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Abstract

Background: Pectinases play an important role in plant cell wall deconstruction and have potential in diverse
industries such as food, wine, animal feed, textile, paper, fuel, and others. The demand for such enzymes is
increasing exponentially, as are the efforts to improve their production and to implement their use in several
industrial processes. The goal of this study was to examine the potential of producing polygalacturonase | from
Aspergillus niger in plants and to investigate the effects of subcellular compartmentalization and protein fusions on
its accumulation and activity.

Results: Polygalacturonase | from Aspergillus niger (AnPGl) was transiently produced in Nicotiana benthamiana by
targeting it to five different cellular compartments: apoplast, endoplasmic reticulum (ER), vacuole, chloroplast and
cytosol. Accumulation levels of 2.5%, 3.0%, and 1.9% of total soluble protein (TSP) were observed in the apoplast,
ER, and vacuole, respectively, and specific activity was significantly higher in vacuole-targeted AnPGl compared to
the same enzyme targeted to the ER or apoplast. No accumulation was found for AnPGl when targeted to the
chloroplast or cytosol. Analysis of AnPGl fused with elastin-like polypeptide (ELP) revealed a significant increase in
the protein accumulation level, especially when targeted to the vacuole where the protein doubles its accumulation
to 3.6% of TSP, while the hydrophobin (HFBI) fusion impaired AnPGl accumulation and both tags impaired activity,
albeit to different extents. The recombinant protein showed activity against polygalacturonic acid with optimum
conditions at pH 5.0 and temperature from 30 to 50°C, depending on its fusion. In vivo analysis of reducing sugar
content revealed a higher release of reducing sugars in plant tissue expressing recombinant AnPGl compared to
wild type N. benthamiana leaves.

Conclusion: Our results demonstrate that subcellular compartmentalization of enzymes has an impact on both
the target protein accumulation and its activity, especially in the case of proteins that undergo post-translational
modifications, and should be taken into consideration when protein production strategies are designed. Using
plants to produce heterologous enzymes for the degradation of a key component of the plant cell wall could
reduce the cost of biomass pretreatment for the production of cellulosic biofuels.
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Background

The rising demand for sustainable energy in the world
and the availability of abundant biomass have attracted
an increasing interest in bioconversion of plant cell walls
into ethanol and other biofuels [1]. There are many chal-
lenges to developing the capability for producing ethanol
in an effective and economical fashion. After years of re-
search on the production of ethanol from lignocellulosic
biomass, one of the key impediments in this field is the
recalcitrance of the plant cell wall to breakdown. The di-
gestibility of cellulose present in lignocellulosic biomass
is hindered by many physicochemical, structural, and
compositional factors [2] and current pretreatments rely
on thermochemical technologies using high temperatures,
toxic acids, peroxides, and ammonia. The goal of pretreat-
ment is to break down the physical structure of the cell
wall and make the crystalline structure of cellulose more
accessible to cellulases. This pretreatment process may ac-
count for up to 30% of the cost of biofuel production [1].
Enzymatic pretreatment represents a more promising and
environmentally friendly technology.

The plant cell wall is mainly composed of cellulose,
hemicellulose, lignin, pectin and smaller amounts of sev-
eral other inorganic materials [3]. A cell wall component
that, particularly in dicots, is critical for tissue integrity
and accessibility to cell wall-degrading enzymes (CWDEs)
is the cohesive pectin matrix embedding the cellulose-
hemicellulose network that confers rigidity to the cell
wall [4]. Pectin is the most complex class of plant cell
wall polysaccharides comprised mainly of three pectic
polysaccharides named homogalacturonan (HG), rhamno-
galacturonan I and rhamnogalacturonan II [5]. Complete
pectin degradation requires a battery of pectinases, in-
cluding pectate lyases, polygalacturonases (PGs) and
rhamogalacturonases, pectin methylesterases and pectin
acetylesterases. However polygalacturonases, the enzymes
responsible for catalyzing hydrolysis of a-1,4-glycosidic
linkage in the a-(1,4)-linked D-galactopyranosyluronic
acid (Galp A) residues of HG, are considered a key factor
in plant tissue maceration, especially during phytopatho-
gen infection [6]. It has been observed that the addition of
a pectinase cocktail, which has PG as a component, to cel-
lulase cocktails increases the yields of glucose by 7.5% [7].
However, due to the different degree of acetylation of the
Galp A units in the HG region it is essential that the can-
didate enzyme presents a certain degree of flexibility for
efficient hydrolysis. In silico models in agreement with
mass spectrometry studies using 3 different PGs demon-
strated that PG I from Aspergillus niger (AnPGI) has a
higher tolerance towards acetylated pectin [8].

