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Abstract

Background: The engineering of fusion proteins has become increasingly important and most
recently has formed the basis of many biosensors, protein purification systems, and classes of new
drugs. Currently, most fusion proteins consist of three or fewer domains, however, more
sophisticated designs could easily involve three or more domains. Using traditional subcloning
strategies, this requires micromanagement of restriction enzymes sites that results in complex
workaround solutions, if any at all.

Results: Therefore, to aid in the efficient construction of fusion proteins involving multiple
domains, we have created a new expression vector that allows us to rapidly generate a library of
cassettes. Cassettes have a standard vector structure based on four specific restriction
endonuclease sites and using a subtle property of blunt or compatible cohesive end restriction
enzymes, they can be fused in any order and number of times. Furthermore, the insertion of PCR
products into our expression vector or the recombination of cassettes can be dramatically
simplified by screening for the presence or absence of fluorescence.

Conclusions: Finally, the utility of this new strategy was demonstrated by the creation of basic
cassettes for protein targeting to subcellular organelles and for protein purification using multiple
affinity tags.

Background

Conceptually, a fusion protein is constructed by joining
two different domains to produce a new chimeric protein,
which retains the properties of the individual domains.
For instance, a tumor necrosis factor (TNF) inhibitor was
created from the fusion of the TNF receptor to the F.
domain of human immunoglobin G as it retains the abil-
ity to bind TNF and to be targeted by the immune system
[1]. By using the principle of fluorescence resonance
energy transfer, protein biosensors can be created from
multiple domain fusions with fluorescent proteins to
image cellular events such as Ca2+signaling, phosphoryla-

tion, and caspase proteolytic cleavage [2]. In practice, such
fusion proteins are created by inserting PCR products of
the individual domains into an expression vector at the
available restriction endonuclease sites. Previously, the
flexibility of design is compromised as the choice of inser-
tion sites limits the possible locations for future fusions
into the same expression vector. In turn, many initially
unplanned but simple extensions to existing fusion pro-
teins cannot be constructed because available sites are
exhausted or incompatible. As this issue is exacerbated
when constructing multiple domain fusion proteins, we
have created a new expression vector for subcloning using

Page 1 of 8

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1186/1472-6750-3-8
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12864922
http://www.biomedcentral.com/1472-6750/3/8
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Biotechnology 2003, 3

a cassette-based strategy. A basic cassette contains the
sequence of an individual domain that can be recom-
bined with other cassettes irrespective of order, without
the progressively more complex management of sites.
Therefore, the creation of a cassette library of commonly
used domains facilitates the rapid prototyping of multiple
domain fusion proteins that can perform numerous
functions.

Results and discussion

Standard vector structure of the cassette

Our cassettes must have a standard vector structure where
a domain(s) is flanked by cut sites 1 and 2a at the 5' end
and 2b and 3 at the 3' end (Figure 1a). Site 1 and 3 can be
selected arbitrarily, but site 2a and 2b must be derived
from different restriction enzymes producing blunt or
compatible cohesive ends. For example, there are two
ways to create the AB fusion cassette from cassette A and B
(likewise for the BA fusion cassette): ligate the insert from
cassette B (site 2a and 3) to the host cassette A (site 2b and
3) (Figure 1b) or ligate the insert from cassette A (site 1
and 2b) to the host cassette B (cut site 1 and 2a) (Figure
1c). Since the ligation point of site 2a and 2b produces the
recognition site of neither, it cannot be cut with either
restriction enzymes. Therefore, the AB fusion cassette has
the same standard vector structure and can be used for fur-
ther fusion following the same concept. Note that if no
more than one of the four enzyme sites are found inside
the domain sequence of the cassette, it is still possible to
create any fusion because cassettes can be fused on either
the 5' or 3' end.

pCfvtx embodies the standard vector structure and allows
fluorescence screening

Our new expression vector, pCfvtx, Cassette Fused with
Venus [3] in the p Trie X1.1-Hygro vector (Novagen),
allows for rapid subcloning of basic and fusion cassettes
by screening positive colonies using fluorescence (Figure
1d). This vector fixes site 1 and 3 as Ncol and Xhol, respec-
tively, but there are many choices for site 2a and 2b: Stul
and Smal or Nhel and Spel or BamHI and Bglll. Since
standardization of these specific sites is required to create
a basic cassette, they must be added to the domain of
interest by PCR and then inserted into the vector. pCfvtx
was constructed with a stop codon flanked by two multi-
ple cloning sites (MCS1 and MCS2) upstream of Venus
[3], a mutant variant of green fluorescent protein (GFP).
When a fragment is subcloned into the vector between
MCS1 and MCS2, the stop codon is removed and there-
fore, a fluorescent cassette is created since it is fused with
Venus. As the leak expression of the fusion protein is
enhanced by the presence of the T7lac promoter and the
absence of the lacl repressor gene [4], positive colonies
will be fluorescence on bacterial culture plates (Figure 3a).
To create a non-fluorescent cassette, Venus can be
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removed by cutting with Pmel, performing a self-ligation
and then screening for the absence of fluorescence.

