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Abstract

Background: Promoters with tissue-specificity are desirable to drive expression of transgenes in
crops to avoid accumulation of foreign proteins in edible tissues/organs. Several photosynthetic
promoters have been shown to be strong regulators of expression of transgenes in light-responsive
tissues and would be good candidates for leaf and immature fruit tissue-specificity, if expression in
the mature fruit were minimized.

Results: A minimal peach chlorophyll a/b-binding protein gene (Lhcb2*Pp ) promoter (Cab|9) was
isolated and fused to an uidA (B-glucuronidase [GUS]) gene containing the PIV2 intron. A control
vector carrying an enhanced mas35S CaMV promoter fused to uidA was also constructed. Two
different orientations of the Cab19::GUS fusion relative to the left T-DNA border of the binary
vector were transformed into tomato. Ten independent regenerants of each construct and an
untransformed control line were assessed both qualitatively and quantitatively for GUS expression
in leaves, fruit and flowers, and quantitatively in roots.

Conclusion: The minimal CABI9 promoter conferred GUS activity primarily in leaves and green
fruit, as well as in response to light. GUS activity in the leaves of both Cab|9 constructs averaged
about 2/3 that observed with mas35S::GUS controls. Surprisingly, GUS activity in transgenic green
fruit was considerably higher than leaves for all promoter constructs; however, in red, ripe fruit
activities were much lower for the Cab|9 promoter constructs than the mas35S::GUS. Although
GUS activity was readily detectable in flowers and roots of mas35S::GUStransgenic plants, little
activity was observed in plants carrying the Cabl9 promoter constructs. In addition, the light-
inducibility of the Cabl9:GUS constructs indicated that all the requisite cis-elements for light
responsiveness were contained on the Cab|9 fragment. The minimal Cab|9 promoter retains both
tissue-specificity and light regulation and can be used to drive expression of foreign genes with
minimal activity in mature, edible fruit.
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Background

Introduction of foreign DNA into plants via Agrobacterium
transformation has been well documented [1,2]. In most
cases binary vectors containing T-DNA (transfer DNA) are
used, and transformed cells are selected by expressing vec-
tor genes encoding resistance to antibiotics. In addition to
selective genes, many vectors carry a reporter gene whose
expression can be conveniently monitored by enzyme
activity (uidA = B-glucuronidase [GUS]), fluorescence
(Green Fluorescent Protein [GFP]) or bioluminescence
(luciferase). These reporter genes are often used to moni-
tor regulation of expression controlled by promoters and/
or other sequences influencing transcription. Indeed,
mapping of regions in promoters responsible for activa-
tion or repression of gene expression is most conveniently
done using a reporter gene [see for example [3,4]].

The most popular promoter used in plant transformation
vectors is the cauliflower mosaic virus 35S (Cauliflower
Mosaic Virus [CaMV] 35S) promoter and derivatives
thereof. This promoter is considered to be powerful and
constitutive, although some temporal and tissue-specifi-
city has been reported [5,6]. It represents the most fre-
quently used promoter in the development of first
generation plant transformation vectors. Recently there
has been renewed interest in developing second and third
generation vectors improved in the control of transgene
expression by incorporating tissue-specific promoters. Tis-
sue-specific promoters offer more precise spatial control
over target genes, allowing expression in one or a few tis-
sues, but not in others. Of particular interest regarding
consumer preference issues are those promoters which
would allow expression of a transgene in a specific target
tissue/organ while avoiding expression in edible plant tis-
sue(s).

Tissue-specific promoters of interest in genetic engineer-
ing strategies include those associated with photosynthe-
sis where expression is restricted to "green" tissues, and is
considerably lower or absent in non-photosynthetic tis-
sues like roots, mature flowers (excluding sepals) and
mature fruit/nuts. Such promoters would be expected to
promote relatively high levels of transgene expression in
leaves, stems and in young floral buds and fruits. Several
promoters of this type have already been described. Trans-
formation of tomato plants with the tomato RBCS3A
[Rubisco small subunit] gene promoter fused to GUS
resulted in leaf-specific expression compared to green
fruits [7]. In contrast, two other tomato RBCS promoters
(RBCS1 and RBCS2) showed similar GUS activity in
leaves and green fruits. Interestingly, transient expression
of the RBCS3A construct showed no difference in expres-
sion of GUS between leaves and green fruit, implying that
integration is necessary for specificity. A more recent study
of Agrobacterium-mediated transgene expression in apple
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utilized Rubisco small subunit gene promoters from
tomato (RBCS3C) and soybean (SRS1) to drive expression
of GUS [8]. Expression in young apple seedling leaves was
about 55-60% of that determined for a CaMV 35S-GUS
control. Surprisingly, expression of the RBCS3C::GUS
construct in leaves was independent of light, in contrast to
previous observations of RBCS expression. Unfortunately,
GUS activity could not be determined in fruits, as the
apple seedlings had not reached reproductive maturity
during the experiment; however, tissue-specificity was
determined by measuring GUS activity in roots. For both
RBCS constructs, GUS activity was substantially lower in
roots compared to leaves. A study [9] using the strong
photosynthetic promoter of PNZIP from Pharbitis nil (L.)
to drive GUS expression reported high levels of expression
in leaves and little expression in flowers and roots of
transformed tobacco (Nicotiana tabacum L. 'NC89').

