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Abstract
Background: Establishing a suitable level of exogenous gene expression in mammalian cells in
general, and embryonic stem (ES) cells in particular, is an important aspect of understanding
pathways of cell differentiation, signal transduction and cell physiology. Despite its importance, this
process remains challenging because of the poor correlation between the presence of introduced
exogenous DNA and its transcription. Consequently, many transfected cells must be screened to
identify those with an appropriate level of expression. To improve the screening process, we
investigated the utility of the human interleukin 12 (IL-12) p40 cDNA as a reporter gene for studies
of mammalian gene expression and for high-throughput screening of engineered mouse embryonic
stem cells.

Results: A series of expression plasmids were used to study the utility of IL-12 p40 as an accurate
reporter of gene activity. These studies included a characterization of the IL-12 p40 expression
system in terms of: (i) a time course of IL-12 p40 accumulation in the medium of transfected cells;
(ii) the dose-response relationship between the input DNA and IL-12 p40 mRNA levels and IL-12
p40 protein secretion; (iii) the utility of IL-12 p40 as a reporter gene for analyzing the activity of cis-
acting genetic elements; (iv) expression of the IL-12 p40 reporter protein driven by an IRES element
in a bicistronic mRNA; (v) utility of IL-12 p40 as a reporter gene in a high-throughput screening
strategy to identify successful transformed mouse embryonic stem cells; (vi) demonstration of
pluripotency of IL-12 p40 expressing ES cells in vitro and in vivo; and (vii) germline transmission of
the IL-12 p40 reporter gene.

Conclusion: IL-12 p40 showed several advantages as a reporter gene in terms of sensitivity and
ease of the detection procedure. The IL-12 p40 assay was rapid and simple, in as much as the
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reporter protein secreted from the transfected cells was accurately measured by ELISA using a
small aliquot of the culture medium. Remarkably, expression of Il-12 p40 does not affect the
pluripotency of mouse ES cells. To our knowledge, human IL-12 p40 is the first secreted reporter
protein suitable for high-throughput screening of mouse ES cells. In comparison to other secreted
reporters, such as the widely used alkaline phosphatase (SEAP) reporter, the IL-12 p40 reporter
system offers other real advantages.

Background
There are many different reasons for expressing exogenous
DNA sequences in mammalian cells. These reasons range
from the necessity of gene therapy clinical trials or func-
tional genomics analysis to simply the desire to analyze
cis-acting genetic regulatory elements. In the latter
instances, the introduced DNA constructs are usually
referred to as reporter constructs because the genes
expressed from these constructs report the presence of the
introduced sequences. Regulatory genetic sequences of
interest are combined with a reporter gene of choice to
generate constructs in which the genetic elements control
reporter expression. In most cases, the expression level of
a reporter gene will correlate with the transcriptional
activity of the regulatory genetic sequence of interest [1].
In addition to this largely predictable effect, there are also
important, poorly understood, stochastic effects on the
level of reporter expression.

In recent years, the simple notion of a reporter of
sequence function has greatly expanded. Now, reporter
genes are used to visually identify transformed cells, calcu-
late the efficiency of gene delivery systems, follow the
intracellular fate of a gene product, monitor recombina-
tion events [2], measure signal transduction [3], detect the
interaction of two proteins in the two-hybrid system [4],
or for noninvasive in vivo imaging of gene expression.
Examples of the latter are positron emission tomography
[5], magnetic resonance [6] and optical imaging systems
[7].

Despite these diverse uses of reporters, a steady and high
level of gene expression is frequently the common goal
with all uses. To achieve this, reporters have been used
whose expression directly reflects the expression level of
the gene of interest. The coexpression of heterologous
gene products in a single vector is usually accomplished
with either two independent promoters or an internal
ribosome entry site (IRES) [8] sequences placed between
two cDNAs to transcribe a bicistronic mRNA from a single
promoter. However, the use of heterologous promoters
can cause promoter interference, i.e., transcription from
one promoter suppresses transcription from one another
[9]. Furthermore, a correlation between reporter expres-
sion and gene-of-interest expression is frequently lacking
in these experiments. The use of IRES sequence in bicis-

tronic constructs eliminates promoter interference prob-
lems and directly couples the expression of a reporter gene
to the expression of the gene of interest [10]. In most
cases, the protein expression of the IRES-dependent gene
ranges between 20 and 50% of the protein expression of
the 5' gene in the bicistronic message [11]. The arrange-
ment and composition of reading frames can occasionally
influence the strength of IRES-dependent translation [12].