The cost of biomass degrading enzymes is widely con-
sidered an important factor in the commercialization of
lignocellulosic biomass-to-ethanol processes and the use
of microorganisms in the production of enzymes is the
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main platform currently available. One of the reasons for
high enzyme cost is the need for high volume bioreactors
which substantially increase the cost of production. The
use of plants represents an alternative for enzyme produc-
tion [9]. Transient expression of recombinant proteins in
Nicotiana benthamiana constitutes an ideal system for
screening and analysis of recombinant enzymes due to its
low cost and short time of production, where from clon-
ing to expression data can be achieved in only two weeks.
The most promising enzymes and constructs are then
usually stably transformed into plants, which offer an al-
most unlimited scale-up potential. Nonetheless, depend-
ing on the purpose, large scale protein production using
transient expression systems has been reported [10],
where 450-750 kg of N. benthamiana biomass can be in-
filtrated in 8 hours, producing 1-10 g of recombinant pro-
tein/kg of fresh weight within 7-14 days [11].

Although the expression of CWDEs in plants has been
demonstrated, accumulation levels in nuclear transformed
plants were low [12] and due to the complexity of the
plant cell wall, other enzymes remain to be explored using
this system. Several strategies have been proposed to im-
prove protein production in plants. Among them, protein
fusions can address issues of stability and aid in purifica-
tion [13]. Targeting heterologous proteins to the appropri-
ate subcellular compartment can be critical for obtaining
high levels of accumulation, since the structure and stabil-
ity of the recombinant protein is affected by its route and
final destination in the cell. In plant leaves, heterologous
proteins have been typically targeted to the apoplast, ER,
vacuole, chloroplasts and cytosol [14] by including a com-
bination of targeting and retention signal sequences in the
expression construct.

In the case of protein fusions, elastin-like polypeptide
(ELP), a pentapeptide repeat polymer (Val-Pro-Gly-Xaa-Gly)
that forms an aggregate above its transition temperature and
hydrophobin (HFBI), a small and surface-active protein
derived from filamentous fungi have proven valuable for
improving recombinant protein accumulation in plants.
Despite the fact that these peptides were originally designed
for purification, they have also been shown to increase re-
combinant protein accumulation in plants [15-17].

Using a series of constructs targeting the polygalacturo-
nase I from Aspergillus niger (AnPGI) to different subcellu-
lar compartments, we report here the effects of subcellular
targeting on the accumulation and activity of AnPGI in
leaves of N. benthamiana. We also analyze the effects of
ELP and HBFI on protein accumulation in the ER and
vacuole. Lastly we show through self-hydrolysis analysis that
leaves producing AnPGI have a higher content of reducing
sugars (up to 20 fold more) in comparison with wild type
leaves. These results provide an important step towards in-
expensive production of cell wall degrading enzymes for the
bioconversion of biomass into fermentable sugars.
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Results

Analysis of heterologous polygalacturonase | transiently
expressed in N. benthamiana

Several factors need to be taken into consideration for
achieving high levels of recombinant protein accumula-
tion in plants, including high transcript levels, correct
post translational modifications, and protein turnover.
To maintain high levels of transcripts, the double en-
hanced cauliflower mosaic virus (CaMV) 35S constitutive
promoter was used in a series of Anpgl gene expression
vectors that were designed to target the recombinant pro-
tein to five different subcellular compartments: apoplast,
ER, vacuole, chloroplasts and cytosol (Figure 1A). Agro-
bacterium cultures containing each of these vectors were
transiently co-infiltrated in N. benthamiana with an Agro-
bacterium culture containing a p19-encoding construct.
P19 is a suppressor of post-transcriptional gene silencing
from Cymbidium ringspot virus [18]. Leaves infiltrated
only with p19 were used as the negative control.

Overexpression of recombinant proteins tends to result
sometimes in chlorosis or even necrosis of the infiltrated
leaf sectors [15]. Although pectic enzymes targeted to the
apoplast in transgenic plants have been shown to impair
plant growth and fitness [19], leaves infiltrated with the
AnPGI constructs did not show any chlorotic or necrotic
phenotype by harvest time.