Fluorescence screening with Venus

It should be noted that Venus is the fastest folding and
brightest GFP mutant to date [3]. Accordingly, the positive
colonies will become fluorescent immediately, whereas
other GFP variants may require several days. Second, these
fluorescent colonies ensure that the inserted fragment is
in-frame and without nonsense mutations. Also, the C-
terminal fusion of GFP to target proteins is an effective
assay for protein solubility and fold stability - the more
fluorescent the fusion protein, the more soluble and well-
folded the inserted fragment [5,6]. Lastly, any desired
fusion cassette can be designed, such that at each interme-
diate step, a positive colony is selected by the presence or
absence of fluorescence (Figure 2). As only one fluores-
cent or non-fluorescent colony is needed and the random
gain or loss of this property is improbable, fluorescence is
a robust reporter that tolerates much of the inefficiency in
the subcloning process. In sum, through the use of fluo-
rescence, subcloning is performed rapidly and precisely
such that it is possible to efficiently create many fusion
cassettes in parallel.

Protein purification cassettes

To demonstrate the utility of our cassette-based strategy,
we first applied it to protein expression/purification sys-
tems, which often involve either an N-terminal or C-ter-
minal fusion of the target protein with an affinity tag.
Cassettes were made using two popular tags — 6xHis (Qia-
gen) and Glutathione S-transferase (GST) tag (Pharmacia)
[7]. The N-terminal fusion of the 6xHis tag to Venus
allows binding to Ni-NTA (nickel-nitrilotriacetic acid)
agarose beads, however, a simple elution yields an impure
sample (Figure 3b). The additional C-terminal fusion of
GST to Venus allows binding of the previous elution to
GST sepharose beads. Since the affinity tags flank the tar-
get protein and it is unlikely that a protein will non-spe-
cifically bind to both affinity beads, only full-length
fusion proteins will be eluted from the GST beads. Note
that the newly created 6xHis-Venus-GST fusion cassette is
itself a useful affinity tag that additionally could be used
to estimate protein expression greater than ~1 nM as fluo-
rescence intensity from the Venus domain is linearly pro-
portional to target protein concentration. Finally, the
flexibility of our cassette-based strategy opens new oppor-
tunities for the design of tandem affinity purification
(TAP) tags 8], which were useful in protein complex puri-
fication in the yeast proteome [9]. The customization of
TAP tags is desirable as the same affinity tag may not be
suitable for all organisms [10].
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Figure |
The cloning methodology. (A) Design of cassette A and B. Creation of the AB fusion cassette by (A) a C-terminal fusion to

cassette A and (B) a N-terminal fusion to cassette B. (D) Schematic diagram of the pCfvtx vector. pTriEx|.I-Hygro (Novagen)
was chosen as the base vector because it allows expression in both prokaryotic and eukaryotic cells.
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Flow diagram of our fluorescent cassette-based strategy to construct the AB fusion cassette. First, the fluores-
cent cassettes A and B are created by insertion of the respective domains into the pCfvtx vector. Then, cassette A and B is
created by the excision of Venus by Pmel restriction and then self-ligation. The path of the thick arrows highlight the fusion
steps required for creating the AB fusion cassette. The fluorescent cassette B is ligated to cassette A to create a fluorescent
cassette AB. The final AB fusion cassette is created by the excision of Venus as described previously.

Protein subcellular targeting cassettes

The creation of protein biosensors has allowed the obser-
vation of signaling events in single cells [11-13]. Such
events are often isolated to subcellular organelles such as
the nucleus or endoplasmic reticulum and therefore, the
ability to easily localize biosensors to these sites is impor-
tant. The localization of proteins to specific organelles
relies on vital cellular mechanisms that recognize leader
sequences and signal peptides [14]. If a protein (such as
the 6xHis-Venus-GST protein) is expressed in the cell
without any localization peptides, it will be found inside
the cytoplasm (Figure 3c). To localize a target protein to

the nucleolus, a cassette was created containing the pro-
tein transduction domain of human immunodeficiency
virus (HIV) Tat [15]. When this cassette was N-terminally
fused to Venus and transfected into COS-7 cells, fluores-
cence was most intense in the nucleolus (Figure 3d). To
localize to the lumen of the endoplasmic reticulum, a cas-
sette was created containing the leader sequence from
interleukin-4 and another cassette was created with the
KDEL retention signal. When these cassettes were fused N-
and C-terminally to Venus, it localized to the endoplasmic
reticulum (Figure 3e). In summary, the creation of these
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A