Depending upon the application, an ideal reporter should
have the following features: (i) the reporter protein
should be absent from the host or otherwise easily distin-
guishable from endogenous proteins; (ii) it should be
inert and not affect the physiology of the cell; and (iii)
simple, sensitive, and inexpensive methodologies meth-
ods should be available to detect and quantify reporter
expression. Currently, two types of reporter genes are
commercially available and are classified as intracellular
or extracellular reporter genes. Intracellular reporter genes
include: Chloramphenicol acethyltransferase (CAT) [13],
β-galactosidase [14], aequorin [15], green fluorescent pro-
tein (GFP) [16], firefly [17] and bacterial luciferase [18]
and glucuronidase [19]. Extracellular reporter gene prod-
ucts are secreted into the medium culture. These include:
human growth hormone (HGH) [20] and secreted alka-
line phosphatase (SEAP) [21].

In this paper, we describe the use of the human inter-
leukin-12 (IL-12) p40 as a secreted reporter protein. IL-12
is a heterodimeric cytokine of 70 kDa composed of two
chains, a heavy chain of 40 kDa (p40) and a light chain of
35 kDa (p35) [22]. Intact IL-12 is necessary for the T cell-
independent induction of interferon (IFN-γ)-gamma, for
the development of a Th1 response, and for the activation
of differentiated T lymphocytes of both CD4+ and CD8+
phenotypes [23]. The p40 subunit is thought to be prima-
rily involved in receptor binding while p35 is critical for
signal transduction [24]. IL-12 p40 by itself does not have
any IL-12 bioactivity; it is expressed only by macrophage
and dendritic cells in response to antigenic stimulation,
and its expression is easily detectable by ELISA. Because of
this assembly of nearly ideal features, we explored the
potential use of the IL-12 p40 as reporter gene to measure
the activity of cis-genetic elements, and in high-through-
put screenings of engineered mammalian cells. Our
results show that the Il-12 p40 is a very useful reporter
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gene. The protein assay is easy, inexpensive, and it is
adaptable to applications that require sensitive quantita-
tion or simply 'yes' or 'no' determination of gene expres-
sion. In particular, the Il-12 p40 has several features that
make it a particularly attractive reporter gene when com-
pared to the commonly used SEAP.

Results
Time course of IL-12 p40 accumulation
BHK-21 cell were transfected with PGK-p40 plasmid (see
Methods), and the time course for the expression of IL-12
p40 was determined (Figure 1). IL-12 p40 was first
detected in the medium of transfected cells 12 hours after
transfection. The maximum IL-12 p40 concentration was
observed 72 hours after transfection.

Measurement of IL-12 p40 secreted protein and mRNA 
levels
105 BHK-21 cells were transfected with different amounts
of PGK-p40 plasmid. On the basis of the result of the time
course analysis (Figure 1), media were collected after 18
hours and assayed by ELISA. At this time the cells were
harvested for the preparation of the cytoplasmic RNA. Fig-
ure 2a shows the relationship between IL-12 p40 concen-
tration in the medium and the amount of PGK-p40 used
for transfection of BHK-21 cells. The amount of IL-12 p40
secreted after transfection increased with the amount of
the plasmid transfected up to 1 μg DNA when it reached a
plateau.

To correlate the p40 levels detected by ELISA with tran-
scription levels, QRT-PCR was performed on RNA
extracted from the transfected cells. The number of IL-12
p40 transcripts were roughly proportional to the amount
of transfected PGK-p40 plasmid (figure 2b). These results
show that the amount of IL-12 p40 secreted into the
medium is directly proportional to the amount of the
mRNA present in the cells.

Evaluation of relative promoter strength using EGFP and 
IL-12 p40 as reporter genes
The functional activity of the PGK and CMV promoters
were compared by transfecting CMV-p40 and PGK-p40
constructs into BHK-21 and COS-7 cells. To measure the
transfection efficiencies and compare extracellular IL-12
p40 concentration to the intracellular EGFP reporter in
these experiments, the CMV-p40 and PGK-p40 constructs
were cotransfected with CMV-EGFP and PGK-EGFP,
respectively. EGFP and IL-12 p40 activities were measured
after cotransfection of equal amounts of CMV-EGFP and
CMV-p40, or PGK-EGFP and PGK-p40. The IL-12 p40
expression was assayed by ELISA sixteen hours after trans-
fection. Data obtained using 10 μl of media are shown
(figure 3). Transfected cells were examined for EGFP
expression using the FACScan flow cytometer. The EGFP
mean fluorescence intensity (MFI) was determined for
each experiment and the results compared to the amounts
of the IL-12 p40 secreted into the medium. Figure 3 shows
that the difference between the strengths of the CMV and
PGK promoters measured using EGFP and IL-12 p40 were
similar. IL-12 p40 was not detected in untransfected con-
trol cultures.