Analysis of transiently expressed protein in N. benthami-
ana was performed by western blot analysis of leaf total
soluble protein extracts, using a monoclonal antibody
against the c-Myc tag to determine AnPGI accumulation.
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Densitometry analysis showed high accumulation of
AnPGI at 2.5%, 3.0% and 1.9% of total soluble protein
(TSP) in the apoplast, ER and vacuole respectively
(Figure 2A). These analyses also demonstrated that the
AnPGI recombinant protein does not accumulate to de-
tectable levels when targeted to the chloroplasts or cytosol
of N. benthamiana leaves. Accumulation of AnPGI only
occurred in the secretory pathway, and the fact that
AnPGI has two N-glycosylation sites led us to ask if glyco-
sylation may be related to stability of the protein.

Recombinant AnPGI glycosylation analysis
To determine the presence of glycans, a deglycosylation
experiment on purified proteins was performed by digest-
ing AnPGI with Endoglycosidase H (Endo H) followed by
SDS-PAGE and western blot analysis. After deglycosyla-
tion with Endo H, the downshift in the band size indicates
that N-glycans were incorporated in the protein (Figure 3).
Since N-glycosylation does not occur in the cytosol or
chloroplast, this data suggests that glycosylation could be
essential for the in vivo stability of AnPGI. A similar effect
was observed for the expression of Acidothermus cellu-
lolyticus E1 endo-f3-1,4-glucanase in tobacco leaves [20].
Although in that case, the protein was observed in the
cytosol and chloroplasts but with average levels of 0.004
and 0.0003% of TSP respectively, which was more than
100 fold lower than its accumulation in the secretory
pathway.

Results of western blot analysis showed that plant-
produced AnPGI has a molecular mass of about 60 kDa

A

Apoplast -I iCUP_ | BB | Xpress | atBl | Awgl | atB2 | Camye

ER -l icuP_ | Prb | Xpess | atei | Aol | aibz | Comye | KDEL | nes |

Vacuole -l 1cUP [ IPHBI| Xpess | atei | Anpgl | awe2 | Gmye | crre

Chloroplast -| CuP_| RUBISCOTP. [ Xpress [ eawBt | gl | awb2 | Cmyo

Cytoplasm -| wup | Xpress | atBt1 | Awpgl | awez | Cmye

B

HFBI-ER -| \CUP_ | Prib | Xpress | atB1 | Amgl | =Bz |UHEBIN| Comye | KDEL

ELP-ER -| wup_ [ Pb | Xpress | ame1 | Awpgl | ems2 |ELP | Cmye | KDEL

HFBI-Vac -| cup - Xpress | atB1 |  Anpgl | auB2 - Cmye | ctep || nos

ELP-Vac -I wup  [PB | Xpress | atte1 | Ampg/ | awez |LELP| Cmye | ctPP | nos
Figure 1 Schematic representation of the diverse AnPGl heterologous expression constructs evaluated in this study: A) constructs used
for protein targeting experiments and B) constructs used to analyze the effect of fusion tags on protein expression. p35S, double
enhanced 35S promoter from Cauliflower Mosaic Virus 35S gene; tCUP, translation enhancer from the tobacco cryptic upstream promoter; nos,
nopaline synthase transcription terminator; Pr1b, tobacco pathogenesis related 1b protein secretory signal peptide; C-myc, detection/purification
tag; KDEL, endoplasmic reticulum retrieval tetrapeptide; CTPP, vacuole sorting peptide; RuBisCo T.P., rubisco small subunit transit peptide; HFBI,
hydrophobin [; ELP, elastin-like polypeptide. Schematic not drawn to scale.
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Figure 2 Accumulation and activity of AnPGl in different
subcellular compartiments. A) Accumulation of AnPGl in different
subcellular compartments. B) A N. benthamiana agroinfiltrated leaf
disc was incubated in 50 mM sodium acetate at 50°C for 24 h and
used to analyze self hydrolysis and release of reducing sugars using
the dinitro salicylic acid (DNS) method. C) Purified AnPGl was used
to confirm the difference in polygalacturonase activities when
targeted to different subcellular compartments using polygalacturonic
acid as the substrate. Accumulation results represent the average of
AnPGl levels in five different plants, and the release of reducing sugars
and protein activity were determined in triplicate. Reducing sugar
concentration was normalized using the assay results for wild-type
plants. Error bars represent + standard error.

(Figure 3). This molecular mass is substantially larger
than the predicted molecular weight of AnPGI constructs
of 41.9 kDa (36.4 kDa of AnPGI plus 5.5 kDa of the added
tags). This result is in accordance with previous results
reported in the literature, where a 55 kDa molecular
mass was determined for AnPGI by SDS-PAGE [21].