We are interested in identifying other photosynthetic pro-
moters as potential candidates for regulating expression in
leaves, but not in mature fruits. We previously [10,11]
described the isolation and characterization of a type II
chlorophyll a/b-binding protein (Cab) gene from peach
(Prunus persica L. Batsch.). Expression of this Cab gene in
developing leaves during the growing season followed
patterns typical of developing leaves of herbaceous plants.
Shaded leaves showed a profile similar to that of sun-
exposed leaves, although Cab mRNA levels were in gen-
eral lower in the shaded leaves. Of interest also is the
observation that significant levels of Cab mRNA could be
detected in very young fruit (up to 71 days after bloom)
but not in mature, ripe peach fruits [[12]; Cab = pch108].
In the current study our objective was to use a minimal
Cab promoter, which retained its native tissue- and light-
specificity. To achieve this objective we identified the
Lhcb2*Pp1 promoter, isolated a short (~500 bp) fragment,
and fused it with the uidA reporter gene to monitor expres-
sion driven by the Cab promoter in a tomato model host.

Results

Promoter region of Lhcb2*.Ppl

The isolation and characterization of a type II chlorophyll
a/b-binding protein gene was described in Bassett et al.
[10]. Information from the coding sequence was used to
design primers for genome walking to obtain sequences
further upstream of the mRNA leader. A clone containing
approximately 750 bp of sequence 5' of the Lhcb2*Pp1
translation start site was isolated and sequenced. The
results are shown in Figure 1A. A consensus TATA box was
identified some 33 bases upstream of the putative tran-
scription start site for Lhcb2*Pp1. Two CAAT boxes were
identified upstream of the TATA box. The only other regu-
latory sequence noted was a single G-box element with a
downstream motif containing GATA-like repeats (Figure
1A). After construction of the Cab::GUS fusion recom-
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binant plasmids (Figure 2, See Materials and Methods),
the region surrounding the junction between the Cab19
promoter and the GUS exon1 was sequenced to confirm
the construction (Figure 1B).

Histochemical analysis of transformants

A fusion product containing the GUS gene (uidA) under
the control of the minimal Cab promoter (Figures 1B and
2) was transferred to a plant binary transformation vector

A. —Xmalq
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(pBINPLUSARS) in both orientations relative to the left
border. A control plasmid carrying GUS regulated by an
enhanced mas35S promoter [13] was also constructed
(Figure 2). All three recombinant plasmids were trans-
formed separately into tomato 'Ailsa-Craig', and trans-
genic plants were recovered on antibiotic selection media.
Regenerated plants were tested for the presence of uidA or
uidA + Cab promoter through PCR analyses. Those regen-
erants that were positive for GUS or GUS + Cab were

CCGGGCTGGTAAATTAAGGATTAGTTACATACTTCTAATCTCGACTGTTGGATTGCATCTAAGAGAA

TACGAACACATTAAATGAATGCAAGCCAACAGCTAAGATTAGAAGTATGTAACCAATCCTTAAAATA

CTTTTTGGAGAATCTCCCTTTCTGCCCTGCTATGGTTTGCTGTTGTTTTGTCAATACTGCGGCAAAT

TAACCTTTTCACAGCAGCCAAGGAACAGTTCTAATTTTAGAGGTTGGCGTTTTTTACCTCAAGCCTA

CAAAAACACCCAAGGAAAGTTTATGCTTTCATGATTTCATCAATGGGGGCATATTAAATATATGTCT

TCTGGTTGAAGCTGGCTATGAACTTCTACAGTACAACTAATCTTGTGGCCTGCGTTCACCAACCACA

AAAATTGCACCAATTTGCCAGC CACGTG}CTAAGAGGGAACCTCTCTCTCACTAGAACAATCAGTTT

GGAAATCTAAATCCAATTGAGAACCCATAGAATGTTGCTGATGTGTAGATATCCTAATCCACAACAT

«
CTTCACATTCCCETTATAACATCCS .‘.AGCGCTCTAGTTGTCCAAGGCATCTCATT% CTCACAACA

> Cabpro570R s,
CCACCCCACTTCGAACAGGAGAGCATAGTCATG "-..‘
B. ... .CTATGAACTTCTACAGTACAACTAATCTTGTGGCCTGCGTTCACCAACCACAAAAATTGCACCAATTTG

CCAGCQCACGTGECTAAGAGGGAACCTCTCTCTCACTAGAACAATCAGTTTGGAAATCTAAATCCAATTGAGAA

CCCATAGAATGTTGCTGATGTGTAGATATCCTAATCCACAACATCTTCACATTCCCG ITATAACATCiCAGCG

CTCTAGTTGTCCAAGGCATCTCATTAGGATCCTCTAGAGTCGACCATGGTCCGTCCTGTAGARACCCCAACCCGTGAAATCAAAARAACT
CGACGGCCTGTGGGCATTCAGTCTGGATCGCGAAAACTGTGGAATTGATCAGCGTTGGTGGGAAAGCGCGTTACAAGAARGCCGGGCAATTGCTGTGC
CAGGCAGTTTTAACGATCAGTTCGCCGATGCAGATATTCGTAATTATGCGGGCAACGTCTGGTATCAGCGCGAAGTCTTTATAC. .« .« . . .