IL-12 p40 as a reporter gene for bicistronic plasmids
The IRES-based bicistronic vectors are powerful tools in
molecular and cellular biology, because the expression of
a reporter gene from the bicistronic message correlates
well with the expression of the second gene [10]. We
examined the expression of the IL-12 p40 reporter protein
driven by the encephalomyocarditis (EMCV) IRES ele-
ment in bicistronic mRNAs. The importance of this anal-
ysis is dictated by the observation that the expression
levels of various cytokines and reporter genes in the sec-
ond cistron of bicistronic mRNAs is very low. This obser-
vation is interpreted in terms of negative effect that some
sequences can exert on IRES-mediated translation, regard-
less of the nature and sequence of the IRES elements [12].
We analyzed the expression of the IL-12 p40 in the second
cistron of bicistronic mRNAs whose transcription is
driven by different promoters. The PGK and Rosa26 pro-
moters were cloned into pΔEnh-IRES-p40 to generate
pPGK-IRES-p40 and pRosa-IRES-p40, respectively. To
measure the transfection efficiency of the vectors and
compare the IL-12 p40 expression to a well-established
reporter protein, the EGFP coding sequence was inserted

Time course of IL-12 p40 activity changes in transfected cellsFigure 1
Time course of IL-12 p40 activity changes in trans-
fected cells. COS-7 and BHK-21 cell lines were transfetced 
with 100 ng each of PGK-p40 as described in MATERIALS 
AND METHODS. Supernatant media was collected 6, 9, 12, 
24, 48 and 72 hours after transfecion and the IL-12 expres-
sion was measured for each time point by ELISA. Values of 
IL-12 p40 expression shown are the average of three plates 
transfected in parallel.
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Relationship between the IL-12 p40 activity and the amount of the transfected PGK-p40Figure 2
Relationship between the IL-12 p40 activity and the amount of the transfected PGK-p40. a) BHK-21 cells plated in 
24-well plates at the density of 105/well were transfected with the indicated amount of PGK-p40 plasmid. b) initial copy 
number of cDNA transcribed (+RT) from cell samples transfected with various amounts of the p40-encoding plasmid. The ini-
tial copy numbers were determined by QPCR as described in the methods section by using a FAM-labeled primer set specific 
for IL-12b (Certified Lux™ primer set 310H-01, Invitrogen). Samples incubated in the absence of RT (-RT) produced no signif-
icant amplification and were omitted from the calculations. The Ct (dRn) values of the samples were plotted against a standard 
curve of known copy numbers of p40-encoding plasmid run in parallel (RSq = 0.982) to obtain the initial copy number values.

0 25 50 75 100 1000 1500 2000
0

2.0x104

4.0x104

6.0x104

2x106

IL
-1

2 
p4

0 
(p

g/
m

l)

ng plasmid DNA

0 500 1000 1500 2000
0

1x102

105

106

107

in
iti

al
 c

op
y 

nu
m

be
r

ng plasmid DNA

a

b



BMC Biotechnology 2008, 8:52 http://www.biomedcentral.com/1472-6750/8/52
upstream to the IRES element of the pCMV-IRES-p40,
pPGK-IRES-p40 and pRosa-IRES-p40, and the resulting
plasmids were named pCMV-EGFP-IRES-p40 pPGK-
EGFP-IRES-p40 and pRosa-EGFP-IRES-p40 (figure 4). The
first cistron, encoding EGFP, will be translated by a cap-
dependent mechanism, whereas the second cistron
encoding IL-12 p40 will require translation by IRES. The
above constructs were transfected into COS-7 cells, and
EGFP and IL-12 p40 expression measured. IL-12 p40 lev-
els were normalized for transfection efficiency based on
percentage of EGFP positive cells. IRES-mediated transla-
tion of extracellular IL-12 p40 was proportional to the
EGFP mean fluorescence intensity (EGFP MFI) of the
COS-7 cells transfected with PGK-EGFP-IRES-p40 and
pRosa-EGFP-IRES-p40 (figure 4). This is consistent with
the concept that IL-12 p40 expression is proportional to
the steady-state level of the bicistronic mRNA. IL-12 p40
expression from pCMV-EGFP-IRES-p40 was detectable
but very low compared to the expression from pPGK-
EGFP-IRES-p40 and pRosa-EGFP-IRES-p40. This is an
unexpected result given the relatively high level of EGFP