Figure 3
Fluorescence screening, protein purification and subcellular localization. (A) Fluorescence screening in bacterial col-

onies using the leak expression of the target protein fused with Venus. A non-fluorescent colony is identified by arrow |; a flu-
orescent colony, by arrow 2. (B) The purification of the 6xHis-Venus-GST construct (identified by the arrow). Lane MW is the
molecular weight marker; lane |, the cell lysate; lane 2, the elusion from the Ni-NTA column; lane 3, the elusion from the GST
column. All vectors were transfected into COS-7 cells for fluorescence imaging. The 10% magnification of (C) the cytoplasmic
distribution of the 6xHis-Venus-GST and (E) the endoplasmic distribution of Venus N-terminally fused with the interleukin-4

leader sequence and C-terminally fused with the KDEL retention signal. (D) The 40% magnification of the nucleolar distribution

of Venus N-terminally fused with the HIV Tat domain.
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Table I: List of cassettes
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Cassette Function

General

pCfvtx Fundamental vector for rapidly inserting PCR products using a fluorescence assay to create basic cassettes
pVentx Venus for acquisition of fluorescence

Protein purification

pHistx 6xHis affinity tag

pGsttx GST affinity tag

pHisventx 6xHis affinity tag that also allows protein expression estimation by fluorescence

pHisvengsttx

Subcellular organelle targeting
pTattx

pll4tx

pKdeltx

Organelle markers
pTatvtx

pll4venkdeltx

A double affinity tag using 6xHis and GST for improved purity and protein expression estimation by
fluorescence

HIV TAT protein tranduction domain for targeting to the nucleolus or peptide-mediated delivery of proteins
to the nucleus

Interleukin-4 signal peptide for secretion of target protein (alone) or for localization to the ER (with KDEL
retention)

KDEL retention signal for localization the ER (with signal peptide)

A fluorescent marker for the nucleolus
A fluorescent marker for the ER

cassettes allows the flexibility of localizing any cassette in
our library to those organelles.

Conclusions

Using the pCfvtx vector as a starting point, basic cassettes
are subcloned from target genes or domains of interest by
PCR. These basic cassettes can then be recombined in any
order and number of times to create fusion cassettes of
multiple domain proteins. Each step of the subcloning
process of cassettes is rapidly and reliably screened by the
presence or absence of fluorescence. In contrast to the
common B-Gal screen [16], our fluorescence approach
may potentially have applications in high-throughput
structural genomics by identifying in-frame fragments
with favorable folding and solubility properties. Unlike
fluorescence, the subcloning of a target sequence using the
B-Gal screen disrupts expression of the lacZ a-peptide, so
a subsequent fusion cannot use the same screening proc-
ess. Finally, the use of our fluorescent cassette-based strat-
egy offers significant long-term advantages in protein
engineering as each new cassette enriches the functional-
ity of the growing library of cassettes (Table 1). Thus,
future designs can efficiently build on previous work to
create progressively more complex and sophisticated
fusion proteins which are capable of performing a wide
range of functions.

Methods

Fluorescence screening

Vectors were transformed into E. coli strain DH50 and
plated on LB (Luria Broth) agarose with 100 pg/mL amp-
icilin. The culture plates were then incubated overnight at
37°C. Venus fluorescence was observed on the culture

plate using the Lighttools [lluminatool Tunable Lighting
System equipped with a 535 nm viewing filter and 488
nm/10 nm filter cup.

Construction of the pCfvtx vector

To create the pInsvtx intermediate vector, Venus was PCR
amplified from the pVenus vector [3] using primers Insv-
sense (5'-
CATGCCATGGGCCTGACTAGTAGGCCTGCTAGCCT-
GTTTAAACTGGTGAGCAAGGGCGAGGAGCTG-3') and
Insv-antisense  (5'-CCGCTCGAGTTACAGTTTAAACAG-
GGCGGCGGTCACGAACTCCA-3"). The Insv-sense con-
tained Ncol, Spel, Nhel and Pmel sites, while Insv-
antisense contained Pmel and Xhol sites. The fragment was
subcloned into the pTriEx1.1-Hygro vector (Novagen) at
the Ncol and Xhol sites by selecting a fluorescent colony.
The pInstx intermediate vector was created by self-ligating
after cutting at the Pmel site of pInsvtx and a non-fluores-
cent colony was selected. Finally, to create the pCfvtx vec-
tor, a fragment containing the multiple cloning sites (Spel,
BamHI, Stul, Bglll, Smal, Nhel) sandwiching a stop codon
was created using 5'-end phosphorylated primers Mcs-
sense (5'-CTAGTGGATCCAGGCCITAAAGATCTCCCG-
GGG-3') and Mcs-anti-sense (5'-CTAGCCCCGGGA-
GATCTTTAAGGCCTGGATCCA-3'). Mcs-sense and Mcs-
antisense were self-hybridized and subcloned into the
pInsvtx vector at the Spel and Nhel sites. A non-fluorescent
colony was selected.