Figure |

Sequence of the Cabl9 promoter region and junction with uidA gene. Double strand sequence of the Cab|9 pro-
moter is shown in A. The sequence was analyzed by the PLACE program [35]. A consensus TATA box is enclosed in a single-
line box; two upstream CAAT boxes are underlined; the G-box is enclosed in a double-line box; a GATA-like sequence asso-
ciated with tissue-specificity is overlined. The Cabpro570R primer location is indicated along with the additional BamH] site;
the double reverse arrow marks the 3' end of the Cab|9 promoter generated using the Cabpro570R primer; the right-facing
arrow indicates the position of the translation start site for the peach Lhcb2*Pp | gene. B. The sequence surrounding the junc-
tion between Cabl9 and uidA is presented. Cab|9 sequence is in upper case; uidA is in small caps; the right-facing open arrow

indicates the translation start site of the uidA (GUS) gene.
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Diagram of recombinant plasmid constructs containing the uidA gene under control of Cabl9 or mas35S pro-
moters. Plasmids represented as closed, circular molecules are not drawn to scale (size in base pairs is indicated under plas-
mid name). Arrows mark positions of promoters and coding regions and indicate the direction of transcription. The positions
of EcoRI and Hindlll sites are indicated in parentheses. NPTIl: neomycinphosphotransferase (kanamycin resistance); ubi3-UQ:
ubiquitin promoter; LB: left border from A. tumefaciens; RB: right border from A. tumefaciens.
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Figure 3
GUS histochemical staining in leaves of transgenic

tomato plants. Expanding (30-50% full expansion) leaves of

different lines of transgenic tomatoes carrying the
Cab19::GUS or mas35S::GUS constructs were cut into ~|
cm squares and stained for GUS activity. ACI and AC2 rep-
resent untransformed tomato lines. Independent line desig-
nations for each construct are indicated on the appropriate
photograph. A lines carry pBINCab19::GUSA; B lines carry
pBINCab|9::GUSB; C lines carry mas35S:GUS. Magnifica-
tion: 10x: A85 and B97c; 20x: ACI, AC2, B52d, C103 and
C70; 30%: Al32, Al-j, B75b, C5b and CI3.

Figure 5
GUS histochemical staining of green fruit. Inmature
green fruit were sliced transversely and stained for GUS
activity. ACI: untransformed control; lines as in Figure 3.
Magnification: 2x: ACI, Al, A142 and C70; 4x: A85, B97c,
B52d, C5b and C103.

http://www.biomedcentral.com/1472-6750/7/47

— Reproductive Structures —

e |
Figure 4

GUS histochemical staining of flower parts. Flowers
from an untransformed control (ACl), a line carrying the
pBINCab19::GUSB construct (B52d) and a line carrying
mas35S:GUS (C103) were stained for GUS activity. Magnifi-
cation: 5%: B52d sepals, petals and reproductive structures;
10x: C103 sepals, ACI, and C103 petals; 20x: ACI sepals
and reproductive structures, C103 reproductive structures.

Figure 6

GUS histochemical staining of red fruit. Red (fully ripe)
fruit were sliced transversely and stained for GUS activity.
ACI: untransformed control; lines as in Figure 3. Magnifica-
tion 2Xx.
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Quantitative GUS activity in transgenic tomato vege-
tative and floral organs. GUS activity was quantified in
whole expanding leaves, whole flowers, and mature roots
using 4-methylumbelliferone [MU] as substrate. Protein con-
centration was determined by the Bradford assay (Bradford
1976). Measurements were made on two reps of each inde-
pendent transgenic line and an untransformed control. Activ-
ity in the untransformed control was subtracted from each
transgenic sample. Ten independent B and C lines and seven
independent A lines were analyzed. Each point represents a
single transgenic line; the bars show the average of GUS
activities for all transgenic lines of each construct.

grown to maturity and maintained in a greenhouse. Ten
independent lines of each construct (only 7 lines repre-
sented by the Cab:GUSA construct survived) were
selected for further evaluation.