MFI from pCMV-EGFP-IRES-p40, and the identical EGFP-
IRES-p40 structure in all three plasmids. Because the plas-
mids differ only in their resident promoters, we would
expect a similar rate of EGFP to IRES-dependent IL-12 p40
translation in all three plasmids. This unexpected low IL-
12 p40 expression from COS-7 cells transfected with
CMV-EGFP-IRES-p40 indicates that the CMV promoter
likely exerts a negative effect on IRES-mediated transla-
tion. To our knowledge, this is the first evidence of inhib-
itory activity of a promoter element on IRES-mediated
translation.

Use of IL-12 p40 as a reporter gene in a high-throughput 
screening strategy to identify successful transformed cells
The ease of accurately measuring IL-12 p40 secreted from
transfected ES cells in culture prompted us to use the IL-
12 p40 to develop a high-throughput screening strategy to
identify successfully modified mouse embryonic stem
(ES) cells. We chose to use the IL-12 p40 as a reporter gene
to rapidly identify transformed mouse embryonic stem
cells expressing the reverse tetracycline controlled transac-

Analysis of the CMV and PGK promoters in BHK-21, and COS-7 cellsFigure 3
Analysis of the CMV and PGK promoters in BHK-21, and COS-7 cells. a) Structures of the CMV-p40, PGK-p40, 
CMV-EGFP, and PGK-EGFP constructs. b) Transient EGFP and Il-12 p40 expression in transfected SHK and COS-7. EGFP 
mean fluorescence intensity (MFI) was measured by flow flow cytometry, and IL-12 p40 expression was assayed by ELISA. Val-
ues of EGFP and IL-12 p40 expression shown are the average of three plates transfected in parallel.
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tivator (rtTA) [25]. W9.5 mouse embryonic stem cells
were electroporated with PGK-rtTA-IRES-p40 and PGK-
puromycin-resistance constructs. After puromycin selec-
tion for 8–10 days, fifty clones were transferred into indi-
vidual wells of 48-well plates. After 4 days, the IL-12 p40
concentration in the medium of transfected cells was
assayed by ELISA using 100 μl of the culture medium from
23 wells containing similar cell densities. All samples were
run in duplicate. ELISA assay showed relatively high IL-12

p40 expression in five puromycin-resistant clones (22%).
Out of 23 clones, 10 (43%) contained rtTA sequence,
determined by PCR assay (figure 5). Therefore, 50% of
rtTA-containing clones expressed IL-12 p40. Thus, the
ELISA procedure nicely identified those expressing cells
out of those electroporated with PGK-rtTA-IRES-p40.

Comparison of EGFP and IL-12 expression in the COS-7 cells transfected with pCMV-EGFP-IRES-p40, pPGK-EGFP-IRES-p40, and pRosa-EGFP-IRES-p40Figure 4
Comparison of EGFP and IL-12 expression in the COS-7 cells transfected with pCMV-EGFP-IRES-p40, pPGK-
EGFP-IRES-p40, and pRosa-EGFP-IRES-p40. a) schematic diagram of pCMV-EGFP-IRES-p40, pPGK-EGFP-IRES-p40, and 
pRosa-EGFP-IRES-p40 plasmids. B) The expression of EGFP and IL-12-p40 from the indicated plasmid were determined. EGFP 
mean fluorescence intensity (MFI) was measured by flow cytometry, and IL-12 p40 expression was assayed by ELISA. Values of 
EGFP and IL-12 p40 expression shown are the average of three plates transfected in parallel.
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Analysis of the pluripotency of mouse ES cells expressing 
the human IL-12 p40
We investigated whether IL-12 p40 expression compro-
mises the pluripotent properties of the ES cells. One of the
clones expressing IL-12 p40 was cultured in suspension in
EB medium (see Methods). These ES cells expressing IL-12
p40 are able to form embryoid bodies (EBs) in 3–5 days
(figure 6). Following attachment and growth of these EBs
in N2 medium for 5–7 days, cells with neuronal morphol-
ogy began to appear within less than 2 days. After 5 days,
most of the neurons were tubulin-positive, indicating that
the expression of the IL-12 p40 does not interfere with the
ability of ES cell to differentiate in vitro (figure 6).

