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Abstract

Background: Trans-4-hydroxy-L-proline (trans-Hyp), one of the hydroxyproline (Hyp) isomers, is a useful chiral
building block in the production of many pharmaceuticals. Although there are some natural biosynthetic pathways
of trans-Hyp existing in microorganisms, the yield is still too low to be scaled up for industrial applications. Until
now the production of trans-Hyp is mainly from the acid hydrolysis of collagen. Due to the increasing environmental
concerns on those severe chemical processes and complicated downstream separation, it is essential to explore some

trans-Hyp production.

proline and 2-oxoglutarate.

Proline 4-hydroxylases

environment-friendly processes such as constructing new recombinant strains to develop efficient process for

Result: In this study, the genes of trans-proline 4-hydroxylase (trans-P4H) from diverse resources were cloned and
expressed in Corynebacterium glutamicum and Escherichia coli, respectively. The trans-Hyp production by these
recombinant strains was investigated. The results showed that all the genes from different resources had been
expressed actively. Both the recombinant C. glutamicum and E. coli strains could produce trans-Hyp in the absence of

Conclusions: The whole cell microbial systems for trans-Hyp production have been successfully constructed by
introducing trans-P4H into C. glutamicum and E. coli. Although the highest yield was obtained in recombinant
E. coli, using recombinant C. glutamicum strains to produce trans-Hyp was a new attempt.
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Background

Hydroxyproline (Hyp) is a specific amino acid component
of collagen. The amount of Hyps varies from 80 to 100
residues per 1000 residues in mammalian collagen, which
can be used to estimate collagen content and act as an
important indicator to collagen quality [1]. There are
five naturally occurring Hyps, including three diaste-
reomers of 4-hydroxyproline and two diastereomers
of 3-hydroxyproline. Among them, trans-4-hydroxy-L-
proline is the most abundant component in the constitu-
tion of collagen and can enhance the procollagen synthesis.
Its derivative N-acetyl trans-4-hydroxyproline (oxaceprol)
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is an atypical inhibitor of inflammation and useful for the
treatment of diseases affecting the connective tissues such
as osteoarthritis [2]. Trans-Hyp has been widely used in
medicine, biochemistry, food, cosmetic and other aspects
of industry [3]. Additionally, trans-Hyp has also been
found in the composition of some secondary metabolites
such as actinomycins and echinocandins [4].

Trans-Hyp is manufactured industrially most by acid
hydrolysis of mammalian collagen because of its rich
amount in the collagen. However, it obviously results in
many environmental issues and brings great difficulties
into the down stream processing [5]. There are several
identified pathways of hydroxyproline biosynthesis. In
animal tissue, 4-hydroxyproline is catalyzed by prolyl
4-hydroxylase, which takes peptidyl proline as substrate
rather than free proline [6]. 4-hydroxy-2-oxoglutaric acid
can be enzymatically transformed to hydroxyproline [7].
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Some bacteria or fungi have been found to form hydroxy-
proline via fermentation directly [8]. Although the titer of
product is low, these findings show the possibility of utiliz-
ing biological processes to produce trans-Hyp.

The proline 4-hydroxylases (P4Hs) have been identi-
fied from several microbial strains, which can catalyze
the hydroxylation of L-proline at the 4-position to pro-
duce trans-Hyp in the presence of 2-oxoglutarate, oxy-
gen and ferrous ion [9-11]. P4Hs have an optimum pH
range of 6.0 to 7.5 and temperature range of 30°C to
40°C. Its activity is inhibited by metal ions such as Zn**
and Cu®'. Lawrence et al. have studied the effect of
co-substrates on the hydroxylation of L-proline by P4H
and pointed that 2-oxoglutarate was essential for proline
hydroxylation since the replacement of 2-oxoglutarate with
2-oxopentanoate, 2-oxoadipate, pyruvate or 2-oxomalonate
(all at 0.5 mM) led to no detectable hydroxylation of
L-proline [10]. Although 2-oxoglutarate as the oxygen
donator is required for hydroxylation of L-proline to
4-hydroxy-L-proline in vitro, it is unnecessary to add
extra 2-oxoglutarate in vivo in the production of
4-hydroxy-L-proline by recombinant strains. 2-oxoglutarate
is a key metabolic intermediate in the tricarboxylic acid
cycle (TCA cycle) in Escherichia coli strain, which can re-
sult in the formation of hydroxyproline from glucose and
proline directly [12]. Shibasaki et al. have analyzed the
possible metabolic pathways of 2-oxoglutatate. They con-
cluded that 2-oxoglutatate can be supplied either through
the action of proline dehydrogenase (PutA) from L-proline
or through the action of isocitric dehydrogenase (Icd) from
glucose. The addition of L-proline to a glucose-containing
minimal medium had a positive effect on both the proline
4-hydroxylase activity and production level [13]. But the
availability of intracellular proline may still be limited be-
cause the biosynthesis of proline in wild type E. coli is
strictly regulated to very low level. Thus, the precursor
and co-factor in the microbial production of hydroxypro-
line need to be considered simultaneously.