To determine the relative expression of the different lines,
leaf sections from fully expanded leaves were cut and
stained for GUS activity. Untransformed controls showed
negligible GUS activity (Figure 3, lines AC1 and AC2), but
lines carrying the recombinant constructs showed wide
variation in GUS expression. Interestingly, the smaller
veins in leaves from all lines carrying the mas35S::GUS
construct stained more heavily than the lamina (Figure 3).
Although this was also seen to some degree in several
Cab19::GUS lines, the staining of veins in these lines was
considerably less than what was observed with lines carry-
ing the control construct. Similar results were obtained

http://www.biomedcentral.com/1472-6750/7/47
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Quantitative GUS activity in transgenic tomato fruit.
GUS activity was quantitated as before. Five whole immature
green fruit and five whole fully ripe red fruit were collected
and analyzed from each line. The symbols represent meas-
urements averaged across the five fruit samples from each
transgenic line; these measurements were corrected for
background activity (untransformed controls) as in the leg-
end to Figure 7. Ten independent B and C lines and seven
independent A lines were analyzed. The bars show the aver-
age of GUS activities for all transgenic lines of each construct.
Note the scale difference between green and red fruit.

from transverse-sections through the major vein of leaves
stained for GUS activity (data not shown), i.e. staining in
the vascular bundles of Cab19::GUS lines was spotty com-
pared to staining in mas35S::GUS lines.

Histochemical staining for GUS activity in floral parts was
negative for all lines carrying Cab19::GUS in either orien-
tation (Figure 4, illustrated for line B52d). In contrast,
staining of floral structures was observed in a number of
lines carrying the mas35S::GUS construct (Figure 4, illus-
trated for line C103). GUS activity was lowest in petals,
higher in sepals and highest in anthers and stigmas.
Immature green fruits and fully ripe (red) fruits expressed
variable GUS activity (Figures 5 and 6). In green fruits,
staining appeared to be more intense in vascular bundles,
especially in the mas35S::GUS lines. In red fruits little GUS
activity was observed in the Cab19::GUS lines, except for
some light staining in locular material (Figure 6). Staining
in the vascular bundles of the mas35S::GUS lines was
intense, as was staining in locular tissues in these lines.

Page 6 of 12

(page number not for citation purposes)



BMC Biotechnology 2007, 7:47

http://www.biomedcentral.com/1472-6750/7/47

Relative Amount of CAB | Relative Amount of GUS |
p 160% — =N " 160
g c103 | C103
2~ 120% 2. 1200
g o m
22 20% @ 20%
o o = .
Zz< o
& 409, Z7 40%
& oot L LI D I i Y D . R
o & - ok 6B o D o @& L ka9 9 .8 9
(o R R R - T P B T S TR R SRR Y
8 1609 2, 0%, —
i (s ||| %
ASS
;E... 1209 3_.1.5%
3’9-" .
s o 1,09 -
<§ 809 fs
z (=)
z
€ 409 g 0.5% -
s 0 £
D% T T T T |n| T [_| Oan T T T L] T T T L] L] 1
ol - - R - o o Q& W R g B b e
P E R E 2E &8 B M e kR R R RS
Figure 9

Real time Reverse Transcription-Polymerase Chain Reaction determination of light responsiveness of Cabl19.
Selfed seed from transgenic lines A85 (pBINCab19::GUSA) and C103 (pBINmas35S::GUS) and the untransformed control line,
ACI, were germinated in the dark. Half the germinated seedlings from each line were transferred into the light and half were
kept in the dark for 48 h. RNA extracted from the epicotyls of individual seedlings that tested positive for GUS served as tem-
plates for real time Reverse Transcription-Polymerase Chain Reactions. Results are reported on a relative scale as a percent-
age of C103 (light exposed seedling I:L|) for each primer pair [native tomato Cab primers and GUS primers]. C-L: AC|
control seedling exposed to 48 h light; L1-L4: four different seedlings from the C103 transformed line on plates exposed to 48
h light; L9-12: four different seedlings from the A85 transformed line on plates exposed to 48 h light; C-D: ACI control seed-
ling kept in the dark for 48 h; D5-D8: four different seedlings from the C103 transformed line on plates that remained in the
dark for 48 h; D13-D16: four different seedlings from the A85 line on plates that remained in the dark for 48 h. Note differ-

ence in scale for GUS RNA levels in A85 seedlings.

Quantification of GUS activity

GUS activity was quantified for all transgenic lines using
the MUG assay. Activity profiles for expanding leaves,
mature roots and whole flowers are shown in Figure 7. For
all lines tested a range of GUS activities was seen in leaf tis-
sue. However, in roots and flowers of transgenic lines car-
rying Cab19::GUS, activities were considerably lower than
those seen in the mas35S::GUS lines, although some of
the mas35S::GUS individual lines had low GUS activity in
roots and/or flowers. GUS activity in whole fruits was also
observed to vary considerably across independent trans-

genic lines (Figure 8). Although immature green fruits
expressed relatively high levels of GUS activity (note dif-
ference in scale) in all lines, red fruit carrying a
Cab19::GUS construct expressed 3-5-fold lower activity
on average than fruit from lines carrying mas35S::GUS.