To determine the in vivo developmental potential of p40-
expressing ES cells, we used one high-expressing clone
(pgk164-p40-19 also expressing a bicistronic mRNA
encoding a version of the mouse CIITA gene in addition
to p40) to generate two female and four male chimeric
mice. This ES cell clone expressed a p40 protein at a level
comparable to p40-expressing ES clone 9 in figure 5 (data
not shown). Four chimeras are shown in figure 7. From
the extensive amount of agouti fur in these mice, we esti-
mated their overall ES cell contribution to be greater than
80%. This p40-expressing ES clone likely contributes to
the developmental of all tissues of the mouse to a similar
level (80%) as seen in the fur. Contribution to the germ
lineage of one of the chimeras was confirmed by demon-
strating the transmission of the CIITA/p40 bicistronic
construct to his offspring (see Additional File 1).

Teratomas were generated from p40-expressing ES cells to
further demonstrate their pluripotency. Teratomas were
successfully produced from all lines tested (6 lines total, 3
of which expressed bicistronic rtTA/p40 mRNA and p40
protein in W9.5 ES cells, and 3 of which expressed bicis-
tronic CIITA/p40 mRNA and p40 protein in R1 ES cells).
Tissues derived from all three primary cell lineages (endo-
, meso- and ectoderm) were seen in sections of teratomas
from each of the 6 lines examined (figure 8). We conclude
from the aforementioned analyses that p40-expressing ES
cells are developmentally pluripotent, and that the expres-
sion of p40 protein has no adverse effect on the inherent
pluripotency of mouse ES cells.

Discussion
Standard methods to generate stable cell lines requires
transfecting a host cell line with two expression cassettes:
one expressing the gene of interest and the other express-
ing the antibiotic resistance marker, which can be placed
together on the same vector or on two distinct vectors. The
level of gene expression using such screening strategies
cannot be predicted. Clones expressing the gene of inter-
est at high levels can be identified if the cells are trans-
fected with a bicistronic construct containing the gene of

interest and a reporter gene encoding for a visual or
secreted reporter protein. We used the IL-12 p40 reporter
gene in gene delivery systems as a rapid and cost-effective
high-throughput screening strategy to identify success-
fully transformed cells (figure 5). The Il-12 p40 secreted
from the transfected cells can be assayed by ELISA using a
small aliquot of the culture medium. As little as 3.9 pg/ml
of IL-12 p40 can be detected [26]. Since there is no need
to prepare cell lysate to measure IL-12 p40 expression, the
transfected cells can be utilized for further investigations.
The absence of a cell lysis step decreases assay variability.
We found that IL-12 p40 has several features that make it
a particularly attractive reporter gene when compared to
another secreted protein which is being used widely, that
is secreted alkaline phosphatase (SEAP): i) the IL-12 is
produced by macrophages and dendritic cells only in
response to antigenic stimulation. The restricted nature of
expression of the IL-12 permits the use of the p40 as a
reporter protein in most mammalian cells. In contrast, the
SEAP is not appropriate for cells derived from testes, cer-
vix, and lung, as these have low levels of placental-type
alkaline phospatase [27]; ii) the cost of the Il-12 p40
ELISA kit is 3–5 times less than the SEAP assay kit; iii)
high-throughput screening strategies based on the use of
the IL-12 p40 as reporter gene do not require special
equipments, such as luminometer or spectrophotometer.
Interpretation of the IL-12 p40 ELISA assay can be simple
and straightforward; comparison of the expression levels
among different clones can be made by visual inspection,
based on the color developed in the positive wells of the
microplates during the last two steps of the assay; iv)
expression of the human IL-12 p40 does not compromise
the developmental potential of mouse ES cells.

Recently, two secreted reporter proteins have been
described: secreted GFP (secGFP) [28] and Gaussia luci-
ferase (hGLuc) [29]. However, lack of information does
not allow us to compare these novel reporters with IL-12
p40. secGFP has been tested in plants but not in mamma-
lian cells, and hGLuc expression has not been analyzed in
bicistronic mRNAs. The latter point is crucial when a
reporter gene is used to indirectly measure the expression
of a gene of interest. IRES-driven translation efficiency of
the second cistron in bicistronic mRNAs is influenced by
the composition of both reading frames [12]. We there-
fore analyzed the IRES-dependent IL-12 p40 expression in
bicistronic mRNAs carrying three different upstream cis-
trons: EGFP (figure 4), rtTA (figure 5) and dominant neg-
ative CIITA (data not shown). In all cases, the IL-12 p40
expression was efficient and independent of the composi-
tion of the first cistron.