Construction of the subcellular targeting vectors

To create the pVentx vector, Venus was amplified using
primers Ven-sense (5'-CATGCCATGGGCCTGACTAGT-
GTGAGCAAGGGCGAGGAGCTG-3') and Ven-antisense
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(5'-CCGCTCGAGTTAGCCGCTAGCGGCGGCGGTCAC-
GAACTCCA-3"). The Ven-sense contained Ncol and Spel,
sites, while Ven-antisense contained Xhol and Nhel sites.
The fragment was subcloned into the plnstx vector at the
Ncol and Xhol sites by selecting a fluorescent colony. To
create pTatvtx, 5'-end phosphorylated primers Tat-sense
(5'-CATGGGCCTGACTAGITACGGCAGGAAGAAGAG-
GAGGCAGAGGAGGAGGGGGG-3') and Tat-anti-sense
(5'-CTAGCCCCCCTCCTCCTCTGCCTCCTCITCITCCT-
GCCGTAACTAGTCAGGCC-3') were self-hybridized and
subcloned into the pCfvtx vector at the Ncol and Nhel
sites. Similarly, to create the pll4vtx vector, 5'-end phos-
phorylated primers il4-sense (5'-
CATGGGCCTGACTAGTCAGCTGCTGCCGCCCCTGT-
TCTTCCTGCTGGCCTGCG-3') and il4-anti-sense (5'-
CTAGCGCAGGCCAGCAGGAAGAACAGGGGCGGCAG-
CAGCTGACTAGTCAGGCC-3') were self-hybridized and
subcloned into the pCfvtx vector at the Ncol and Nhel
sites. The pll4tx was created by self-ligating after cutting at
the Pmel site of pll4vtx. To create the pVkdeltx intermedi-
ate vector, Venus was amplified using primers Ven-sense
and kdel-antisense (5'-CCGCTCGAGTTACAGCTCGTC-
CITACTAGTGGCGGCGGTCACGAACTCCA-3"). The
kdel-antisense contained Xhol and Spel sites. The fragment
was subcloned into the plInstx vector at the Spel and Xhol
sites. The pKdeltx was subcloned by cutting and self-ligat-
ing at the Spel site. To create pVenkdeltx vector, pVentx
was cut with Ncol and Nhel and the fragment was sub-
cloned into pKdeltx at Ncol and Spel sites. To create
pll4venkdeltx, pVenkdeltx was cut with Spel and Xhol and
the fragment was subcloned into pll4tx at the Nhel and
Xhol sites.

Construction of the 6xHis-Venus-GST cassette
(pHisvengsttx vector)

To create pGstvtx, GST was amplified from pGEX2T (Inv-
itrogen) using primers gst-sense (5'-GACTAGTATGTC-
CCCTATACTAGGTTATTG-3') and gst-antisense (5'-
GAAGATCTATCCGATTTTGGAGGATGGTCG-3'). The gst-
sense and gst-antisense contained Spel and BgIII sites,
respectively. The fragment was subcloned into the pCfvtx
vector at the Spel and BglII sites. pGsttx was created by cut-
ting and self-ligation at the Pmel site. To create the pHisvtx
vector, 5'-end phosphorylated primers his-sense (5'-CAT-
GGGCCTGACTAGTGGCAGCAGCCACCACCACCAC-
CACCACAGCAGCGGCG-3') and his-anti-sense (5'-
CTAGCGCCGCTGCTGTGGTGGTGGTGGTGGTGGCT-
GCTGCCACTAGTCAGGCC-3') were self-hybridized and
subcloned into the pCfvtx vector at the Ncol and Nhel
sites. pHistx was created by cutting and self-ligation at the
Pmel site. To create pHisventx vector, pVentx was cut with
Spel and Xhol and the fragment was subcloned into the
pHistx at Nhel and Xhol sites. To create pHisvengsttx,
pHisventx was cut with Ncol and Nhel and the fragment
was subcloned into pGsttx at the Ncol and Spel sites.

http://www.biomedcentral.com/1472-6750/3/8

Transfection and imaging of tissue cultures

COS-7 cells were transfected with GeneJuice (Novagen).
Between 2 and 5 days after transfection, cells were imaged
at 22°C on an Olympus IX70 microscope with a CCD
camera (MicroMax 1300YHS) controlled by MetaMorph
4.512 software (Universal Imaging).
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