RealTime quantification of Cab and GUS RNAs from light-
or dark-exposed seedlings

To determine whether or not the minimal Cab19 pro-
moter still contained light responsive element(s), Real-
Time PCR was performed on seedlings from the A85
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(Cab19 promoter, high GUS activity in leaves), C103
(enhanced 35S promoter, medium-high GUS activity in
leaves) and AC1 (untransformed control) lines. Real-Time
PCR results were shown previously to correspond with
GUS activity measurements when lines varying in leaf
GUS activity were analyzed (data not shown). Real-Time
analyses were performed on A85, C103 and AC1 seedlings
germinated in the dark and subsequently exposed to light
or kept in the dark. Figure 9 presents those results demon-
strating that the native tomato CAB gene is expressed at a
much lower level in the dark for both lines, as expected.
GUS expression in C103 was similar in light or dark while
in contrast, GUS expression in A85 was completely light-
dependent (Figure 9; note the scale differences of the
graphs for GUS RNA).

Discussion

Sequence analysis of the peach Lhcb2*Pp| gene promoter
We have described the isolation and characterization of
the promoter of a peach type II chlorophyll a/b-binding
protein gene (Lhcb2*Pp1 [Cab]). The promoter was iso-
lated as a minimal promoter containing ca. 550 bases of
sequence upstream of the Cab translation start site. Anal-
ysis of this region for cis-acting elements located a consen-
sus TATA box near the 3' end of the promoter, two CAAT
boxes, a single G-box sequence (CCACGTG) and a motif
conserved in several promoters containing GATA-like ele-
ments. TATA boxes control basal transcription from RNA
polymerase Il and have been highly conserved in eukary-
otes during evolution [14]. CAAT boxes located within ca.
150 bases upstream of a TATA box can enhance the basal
level of transcription [15], and these elements can also be
found in a variety of eukaryotes. In plants, G-box elements
are responsive to a variety of hormones and other signals,
including light [16], though others have shown that pro-
moters lacking a G-box core are fully light inducible
[17,18]. Hence, the G-box in the Lhcb2*Ppl promoter
may function as a light-responsive element. The last iden-
tified motif present in this Cab promoter is a GATA-con-
taining element similar to an activation sequence binding
site required for leaf-specificity in transgenic tobacco, but
not light regulation [19].

Tissue-specific regulation of the GUS reporter gene under
Lhcb2*Pp| promoter control

Constructs synthesized using the minimal Cab promoter
to drive expression of GUS were used to transform tomato
to assess expression. Two different orientations of the pro-
moter with respect to the left border were tested. No sig-
nificant differences were observed between two (A and B)
orientations. Histochemical analysis of 27 transgenic lines
(7 for pBINCab19GUSA, 10 for pBINCab19GUSB and 10
for pBINmas35SGUS) indicated considerable variability
in expression among individual lines. It is presumed that
this variability is due in part to position effects generated
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from random integration of plasmid DNA into the chro-
mosome and in part to differences in the number of inte-
grated copies between independent lines. In fact Southern
analysis suggested that higher expressing lines of all trans-
genics appeared to have more than one copy of the con-
struct inserted into the genome (data not shown).
Although in general higher copy number accounts for
higher expression of resident genes, the correlation is not
always perfect [8]. In some cases the location of an
inserted sequence on the chromosome influences expres-
sion due to the presence of enhancer/suppressor ele-
ments, as well as other factors related to chromosome
structure.

Nevertheless, despite the variability in expression among
lines, some consistent differences were observed between
Cab19::GUS constructs and the mas35S::GUS controls. In
leaf, more GUS activity was seen in vascular tissue in the
mas35SGUS control lines, than in the Cab19::GUS lines.
These results are similar to those observed with Rubisco
small subunit vs. 35S promoters in transgenic apple [8]. In
addition, no GUS activity was detected in floral tissues
from the Cab19::GUS lines, whereas, staining in the stig-
mas, anthers, sepals and petals was observed in the
mas35S::GUS lines tested. These observations were sup-
ported by the quantitative MUG assays of GUS activity.
For example, while there was substantial overlap in the
range of activity seen in leaves of plants containing either
the Cab19::GUS or mas35S::GUS constructs, the average
expression for all transgenic lines indicated that
Cab19::GUS lines had 60-80% of the average observed
for the mas35S::GUS lines. Gittins et al. [8] reported simi-
lar results in transgenic apple shoots comparing 35S with
the tomato RBCS3C and soybean SRS1 promoters. Yang et
al. [9], however, reported activities of another photosyn-
thetic promoter (PNZIPpro) to be ca. 5-6-fold higher
than 35S::GUS. The mas35S::GUS activities in our study
appear to be 10-fold higher in leaf than the 35S:GUS
activity in the study by Yang et al. [9], after adjusting for
differences in activity units between the two studies. The
Q3 photosynthetic promoter construct contains 665 bases
5' of the PNZIP translation start site [9] and is equivalent
in size and sequence to the Cab19 construct. Comparison
of the activities of these two promoters indicates that they
are virtually equivalent in leaf, root and flower tissues. In
addition, unlike the PNZIP promoter, the Cab19 con-
structs contain no potential upstream AUGs that could
interfere with translation of fused genes [20,21].