IL-12 p40 has advantages over the chloramphenicol
acetyltransferase (CAT) [30], which is one of the most fre-
quently used reporter proteins. Recently, the common
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radioactive CAT assay has been replaced by an ELISA assay
[31]. As CAT is not a secreted protein, preparation of cell
lysate is needed before measuring the CAT protein by
ELISA. Furthermore, the sensitivity of the CAT ELISA is
approximately 50 pg/ml [32] that is 15-fold less sensitive
than IL-12 p40. Furthermore, IL-12 p40 offers a distinct
advantage over the most widely used screening strategies
that rely on the use of bicistronic vectors carrying a selec-

tion marker (e.g. neoR) after the IRES element. This type
of bicistronic vectors can become silent under non-selec-
tive conditions. Although cell clones with homogenous
transgene expression can be kept under selective condi-
tions over a long period, this desirable phenotype can be
progressively lost upon withdrawal of selective pressure
[33].

Example of the IL-12 based screeningFigure 5
Example of the IL-12 based screening. ES cells successfully transfected with a bicistronic construct expressing IL-12 40, 
secrete IL-12 p40 into the culture medium if the espression of this reporter protein is not repressed. ES colonies expressing 
IL-12 p40 are identified by ELISA using a small aliquot of culture medium, and subsequently tested by PCR. All standards, sam-
ples and controls were run in duplicate and mean adsorbance values calculated. Standard ranges between 2000–62 pg/ml; c = 
untransfected; b = blank.
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In vitro differentiation of mouse ES cells expressing IL-12 p40. Top. embryoid bodies derived from mouse embryonic stem cells overexpressing IL-12 p40Figure 6
In vitro differentiation of mouse ES cells expressing IL-12 p40. Top. embryoid bodies derived from mouse 
embryonic stem cells overexpressing IL-12 p40. Bottom. Neuronal differentiation of mouse W9.5 ES cells overexpressing 
IL-12 p40. a) Phase contrast image of an embryoid body differentiating into a defined neurona lineage. b) DAPI counterstaining. 
c) neuron specific class III β-tubulin. d) Overlay.
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Conclusion
IL-12 p40 is a sensitive reporter gene to measure molecu-
lar genetic events in most of the eukaryotic cell types. The
protein assay is adaptable to applications that require sen-
sitive quantification or simply 'yes' or 'no' determination
of gene expression. Like most commercially available
reporter technologies, IL-12 p40 is not versatile enough to
be considered an "all purpose" reporter gene. For
instance, like luciferase and SEAP, Il-12 p40 cannot be
used for fluorescence-activated cell sorting, or in vivo
imaging gene expression analysis. However, the IL-12 p40
reporter gene can be used as a rapid and cost-effective
strategy in high-throughput screening to identify success-
ful transformed cells. Our study shows that Il-12 p40-
based screening of transfected mouse ES cells offers
improvement in cost, throughput, cell culture effort (fig-
ure 9). High throughput screening of mouse ES cells can

be performed in any laboratory without the use of expen-
sive automation systems.

Methods
Cell cultures and transfections
The BHK-21 hamster cell line (ATCC CCl-10) and the
COS-7 cell line (ATCC CRL-1651) were cultured with
Dulbecco's modified eagle medium (DMEM) supple-
mented with 10% FCS, 100 μg Streptomycin/ml, 100 U
Penicillin/ml (all reagents from Chemicon/Millipore).
W9.5 mouse embryonic stem (ES) cells were grown on γ-
irradiated embryonic fibroblast feeder cells in DMEM sup-
plemented with 15% fetal calf serum, 100 μg Streptomy-
cin/ml, 100 U Penicillin/ml, and 100 U LIF (Chemicon/
Millipore). Cultures were maintained in a humidified
chamber in a 5% CO2/air mixture at 37°C. DNA transfec-
tion into BHK-21 and COS-7 cells were carried out by
lipofectamine 2000 (Invitrogen). For promoter strength
analysis (Figure 1) cells in exponential growth were
seeded (7.5 × 104) into 24-well plates the day before trans-
fection. Cells were cotransfected with equal amount (25
ng) of pEGFP-N1 and pPGK-p40, or with pPGK-EGFP
together with pPGK-p40. The procedure used for the time
course of IL-12 p40 accumulation analysis (figure 1) and
transfections with bicistronic constructs was similar to
that described above, and 10 ng of pPGK-p40 and 150 ng
of pPGK-EGFP-IRES-p40, pRosa-EGFP-IRES-p40 plasmid
per well were used. All transient transfections were carried
out three times. EGFP expression was analyzed using the
FACScan flow cytometer and CellQuest software (BD;
Mountain View; California); for each sample, 10,000
events were acquired. Non-transfected BHK-21 and COS-
7 cells were used as negative controls whereas cells trans-
fected with EGFP plasmid served as positive controls.