Apoplast ER Vacuole
kDa
75 — . - —
50 —
EndoH - + - + - +

Figure 3 Deglycosylation analysis of plant-expressed AnPGl
targeted to different compartments. Purified AnPGl was incubated
for 3 h in denaturing conditions in the absence (-) or presence (+)
of EndoH, analysed by SDS-PAGE under reducing conditions, and

subjected to Western blot analysis with anti-C-myc antibody.

This difference may reflect the acidic nature of AnPGI
protein, which has an estimated pI of 4.0.

The influence of subcellular targeting on AnPGlI activity
N. benthamiana leaves producing AnPGI were analyzed
for self-hydrolysis by incubating leaf discs at 50°C for
24 h and using the dinitrosalicylic acid (DNS) assay. As
expected, no significant difference in the release of redu-
cing sugars was observed in leaves infiltrated with con-
structs targeting the chloroplasts or cytosol, compared
with the negative control infiltrated with pl9 alone.
However, reducing sugars were released from tissues ac-
cumulating AnPGI in the apoplast, ER and vacuole. Also,
a higher amount of reducing sugars was released when
AnPGI was targeted to the vacuole, despite the lower
amount of accumulated protein compared with the apo-
plast and ER (Figure 2A and B). This result could mean
that post-translational modifications specific to the vacu-
ole might affect the activity of the enzyme, or that the
acidic environment in the vacuole is more conducive to
proper folding of AnPGI, and led to a more active en-
zyme. This led us to determine the specific activity of
purified AnPGI targeted to the three compartments.
Transiently produced AnPGI was purified by affinity
chromatography using the c-Myc tag fused at the C-
terminus of the protein, and purified protein was used
for a comparative analysis of AnPGI catalytic activity
when localized to the apoplast, ER or vacuole. The re-
sults showed that indeed the specific activity of AnPGI
against polygalacturonic acid is 30% higher when the
protein is targeted to the vacuole (Figure 2C) than when
it is targeted to the apoplast or ER.

The effect of ELP and HFBI fusions on AnPGlI

accumulation

Elastin-like polypeptides (ELPs) are pentapeptide repeat
polymers of Val-Pro-Gly-Xaa-Gly, where the guest resi-
due Xaa can be any amino acid except proline [22], that
aggregate above a transition temperature, T(. Due to this
property, ELPs have been explored as fusion partners for
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an inexpensive non-chromatographic method for protein
purification [16]. Besides their utility for purification,
ELP fusions have been shown to increase accumulation
levels of several heterologous proteins by 2- to 100-fold
when expressed in plants [16,17].

Hydrophobins are small fungal proteins with a size of
approximately 10 kDa, which contain a large proportion
of hydrophobic residues and eight cysteines connected
by disulfide bonds [23]. Due to their propensity to self-
assemble into an amphipathic protein membrane at
hydrophilic-hydrophobic interfaces, and their ability to
alter the hydrophobicity of their fusion partners, hydro-
phobins have been explored for purification purposes
[23]. Hydrophobins were also demonstrated to be useful
in improving the accumulation of fusion partners [24].
For example, a hydrophobin I (HFBI) gene from Tricho-
derma reesei was used as a green fluorescent protein (GFP)
fusion which led to an increase of GFP accumulation in N.
benthamiana leaves from 18% to 38% of TSP [15].

To analyze the effects of ELP and HFBI fusions on
AnPGI accumulation, fusion constructs (Figure 1B) were
transiently co-expressed in N. benthamiana with p19.
All proteins were produced, and although some degrad-
ation was observed with the ELP-ER and HFBI-ER
constructs, most of the protein was in full size form
(Figure 4A). Plants analyzed 4 days post infiltration
showed a higher accumulation of AnPGI fusion with
ELP in both the ER and vacuole when compared with
unfused AnPGI (Figure 4B). Although the ELP fusion
enhanced AnPGI accumulation in both compartments,
the effect of the fusion was more significant in the vacu-
ole, where the ELP enhanced the accumulation of AnPGI
by almost 2-fold from 1.9 to 3.6% of TSP (Figure 4B). The
presence of HFBI on the other hand was deleterious to
the accumulation of AnPGI in both compartments, with
very low accumulation in the vacuole.

To further characterize the effects of the protein fusions,
we assessed in planta self-hydrolysis and enzymatic activ-
ity for AnPGI:ELP and AnPGI:HFBI. We found that the
presence of protein fusions impaired the activity of AnPGI
resulting in a reduction of the amount of reducing sugars
released in planta (Figure 4C). The same reduction was
confirmed with the purified enzyme against its substrate,
polygalacturonic acid (Figure 4D).