There was no overlap in GUS activities between roots and
flowers expressing Cab19::GUS or mas35S::GUS. Both
Cab19::GUS constructs expressed very low levels of GUS
(5-10% of mas35S::GUS). These results are also consist-
ent with the transgenic apple experiments where expres-
sion of RBCS3C::GUS or SRS1::GUS in roots was 1-4% of
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the 35S::GUS construct [8]. In addition, our observations
support previous studies indicating that the integrated
intact 35S CaMV promoter is active in most plant tissues

[6].

To our knowledge, no reports examining the expression of
genes under control of photosynthetic promoters in fruit
have been published. Since fruit represent an economi-
cally significant portion of the agricultural production
and contribute to human health and well being, it is
important to evaluate promoters on their ability to restrict
expression in tissues other than the edible fruit. Histo-
chemical staining of green (very young) fruit showed that
expression of GUS was nearly identical in slices from
transgenic tomatoes carrying either the Cab19::GUS or
mas35S::GUS constructs, except that in general, seeds of
fruits from mas35::GUS transgenic plants stained more
intensely. Elevated mRNA levels of another photosyn-
thetic gene, Rubisco small subunit (RBCS1 and RBCS2),
was previously reported in young fruit of tomato [22].
Furthermore, since young green tomato fruits are capable
of limited photosynthesis [23], expression of Cab19::GUS
in young green fruit is not surprising.

Histochemical staining of red (mature ripe) fruits carrying
Cab19::GUS was higher in the locular matrix than in the
mesocarp or skin. This observation is consistent with
microarray analysis of early fruit development in tomato
where high photosynthetic gene activity (including Cab)
was observed specifically in locules [24]. Similar results
were obtained during promoter analysis of the tomato
RBCS3 family, showing little GUS staining in the exocarp
and mesocarp, but a range from slight to intense staining
in locules of mature fruit [7]. As with immature, green
fruits, staining was more intense and pervasive in slices
from the mas35S::GUS lines. The quantitative results also
reflected these observations in that, although there was
overlap among the lines, there were more mas35S::GUS
lines (4/10) with activities greater than 25 nmoles 4-MU/
min/mg in ripe fruit, than in the two Cab19::GUS lines

(1/17).

Light responsiveness of the Lhcb2*Pp| promoter

That the minimal Cab19 promoter maintained its respon-
siveness to light is illustrated by the lack of detectable GUS
mRNA in transgenic etiolated seedlings germinated and
kept in the dark. Although the relative levels of GUS in
transgenic Cab19::GUS epicotyls were low compared to
the mas35S::GUS lines, the response to light was dramatic
and qualitatively similar to that obtained for the native
tomato cab type Il gene. Based on the overall results of the
GUS activity measurements and the real time RT-PCR
experiments, we conclude that the minimal Cab19 pro-
moter retains its tissue specificity and responsiveness to
light. This promoter can be used for the regulation of
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transgenes that need to be expressed in leaves or young
fruit, but do not require expression in roots or mature fruit
for biological effect.

Biotechnological applications for a leaf- and green fruit-
specific promoter with minimal expression in edible roots
and fruit

There are a number of biotechnological applications
which require expression of a desirable gene in leaves or
immature fruit of economically important plants. For
example, resistant genes to control damage by insect feed-
ing could be expressed in the primary tissue under attack
and not in every tissue/organ of the plant. In this way the
Cab19 promoter could be used where insects damage
developing fruits either directly or by preferentially laying
eggs on young fruit, as seen with plum curculio (Conotra-
chelus nenuphar) or first generation coddling moths (Car-
pocapsa pomonella). Regarding leaf-specific expression, the
Cab19 promoter was recently shown to effectively drive
expression of an RNAi construct in plum to control plum
pox infection [25]. It is likely that the high level of expres-
sion generally obtained with the CaMV35S promoter will
not be necessary to effectively express desirable genes in
all cases. In those instances the Cab19 promoter will be an
acceptable alternative for controlling genetically engi-
neered resistance to pests which target leaves and green
fruit.

Conclusion

The minimal Lhcb2*Pp1 promoter (Cab19) described
here can be used in heterologous expression of genes in
photosynthetic tissues, including immature, green fruits.
This promoter contains all of the cis-elements for tissue-
specific expression in photosynthetically active tissues. In
addition elements contributing to light regulation of this
promoter are also present. Such a promoter will be useful
in a variety of applications where expression of select
genes in leaves and immature fruit is important, but
where expression in roots, mature fruit and flowers is
minimized.