For electroporation in ES cells, 5 × 106 cells in PBS buffer
were transfected with 20 μg linearized pPGK-rtTA-IRES-
p40 (into W9.5 ES cells) or 20 μg linearized pPGK-CIITA-
IRES-p40 (into R1 ES cells) plus 2 μg linearized pPGK-
puro (gift from Dr. Deborah Chapman) constructs using
the BioRad Gene Pulser II (200 V, 500 μF). Puromycin
resistant clones were picked after 8–10 days of puromycin
(1 μg/ml) selection and propagated using the same
medium.

Isolation of the human IL-12 p40 cDNAs
IL-12 p40 cDNA was isolated from a human spleen cDNA
library by nested PCR using the following primers: p40-1
(ctgtttcagggccattggactctccgtcct) and p40-2 (atcttccacttttc-
ctccaaattttcatc) for the first PCR, and p40-3 (ttatctagatccac-
catgtgtcaccagcagttggtcatctcttgg) and p40-4
(atcgcggccgaataactgcagggcacagatgcccattcgctc) for the sec-
ond PCR. PCR reactions were subjected to 25 cycles at
98°C for 30 s, 55°C for 30 s, and 72°C for 20 s, followed

Photographs of chimeric mice generated from the same p40-expressing ES clone (clone pgk164-p40-19)Figure 7
Photographs of chimeric mice generated from the 
same p40-expressing ES clone (clone pgk164-p40-19). 
The mice were two months of age at the time of the photo-
graph.
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by a 10 min extension at 72°C using the Invitrogen Taq
DNA polymerase.

The PCR product was purified by electrophoresis in an
agarose gel and ligated into pCR2.1 TA cloning vector
(Invitrogen, Carlsbad, CA) and subsequently transformed
into One Shot Top10F' competent cells according to the
procedures provided with the TA cloning kit. Cloned frag-
ments were sequenced using M13 forward and M13
reverse primers to verify the integrity of the Il-12 p40
sequence. One of the plasmids, pCRp40-3 was chosen to
generate the following constructs. The IL-12 p40 cDNA
was excised from pCRp40-3 by digestion with SpeI and
NotI, and inserted into the XbaI and Not I sites of the
pIRES vector (Clontech) to generate pCMV-IRES-p40
plasmid. The CMV enhancer-promoter was deleted by
digestion with BglII and Nhe I, followed by fill-in and re-
circularization by ligation, and the resulting construct was
designated ΔEnh-IRESp40. This plasmid was the founder

for the mono- and bicistronic plasmids described below.
Our plasmid names reflect the order of the mammalian
cell promoter and reporter genes.

pRosa-EGFP-IRES-p40
The mouse Rosa26 promoter was excised from PBII-Rosa-
M2/HGHpA construct (gift from Dr. Prabir Ray) with
BamHI and ClaI, blunted with Klenow polymerase and
ligated into the ΔEnh-IRESp40 vector that was linearized
with NheI followed by blunting (pRosa-IRES-p40 vector).
The EGFP coding sequence was excised from the pCR-
EGFP plasmid (D'Aiuto L., unpublished) by EcoRI diges-
tion, blunted and cloned into pRosa-IRES-p40 vector
which was linearized with Mlu I and blunted. The result-
ing vector was named pRosa-EGFP-IRES-p40.

pPGK-EGFP-IRES-p40
This construct was generated similarly to ROSA-EGFP-
IRES-p40. The 520 bp EcoRI-TaqI mouse Pgk-1 promoter

Histologic sections of teratomas resulting from in vivo differentiation of mouse ES lines expressing IL-12 p40Figure 8
Histologic sections of teratomas resulting from in vivo differentiation of mouse ES lines expressing IL-12 p40. 
Tissues from all three primary cell lineages (endo-, meso-, and ectoderm) were formed in individual teratomas. a-c. Sections 
from a single teratoma derived from an R1 cell line expressing a high level of IL-12 p40 from pPGK-cIITA-IRES-p40. d-e. Sec-
tions from a single teratoma derived from a W9.5 cell line expressing a high level of IL-12 p40 from pPGK-rtTA-IRES-p40. a, d. 
ciliated epithelium of endodermal origin. b, e. muscle of mesodermal origin. c, f. neuroectoderm.
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was PCR amplified from mouse genomic DNA, cloned
into EcoRI-PstI sites of pBluescript. Pgk-1 promoter was
excised from resulting construct with EcoRI and BamHI
and blunted.