Biochemical characterization of recombinant AnPGl and
its fusions

Temperature and pH optima of purified plant-produced
AnPGI were determined and were compared with previ-
ously described results of Aspergillus niger-produced
enzyme [25]. Recombinant AnPGI, independent of its sub-
cellular localization, showed similar biochemical properties
as the native Aspergillus enzyme with respect to its pH
optimum (pH 5.0) (Figure 5). However, the temperature
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optimum was found to be at least 10°C lower than results
previously reported for native AnPGI [25], presenting 80-
100% activity at a broad temperature range, from 20-40°C
(Figure 6A).

Temperature and pH optima of the ELP and HFBI fu-
sion proteins were compared with those of unfused
AnPGIL. No differences of activity at various pH values
were observed, with all proteins showing a pH optimum
at pH 5.0 (Figure 5). However, the fused AnPGI recov-
ered its native temperature optimum of 50°C and dis-
played a narrower temperature range than the unfused
enzyme (Figure 6B).

Discussion

Because of the increased interest in the conversion of
biomass to biofuels, several enzymes useful in the bio-
conversion of plant tissues to biofuels have already been
expressed using plants as bioreactors. However, the main
emphasis until now has been on the expression of cellu-
lases and xylanases targeting cellulose and hemicellulose
[26]. Pectins, especially in dicots, compose 35% of primary
plant cell walls and up to 5% of walls in wood tissue [27]
and are critical for tissue integrity and accessibility to cell
wall-degrading enzymes (CWDEs). Previous studies have
focused on the heterologous expression of polygalacturo-
nase as a bioregulator for pathogen defense or as a modi-
fier of plant cell wall pectin structure [4,28]. To test the
potential of plants as bioreactors for the production of
polygalacturonase, we produced Aspergillus niger polyga-
lacturonase I (AnPGI) in Nicotiana benthamiana and
characterized the produced enzyme.

The subcellular accumulation of AnPGI was higher in
the ER, followed by the apoplast and vacuole while no
detectable AnPGI was found when targeted to the chlo-
roplasts or cytosol. These results confirm the impact of
different subcellular compartments on the accumulation
of cell wall degrading enzymes, especially in the case of
a protein that requires post-translational modifications.
Similar results have been previously described for an-
other Aspergillus niger cell wall degrading enzyme, S-
glucosidase I, produced in stably transformed tobacco
plants [29]. f-glucosidase I accumulated to very low
levels when targeted to the chloroplasts or cytosol, and
was not functional possibly due to lack of glycosylation
[29]. The glycosylation process is initiated during protein
translocation into the ER and the addition of N-glycans
to the protein has been linked to diverse roles, including
stability against denaturation and proteolysis, fine-tuning
the charge and isoelectric point, regulating protein turn-
over [30], and has also been linked to protein activity
[31]. Although some glycoproteins may accumulate well
in the cytosol [32] and chloroplasts [33], and perform
the required biological functions, others such as AnPGI
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A Figure 4 Accumulation and activity of AnPGlI and its fusions
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method. D) The specific activity against polygalacturonic acid was
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4.0 may require glycosylation for stability and will not accu-
mulate in those compartments.

The subcellular location of AnPGI within the secretory
pathway had a distinct effect on its specific activity.
AnPGI targeted to the vacuole showed 30% higher spe-
1.0 1 cific activity than AnPGI targeted to the apoplast or ER.
This result is consistent with at least two other CWDEs
0.0 - produced in sugar cane, where activities of cellobiohy-