Methods

Growth and maintenance of plant material

Seeds of an isogenic line of tomato (Lycopersicon esculen-
tum Mill) cv Ailsa Craig were kindly provided by Dr. James
J. Giovannoni, USDA-ARS, Plant, Soil and Nutrition Lab-
oratory, Ithaca, NY 14853, USA. Seed germination and
transformation of tomato cotyledons were done as
described by Fillatti et al. [26], with modifications sug-
gested by Dr. Jan Oakes (Calgene, Inc., Davis, CA, per-
sonal communication). Cotyledons were cut into two to
three pieces, precultured on MS (Murashige & Skoog,
[27]) medium containing 2 mg/L zeatin, inoculated for 15
minutes with disarmed Agrobacterium tumefaciens strain
EHA105 containing pBINcab::GUSA, pBINcab::GUSB or

Page 9 of 12

(page number not for citation purposes)



BMC Biotechnology 2007, 7:47

pBINmas35S::GUS (see below and Figure 2). The inocu-
lated cotyledon pieces were cocultivated two to three days
on MS + 2 mg/L zeatin medium, and transgenic shoots
were regenerated in the same medium containing 100
mg/L kanamycin and 500 mg/L cefotaxime. Putative
transgenic shoots were assayed for the presence of the
peach cab promoter and uidA using cab primers (cab1F:
5'-GGAGAATCTCCCTITCTGCCCTGC-3';  cab5R:  5'-
CACTCCGGATTACTCTACGG-3') or GUS forward and
reverse primers [28] in polymerase chain reactions [PCR].
Template genomic DNA was extracted from leaves of
transgenic plants using a protocol (FastDNA) developed
by Qbiogen (Irvine, CA). A DNA blot probed with a PCR-
generated fragment from the uidA gene confirmed that
select lines were independently transformed (data not
shown).

Transgenic tomato lines were maintained in a greenhouse
under natural light. Plants were potted in Metromix 360
soil and watered daily or as necessary. Plants were ferti-
lized with a dilute (1/2 tbs/gal) solution of MiracleGro
(Scotts Company, Maryville, OH) every 3-4 weeks.
Selected lines were propagated vegetatively by rooted cut-
tings several times a year; cuttings were periodically
checked for the presence of transgenes to insure that chi-
meric material was not propagated.

Isolation of the peach chlorophyll a/b-binding protein gene promoter
To obtain the promoter controlling the peach (Prunus per-
sica L. [Batsch.]) type Il cab gene, Lhcb2 *Pp1 (GenBank Ac.
No. AF039598; [10]), the GenomeWalker kit (BD Bio-
sciences, Palo Alto, CA) was used. Gene-specific primer 1
was pch108D  (5'-AACCCGCCAGACCCGGTATGG-
TATACGAAACC-3') and gene-specific primer 2 was
pch108E  (5'-TACGCCGGCGGTGGITCCGGCGGTTA-
GAAAG-3'). The product obtained was cloned into
pCR2.1 (Invitrogen, Carlsbad, CA) and both strands of
the recombinant plasmid (pCab19) were sequenced to
confirm the identity of the upstream cab sequence. The
623 bp promoter sequence with the first eleven amino
acids of Lhcb2*Ppl1 are reported in GenBank (Ac. No.
EF127291).

Construction of promoter-GUS fusion plasmids

A minimal cab promoter was obtained as follows: A PCR
product (560 bp) was generated from a genomic DNA
template using the Universal AP2 primer (Genome
Walker kit) and a gene-specific primer, cabpro570, con-
taining a built-in BamHI site (5'-ATGTATCAATGGATC-
CTAATGAGATGCC-3"). The product was excised from a
1% agarose gel, cleaned up over a GlassMax (Gibco-BRL,
Bethesda, MD) column and digested with BamHI and
Xmal. The product was ligated into pUCAP [29] digested
with BamHI and Xmal to yield pCAPCab19-2. To add a
fragment containing uidA (GUS) with the PIV2 intron
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[30], we used pGA482GGI digested with HindIII and Sall.
pGA482GGI was constructed as follows: 1) the EcoRI site
was removed from pGA482G [31,32]; 2) the 5.4 kb Hin-
dlll-Kpnl fragment from pCNL56 [13] was ligated into
pGA482G minus EcoRI; and 3) the EcoRlI site in the PIV2
intron of GUS was removed creating pGA482GGI. The
HindIll-Sall fragment from pGA482GGI containing
Exon1GUS-intron-Exon2GUS-gcs terminator was ligated
into pCAPCab19-2 creating pClone48. Restriction endo-
nuclease mapping of pClone48 indicated that it carried an
additional ca. 6.8 kbp band of unknown sequence from
pGA482GGI. To eliminate this fragment, pClone48 was
digested with HindIll and Sall, diluted 10-fold in water,
heated to 70°C for 10 min, cooled to RT and self-ligated
with T4 Ligase (Stratagene, La Jolla, CA) following the
manufacturer's  protocol. The resulting product
(pClone7relig) was sequenced on both strands surround-
ing the two junctions and determined to contain only the
GUS (Exonl-intron-Exon2-ocs terminator) fused to the
Cab19-2 promoter. The Kpnl digestion fragment contain-
ing the Cab19-2-GUS fusion product from pCloneZrelig
was ligated into Kpnl-digested pBINPLUSARS to create
pBINCab19GUSa and pBINCab19GUSDb, representing
both orientations with respect to the Pacl-Ascl pBINPLU-
SARS MCS (Figure 2). pBINPLUSARS was a kind gift from
Bill Belknap (USDA, ARS, WRRC, Albany, CA).