pPGK-M2-IRES-p40
The rtTA-M2 gene was excised from PBII-Rosa-M2/
HGHpA construct (gift from Dr. Prabir Ray) by digestion
with Bam HI and Cla I. The resulting fragment was
blunted and ligated into pPGK-IRES-p40 linearized with
BamHI and blunted.

pPGK-CIITA-IRES-p40
A cDNA encoding the human CIITA gene was ligated into
pPGK-IRES-p40.

pCMV-p40 and pPGK-p40
These plasmids were derived from pCMV-EGFP-IRES-p40
and pPGK-EGFP-IRES-p40 by removing the IRES sequec-
nce and p40 cDNA through NheI-XmaI and AvaI restric-
tion digestions, respectively.

pPGK-EGFP
The PGK promoter restricted by EcoRI and BamHI sites
was cloned into pEGFP-N1 plasmid.

QRT-PCR
RNA was extracted from BHK-21 cells transfected with
PGK-p40 plasmid using an RNeasy kit (Qiagen) and
cDNA first strand synthesis wascarried out using
enhanced AMV reverse transcriptase (eAMV RT, Sigma)
and oligo-dT priming according to manufacturer's recom-
mendations. QPCR of samples that were either incubated
with or without eAMV RT were quantified using a Strata-
gene MX3000 QPCR machine. Twenty-five microliter PCR
reactions were performed using a FAM-labeled D-Luxtm
primer set specific for human p40 transcript (Invitrogen)
run in Strategene 2-step QPCR master mix with ROX ref-
erence dye and using 50 cycles (melt 95°C, 3 s; anneal
60°C, 10 s; extend 72°C, 30 s). To quantify transcript lev-
els, a standard curve was run in parallel reactions and
employed a serial dilution set of p40 encoding template
DNAs.

ELISA
Il-12 p40 secretion from electroporated BHK-21, COS-7
and ES cells was detected by IL-12 p40 ELISA kit (Bioleg-
end).

Neuronal differentiation
To promote embryoid body formation, ES cells expressing
IL-12 p40 were plated at 5 × 104 ES cells/well in non-

Standard screening strategies of transfected embryonic Stem (ES) cells versus screening using IL-12 p40 as reporter geneFigure 9
Standard screening strategies of transfected embryonic Stem (ES) cells versus screening using IL-12 p40 as 
reporter gene.
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adherent 6-well plate in EB medium (DMEM containing
5% Knockout Serum Replacement, nonessential amino
acids, β-mercaptoethanol, sodium pyruvate and
glutamine) and grown for seven days. Medium was
changed every two days. On day 7 the embryoid bodies
were collected and resuspended in N2 medium and trans-
ferred to an adherent 6-well plate coated with a 0.2% gel-
atin. The N2 medium was based on DMEM/F12, N-2
Supplement (Invitrogen), mouse laminin I (R&D sytems),
nonessential amino acids, glutamine, β-mercaptoethanol,
and bFGF (Invitrogen). The N2 medium was changed
every two days for 5–7 days.

Immunocytochemistry
Cells were fixed with 4% paraformaldehyde (PFA) for 10
min at room temperature, washed in PBS and blocked for
1 h in blocking buffer (10% goat serum in PBS). Samples
were incubated with Beta-Tubulin III (clone Tuj1) mono-
clonal antibody (Covance) for 1 hour, washed in PBS and
incubated with Alexa 488 Goat-Anti mouse IgG (H+L)
(Invitrogen), and counterstained with DAPI.

Production of chimeric mice
Chimeric mice were produced by injecting 15–20 cells
from CIITA/p40 expressing ES clone pkg164-p40-19
derived from R1 ES cells into blastocysts of the inbred
C57B1/6J strain, followed by transfer of the injected blas-
tocysts into the uterine horns of pseudopregnant female
mice. All experiments on animals conformed to the poli-
cies of the University of Pittsburgh Institutional Care &
Use Committee.

Generation and analysis of ES-derived teratomas
Cell suspensions were introduced into the testes of
immune deficient SCID mice by modified efferent duct
injection [34]. The injection pipette was advanced along
the efferent duct and through the rete testes into the inter-
stitial space where cells were injected using an Eppendorf
Femtojet pressure injector. Recipient mice were routinely
evaluated for palpable tumors, which typically developed
between two and four months after injection. H&E
stained sections of tumors were analyzed.
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