& _.fg/q' & c}@e FCN drolase I (CBH I) and CBH II were, respectively, five
' and two times more active when targeted to the vacuole
[34] when compared with ER-targeted proteins. As well,
0.95 the effect of subcellular targeting on protein activity has
been observed with human gastric lipase produced in to-
0.20 bacco; however, in this case, the vacuolar-targeted en-
zyme exhibited two-fold lower specific activity compared
0.18 with the same protein targeted to the apoplast or ER,
probably due to proteolytic-induced instability of this
specific protein when targeted to the vacuole [35]. In the
0.05 I I case of glycosyl hydrolases, higher specific activity was
expected when targeted to the vacuole, as proteomic
0.00 analysis of the vegetative vacuole of Arabidopsis thaliana
uncovered several glycosyl hydrolases, including a poly-
galacturonase [36], which indicates that the vacuole is a
natural compartment for these enzymes and may provide
a chemical environment that favors appropriate protein
folding and activity. Therefore, and although most of the
attention when analyzing protein expression in plants has
been directed towards protein accumulation, protein ac-
tivity may play a bigger role in the final analysis, especially
when compartmentalization results in protein with low
1 or no activity, which in many cases is due to a lack of
I post-translational modifications or protein truncation
o [29]. When compared to the previously reported specific
> activity of native AnPGI [21], plant-produced AnPGI
showed 75 times lower specific activity. However, direct
comparison of specific activities of enzymes characterized
in different studies is problematic due to experimental dif-
ferences as was pointed out by Kester et al. [21] and a
side-by-side comparison would need to be conducted.
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Figure 5 The pH profile of AnPGl transiently expressed in N.
benthamiana leaves. The purified polygalacturonase, AnPGl and its
fusions with ELP or HFBI were assayed at pH ranging from 3.0 to 6.0,
in 50 mM sodium acetate buffer and at pH 6.0 to 9.0, in 50 mM
sodium-phosphate buffers at 40°C. Each point was determined in
triplicate and shown as the average + standard error.
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Figure 6 Temperature profile of AnPGlI transiently expressed in
N. benthamiana leaves. A) Purified polygalacturonase | targeted to
different subcellular compartments and B) AnPGl fusions with ELP or
HFBI targeted to the ER and vacuole. The enzymes were assayed at
pH 5.0 and determined as the release of reducing ends of the 0.5%
polygalacturonan solution in 50 mM sodium acetate buffer. The
highest polygalacturonase activity is set to 100%. Each point was
determined in triplicate and shown as the average + standard error.
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Recently, diverse protein fusions have been explored to
increase the level of heterologous protein production in
plants using technologies such as Zera [37], ELPs [16,38]
and HBFI [15]. The advantage of using these protein fu-
sions is that besides enhancing protein accumulation in
plants, they also provide a means for their purification. In
the study presented here, ELP and HFBI tags were fused
to AnPGI and targeted to the ER and vacuole. AnPGI::ELP
transient expression in Nicotiana benthamiana leaves led
to an increase in accumulation in both compartments,
while AnPGI::HFBI transient expression led to a small re-
duction in the ER and to a drastic reduction in the vacu-
ole. This is the first report of ELP and HFBI fusions
targeted to the vacuole and the observation that ELP in-
creases accumulation while HFBI reduces accumulation is
interesting and should be further investigated. One of the
hypotheses for the lower accumulation of AnPGI::HFBI is
that HEBI, which is a globular protein with four disulfide
bonds [39], might be affecting AnPGI folding, leading the
misfolded protein to ER-associated protein degradation
(ERAD). Specifically for this study, a flexible linker con-
sisting of (GGGS); was used to separate HFBI from
AnPGI and was probably not effective enough in separat-
ing the two protein domains. One of the possible solutions
for this problem is the optimization of the linker used to
separate the two proteins. Optimization of linkers has
been shown to improve both protein expression yield and
biological activity [40]. A recent study comparing several
linkers demonstrated the need for empirical evaluation of
different linkers, and the possible beneficial effect of twist-
able linkers on activity of the fusion partners, possibly by
allowing a reorientation of the functional domains [32].
Moreover, the addition of ELP and HFBI fusions had ad-
verse effects on enzyme activity. Although these results
were not predicted, they were not completely unexpected.
Previous studies using ELP tags have shown different out-
comes on protein activity [38,41] and impact of fusion tags
on recombinant protein activity needs to be assessed on a
case-by-case basis.

More specifically in the case of AnPGI:ELP targeted
to the vacuole, because the loss of activity was directly
proportional to the increase in accumulation, the ELP
fusion may still offer a viable option in the production of
this enzyme for industrial purposes. ELPs are thermally
responsive synthetic biopolymers [22] that are valuable
for simple nonchromatographic bioseparation of recom-
binant proteins. Because of this property, and taking into
consideration the amount of enzyme that will be neces-
sary for the production of soluble sugars, the use of this
technology could represent a potential solution to lower
the enzyme cost in the process by recycling the enzyme
of interest and should be further investigated.

As the HFBI fusion can also be used for bioseparation
[24], the same mechanism could be used for recycling
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the enzyme; however in this case, as HFBI showed a det-
rimental effect on both protein accumulation and activ-
ity of AnPGI, improvements to the construct design for
increasing accumulation of the protein fusion should be
assessed prior to further developing this technology.

