gos-
sypii. We found three possible phenotypes when AgPRS2,4
and AgPRS3 disruptions were combined: synthetic
lethality for the double mutant, a growth alteration and
an impairment in PRPP synthetase activity for the Aprs3
strain, and a slight reduction in total Prs activity that did
not elicit phenotypic alterations in the Aprs2,4 mutant.
Thus, similarly to what occurs in yeast it could be specu-
lated that in A. gossypii Prs2,4 and Prs3 function as two dif-
ferent PRPP synthetase units that interact with Prs5 and
Prs1, respectively, to yield physiologically specialized
enzymatic complexes. The different phenotypes obtained
with AgPRS2,4 and AgPRS3 disruptions can be explained
in terms of a different contribution of each isoform to the
specific PRPP synthetase functional unit.

Another important issue concerning AgPRS3 disruption is
that the Aprs3 strain displayed an abnormal highly
branched growth pattern. Previous work has described
that Prs gene products are able to interact with a number
of proteins and to affect different biological processes
and, in particular, cell integrity signaling through Rlm1.
As a consequence, perturbations in the expression of PRS
genes may result in many unexpected cellular events, such
as an abnormal increased chitin content and other cell
wall alterations [33-35]. It has also been described that the
mechanisms controlling cell polarity, and therefore
hyphal morphogenesis, are fairly homologous between S.
cerevisiae and A. gossypii [36]. It therefore seems reasona-
ble to posit that alterations in cell polarity and cell wall
morphogenesis might affect the branching pattern of the
A. gossypii hyphae.

As mentioned above, the altered branching pattern of the
Aprs3 strain could account for the condensed phenotype
of the colonies that finally resulted in a slightly higher
biomass. In contrast, the opposite effect has been reported
when either AgPRS2,4 or agprs2,4-1Q alleles are overex-
pressed in Arabidopsis thaliana and Nicotiana tabacum [37],
demonstrating that variations in the PRPP synthetase
activity may have pleiotropic effects. Perhaps the occur-
rence and interaction of fairly heterologous isoforms of
PRPP synthetases from A. gossypii together with endog-
enous isoforms of plant origin or other proteins in the
plant cell could provide an explanation for the effect on
biomass accumulation.

Our results demonstrate that the PRPP synthetases from
A. gossypii are inhibited by ADP. The abolishment of ADP
inhibition in A. gossypii and overexpression of PRS genes
result in: i) an increase in PRPP synthetase activity and ii)
improved riboflavin production, which was the main
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objective of the present work. However, unlike the overex-
pression of PRS3 alleles, the increase in the levels of either
PRS2,4 or prs2,4-IQ mRNA was not correlated with a
marked rise in PRPP synthetase activity, confirming that
PRS2,4 and PRS3 contribute unequally to total Prs activ-
ity. However, an improvement of 80% in the production
of riboflavin was obtained in the PRS-engineered strains,
which is clearly of significance as regards biotechnological
endeavors. Nonetheless, we failed to find a significant
enhancement in the production of the vitamin when the
prs-IQ alleles were expressed. This may be explained in
terms of the existence of a strict transcriptional and meta-
bolic regulation of the purine pathway downstream from
the synthesis of PRPP, reported previously in A. gossypii
and S. cerevisiae [3,4,38-42]. In addition, it is also to be
expected that the intracellular concentration of ADP in the
PRS-overexpressing strains would be insufficient to cause
inhibition and this would therefore account for the anal-
ogous behaviour of the overexpressing mutant strains as
compared with the wild-type overexpressing strains.

Conclusion

In this study we have demonstrated that partially increas-
ing enzymatic PRPP synthetase activity results directly in
enhanced riboflavin overproduction in A. gossypii. We
have engineered A. gossypii strains that show a significant
improvement in vitamin production. In terms of indus-
trial production, a 80% increase in the fermentation proc-
ess represents an extremely relevant advance. Further
manipulations might be performed to entirely deregulate
the purine pathway and to increase GTP availability and
hence riboflavin production.

We also show that different mutimeric interacting PRPP
synthetase complexes may exist in A. gossypii, as described
for the S. cerevisiae enzymes. Additionally, we prove that
modifying PRPP synthetase activity in A. gossypii affects its
growth pattern, suggesting that homeostasis of the PRPP
intracellular pool must be important for the cell integrity
and mycelial growth of A. gossypii.
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