The mas35S promoter-GUS fusion product was created as
follows: The Hindlll/Kpnl fragment containing a sub-
domain of the mas promoter joined to a minimal 35S pro-
moter and fused to uidA in plasmid pCNL65 [13] was
directionally ligated into pUCAP digested with HindIIl
and Kpnl to create plasmid pUCAPmas35SGUS. Digestion
with Ascl and Pacl and ligation into pBINPLUSARS
yielded pBINmas35SGUS. pCNLG65 was a kind gift from
Dr. Stan Gelvin (Dept. of Biological Sciences, Purdue
Univ.).  pBINmas35SGUS, pBINCab19GUSa and
PBINCab19GUSDb were transformed into A. tumefaciens
EHA105 by electroporation.

Analysis of GUS activity

Ten independent peach Cab/GUS-positive transgenic
lines for each construct were obtained; however, three
lines carrying pBINCab19GUSa were lost while being
maintained in the greenhouse. All PCR-positive trans-
genic lines were assayed for GUS expression by histo-
chemical analysis of transverse sections from leaves at
approximately 30-50% of full expansion, or whole flower
parts from open flowers and roots from mature plants [3].
For histochemical analysis of fruit, transverse slices from
immature green fruit (5-6 cm in circumference) and fully
ripe (100% red and soft to the touch) fruit were used.
Quantitative analysis of GUS activity was performed on
whole organs using the MUG assay [33] with modifica-
tions described by Moon and Callahan [3]. Production of
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4-methylumbelliferone [4-MU] was measured using a
fluorometer (CytoFluor, Applied Biosystems, Foster City,
CA). The amount of 4-MU was determined from a stand-
ard curve. Protein concentrations of the samples were
determined using Bradford reagent [34] and bovine
gamma globulin as a standard (Bio-Rad, Hercules, CA).
GUS activity was expressed as pmol 4-MU min-! ug! pro-
tein.

RNA extraction and RealTime-Polymerase Chain Reactions of
seedlings germinated in light or dark

Selfed seeds collected from lines A85, C103 and AC1 (an
untransformed control) were sterilized, placed on MS
plates and wrapped securely in foil. Plates were kept at
room temperature for 12 days. On the 12t day, foil was
removed from one plate and placed in the light (cool
white fluorescent bulbs) for 48 h. At that time the light-
exposed seedling epicotyls were harvested, followed by
seedlings on plates that had remained in the dark during
the additional 48 h. The dark-exposed seedlings were har-
vested under green light. Samples were immediately fro-
zen at -80°C and then lyophilized.

RNA was extracted from lyophilized tissue using Trizol
according to the manufacturer's protocol (Invitrogen).
PCR using GUS-specific primers was performed on RNA
extracts containing genomic DNA templates, and RNAs
giving a negative result, i.e. assumed to be homozygous
negative for uidA, were discarded. Contaminating DNA
was removed from the selected RNAs using a DNA-Free kit
(Ambion, Austin, TX) following the manufacturer's direc-
tions. Three sets of primers were used, 26S rRNA primers
and UidSau primers from Moon and Callahan [3] and
tomato CAB primers from this study: TomCab4AF (bp285
accession # M17558) 5'-ATTACGGATGGGACACTGGT-
GGAC-3' and TomCab4AR (bp404 accession # M17558)
5'-CGGGGAAAACACAACCTAAAGC-3'. RNAs were sub-
jected to Real Time-PCR using the SYBR Green Master Mix
kit and reverse transcriptase (Applied Biosystems) follow-
ing the manufacturer's directions using 2 pl of RNAina 10
ul reaction. RNA was diluted 1 to 40,000 for the 26S rRNA
reactions, 1 to 200 for the tomato CAB reactions and 1 to
12 for the GUS (uidA) reactions. The reactions were run on
an ABI7900 sequence detection instrument (Applied Bio-
systems) programmed to heat for 30 min at 45°C, then 10
min at 95°C, followed by 40 cycles of 1 min at 60°C and
30 s at 95°C. This was followed by a denaturation step to
determine the melting point of the products formed in
order to verify that a single identical product was formed.
All reactions were done in triplicate and the results were
averaged. Standard curves for each primer pair were
derived from a dilution series, and the relative amount of
RNA in each sample was determined from the standard
curves. The amounts of the GUS and tomato Cab RNA
were adjusted by the differences in the amount of 26S
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rRNA to account for any variation in the concentrations of
the total RNA in each reaction. Triplicate no-template
controls were included for each specific primer pair and
the denaturation profiles of the no-template controls were
used to determine if any product was detected.
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MCS, multicloning site; Cab, chlorophyll a/b binding pro-
tein; PCR, polymerase chain reaction; RT, reverse tran-
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virus;
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