Although in the long term, AnPGI should be produced
directly into energy crops to reduce the costs of produc-
tion of second generation biofuels, the results achieved
here represent a step forward towards the development
of this technology. The selection of the best compart-
ment to store and maintain bioactive enzymes was dem-
onstrated, no necrosis was observed in plants producing
AnPG], indicating that this enzyme was not toxic at the
accumulation levels obtained and can be potentially pro-
duced in stable transgenic plants. However, as the ex-
pression of pectic enzymes in the apoplast has been
shown to affect plant growth and fitness [19,42] , genetic
engineering strategies like the use of inducible pro-
moters should be explored in order to avoid negative ef-
fects on plant growth. Further, storing this enzyme in
the ER or vacuole of stably transformed plants could
prevent negative effects on growth and should be ex-
plored. Moreover, the combination of plant-produced
cell wall degrading enzymes with an ELP fusion can be
promising for reducing the costs associated with enzym-
atic deconstruction of plant cell walls.

Conclusions

In conclusion, this study demonstrated the feasibility of
using plants as bioreactors for the production of active
AnPGI at high levels. Both the accumulation and bio-
activity of plant-produced AnPGI were affected by differ-
ent sub-cellular targeting of the recombinant protein, as
well as by fusion with ELP and HFBI. Such analyses
allow us to select the best combination of a sub-cellular
compartment and a fusion partner for production of en-
zymes in plants, thus maximizing their catalytic potential
in downstream applications.

Methods

Anpgl plant expression vectors

The polygalacturanase I gene from A. niger (Accession #
XP_001389562) was chemically synthesized (GenScript,
Piscateway, NJ, USA) (Anpgl) and inserted into a series
of pCaMGate plant binary expression vectors (Conley
et al, in preparation) using the Gateway technology® to
generate 9 expression constructs targeting 5 different com-
partments (apoplast, ER, vacuole, chloroplast and cytosol)
and ELP and HFBI fusions targeting the ER and vacuole
compartments. To produce these vectors, first Anpgl
was cloned into the Gateway donor vector pPDONR/Zeo™
(Invitrogen, Carlsbad, USA) and the integrity of the con-
struct was validated by sequence analysis. Using the Gate-
way cloning system, Anpgl was subsequently subcloned
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into the pCaMGate plant binary expression vectors
(Conley et al,, in preparation), derived from the pCaMterX
[43] binary vector which placed the gene of interest under
control of the double enhanced cauliflower mosaic virus
35S promoter [44] and the nopaline synthase (nos) ter-
minator [45].

For constructs destined to the secretory pathway,
downstream of the promoter, pCaMGate vectors harbor
the tCUP translation enhancer [46], the Prlb secretory
signal peptide from tobacco [47] and the Xpress tag (for
detection) followed by the AnPgl gene, a C-Myc detec-
tion/purification tag and a KDEL signal peptide, used for
ER-retrieval. For the vacuole targeting construct, the C-
terminal propeptide (CTPP) of tobacco chitinase vacu-
olar sorting signal [48] replaces the C-terminal KDEL;
and no additonal sequence was used for secretion of
AnPGI to the apoplast. For the chloroplast-targeted
construct, the transit peptide from the tobacco RuBisCo
small subunit replaces the secretory signal peptide and
for the cytosol no extra sequence was present down-
stream of the translation enhancer (Figure 1A). For the
fusion constructs, ELP and HFBI are placed in-frame
upstream of the c-Myc tag in the pCaMGate vectors,
with a (GSSS); linker separating AnPGI from either ELP
or HFBI (Figure 1B). The final expression clones were
used to transform Agrobacterium tumefaciens strain
EHA105 [49].

Transient expression in N. benthamiana and Western blot
analysis

A suspension of Agrobacterium tumefaciens strain EHA105
carrying the expression construct was mixed with an equal
amount of Agrobacterium culture containing the sup-
pressor of post-transcriptional gene silencing p19 from
Cymbidium ringspot virus [18] and co-infiltrated into
leaves of 5—-6 week old N. benthamiana plants through
the stomata of abaxial leaf epidermis using a syringe
[16]. Infiltrated plants were maintained in a controlled
growth chamber for 2 to 9 days at 22°C, with a 16 h
photoperiod. For each experiment, three leaf disks
(7 mm diameter) from infiltrated tissue were collected
from five different plants and ground in liquid nitro-
gen using 2.3 mm ceramic beads (BioSpec Products,
11079125z, Bartlesville, USA) in a TissueLyser (Qiagen®).
Total soluble protein was extracted from the ground tis-
sue in ice-cold phosphate- buffered saline (PBS), pH 7.4
supplemented with 0.1% Tween-20, 2% PVPP (polyvinyl
polypyrrolidone), 1 mM EDTA (ethylenediaminetetraace-
tic acid), 100 mM sodium acorbate, 1 mM PMSF (phenyl-
methylsulfonyl fluoride) and 1 pg/ml leupeptin. Protein
extraction from a control plant infiltrated with p19 as a
negative control was also performed under similar con-
ditions. Total soluble protein (TSP) concentration was
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spectrophotometrically determined using the Bradford
assay [50] with bovine serum albumin as standard.

Equal volume of plant extract was separated by so-
dium dodecylsulphate-polyacrylamide gel electrophoresis
(SDS-PAGE) (10%) and transferred to PVDF membrane.
To detect the recombinant protein the membrane was
incubated with primary mouse anti-C-myc monoclonal
antibody (Genscript, A00864, Piscataway, USA). The pri-
mary antibody was detected with HRP-conjugated goat
anti-mouse IgG antibody (Bio-Rad, 170-6516, Hercules,
USA) and visualized using the ECL detection kit (GE
healthcare, Mississauga, Canada) and autoradiography as
described by the manufacturer. Western blots were ana-
lysed using image densitometry with TotalLab TL100 soft-
ware (Nonlinear Dynamics, Durhan, USA). Intensities
were determined by comparison with known amounts
of a synthetic positive control protein containing a
cellulose-binding domain and a C-myc tag (synthesized
by Genscript, Piscataway, USA).

Protein purification

For the protein activity assays, total soluble protein was
extracted from plants producing AnPGI 4 days post in-
filtration (dpi) by grinding the agroinfiltrated samples in
liquid nitrogen using ceramic beads in the TissueLyser
(Qiagen®) as previously described. Samples were mixed
with six volumes (w/v) of cold PBS buffer, and the hom-
ogenate was clarified twice by centrifugation (20,000 g,
10 min at 4°C) to obtain the total soluble protein (TSP).
The c-Myc purification was performed by affinity chroma-
tography using the c-Myc tagged Protein MILD PURIFI-
CATION KIT (MBL, 3305, Woburn, USA) according to
the manufacturer’s instructions.

Deglycosylation analysis

Enzymatic deglycosylation of transiently produced AnPGI
targeted to the apoplast, ER, and vacuole was carried out
on purified protein using Endoglycosidase H (Sigma-
Aldrich, A 0810, St. Louis, USA) accordingly to the manu-
facturer’s instructions. The Endo H specificity includes all
high-mannose and hybrid type of glycans from N-linked
glycoproteins. The digestion was carried out at 37°C for
3 h followed by SDS-PAGE under reducing conditions
and western-blot analysis with anti-C-myc antibody.

Enzyme assays

In planta polygalacturonase activity was assayed by esti-
mating the amount of reducing sugar released from a
7 mm diameter leaf disk incubated in 100 pl of 50 mM
of sodium acetate solution pH 5.0 at 50°C for 24 h. The
amount of reducing sugar released was quantified by the
DNS method [51] and the reducing sugar concentration
was normalized using the assay results for control plants.
Specific activity was quantitatively estimated by measuring
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the hydrolysis of polygalacturonic acid using an equimolar
quantity of AnPGI. The reaction was carried out in 96 well
flat bottom microplates using 0.5% polygalacturonic acid
substrate in 50 mM sodium acetate buffer pH 5.0 incu-
bated at 50°C for 30 min. Galacturonic acid was used as
the standard and the amount of galacturonic acid released
was quantified by using the DNS method [51]. One unit
of PGase activity was defined as the amount of enzyme
required to release one micromole of galacturonic acid
per minute per mg of protein under standard assay
conditions.

Effects of pH and temperature

The optimum enzyme pH was measured using polyga-
lacturonic acid (0.5%) as the substrate in 50 mM acetate
buffer, pH 3.0-6.0 and 50 mM sodium-phosphate buffer,
pH 6.0-9.0 incubated at 40°C for 30 min. The optimum
temperature was determined in the range of 20°C to 90°C
in 50 mM sodium acetate buffer pH 5.0 incubated for
30 min.

Plant cell wall saccharification

Four millimeter diameter leaf discs were collected at 4
dpi and sterilized in a 1% sodium hypochlorite solution
for 5 min and washed twice with sterilized water. The
plant material was incubated at 50°C for 24 hours in a
filter-sterilized solution containing 50 mM sodium acet-
ate buffer, pH 5.0. Enzymatic saccharification efficiency
was determined as the amount of reducing sugars re-
leased and compared with untreated plant material using
the DNS assay.
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