Corynebacterium glutamicum is one of the most im-
portant industrial microorganisms and widely used in
amino acids, vitamins and nucleic acids production [14].
Leuchtenberger et al. has summarized the commercial
application of C. glutamicum to the fermentative pro-
duction of amino acids [15]. Lee et al. has reported a
novel glutamate and proline producing method through
the utilization of phenol in C. glutamicum [16]. Masaaki
Wachi reported a strategy for optimizing the industrial
production of amino acids by reinforcing the export sys-
tems of C. glutamicum [17]. The metabolic pathways of
amino acids are sophisticated and controlled tightly in
C. glutamicum. But C. glutamicum as the platform of
amino acid production has been studied in details and
there are lots of molecular tools used for its genetic
modifications, which contribute to C. glutamicum as one
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of the most popular host systems [18,19]. Additionally,
Ikeda et al. [20] and Kalinowski et al. [21] have completed
genome sequencing of C. glutamicum ATCC13032, which
made C. glutamicum into a new era of system biology. To
overproduce amino acids by C. glutamicum, not only
the modification of biosynthetic pathway and regulation
mechanism but also the transportation of amino acids
plays significant roles in the final yield of a particular
amino acid [22,23].

To produce trans-Hyp by microbial fermentation, it
is essential to contain both the proline pathway and
subsequent hydroxylation activity in the microbial cells.
Considering the metabolic pathway in C. glutamicum
or E. coli (Figure 1), proline and 2-oxoglutarate can be
produced from glucose. NADPH and ATP can also be
regenerated during the glucose metabolism. Although
there are some efforts being conducted in E. coli, for
example, Hyp was produced from glucose using a recom-
binant E. coli by introducing a proline 4-hydroxylase and
the mutated proB (encodingy-glutamyl kinase) gene en-
coding the feedback resistant enzyme [24]. However, the
development of recombinant C. glutamicum for hydroxy-
proline secretion has never been reported. In this study,
genes of trans-P4H from diverse sources were screened
and cloned into different C. glutamicum strains. The
recombinant E. coli expressed different genes were also
investigated. Meanwhile, a surprisingly high yield in shake
flasks by recombinant E. coli without extra addition of
L-proline was achieved.

Results and discussion

Construction of trans-Hyp producing recombinant strains

There are several genes being speculated as putative
L-proline 4-hydroxylase gene in the database, including
genes in Pseudomonas stutzeri, Janthinobacterium sp.,
Bordetella bronchiseptica RB50, Bradyrhizobium japoni-
cum, Achromobacter xylosoxidans C54 and Dactylospor-
angium. sp. Using PCR, we cloned and obtained the
putative genes of P4H from P. stutzer and B. bronchiseptica
RB50, named p4hP and p4hB. They were ligated to the
corresponding plasmids after digestion and converted to
C. glutamicum and E. coli, respectively. The length of
p4hP was 918 bps while p4hB was 924 bps. These se-
quences were 100% identical to the reported genes in
NCBI. The gene of trans-PAH from Dactylosporangium
sp. (p4hD) had been expressed in E. coli successfully and
can transform L-proline with good enzymatic properties
[11-13,24-26]. The length of p4hD was 816 bps encod-
ing a 272-amino-acid polypeptide with the molecular
weight of 29,715 daltons [11,26]. In this study, p4hD was
applied with some modifications on the nuclear bases.
The original gene sequence of p4hD was analyzed (http://
www.kazusa.or.jp/codon/) and the results showed there
were some rare codons for both C. glutamicum and
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Figure 1 The metabolism of trans-4-hydroxyproline in recombinant bacteria. 20G: 2 - 2-Ketoglutaric acid; y-GK: y- Glutamy! kinase; y-Glu-P:
y- Glutamy!l phosphate; GSADH; Glutamy! phosphate reductase; GSA: Glutamy! semialdehyde; P5C: Pyrroline - 5 - carboxylic acid; PSCR: P5C reductase;

Hyp: Hydroxyproline.

E. coli. 1t has been reported that rare codons are strongly
associated with low level of protein expression [27]. Codon
optimization for heterologous protein expression has often
been shown to drastically increase protein expression [28].
Thus, the rare codons of p4hD gene were substituted for
those used with high frequency in C. glutamicum and
the GC content was adjusted from 73% to 61% through
synonymous conversion, which was close to that of C
glutamicum. The modified gene of p4hD was synthesized
according to the above modifications (Additional file 1).

The expression of P4H is one of the important aspects
on the construction of trans-Hyp biosynthetic pathway.
Figure 2 shows the SDS-PAGE of trans-P4Hs expressed
in recombinant C. glutamicum and E. coli. All the re-
combinant trans-P4Hs were expressed as soluble pro-
teins without inclusion bodies. It was obviously that the
recombinant trans-P4Hs in E. coli were expressed much
more than those in C. glutamicum (Figure 2). Many factors
have influences on the expression of foreign proteins in-
cluding promoters, the host-vector system and cultural
conditions etc. [29,30]. Since it was the first to express
trans-P4Hs in C. glutamicum, more comprehensive studies
such as promoter selection and culture condition optimi-
zation will be considered in our future work.

Comparison of P4H activities

Oxygenases are widely applied in industry since they can
catalyze the highly specific oxyfunctionalization of unacti-
vated C-H bonds under mild conditions, especially trans-
ferring molecular oxygen to a substrate [31]. P4H belongs
to a family of 2-oxoacid-dependent dioxygenase, which is
a monomeric protein and utilizes the monomeric rather
than polymeric substrates [10]. The activities of trans-
P4Hs using recombinant whole cells in this study were
measured (Table 1). Our data indicated that the expressed
protein level and enzymatic activity was higher at 30°C.
The results also showed that the plasmids were very stable
as the plasmid stabilities of recombinant E. coli and C.
glutamicum strains were all more than 98% at the end
of fermentation.

The recombinant cells with expressing of different
genes showed different levels of catalytic activities to-
ward L-proline. The activity of trans-P4H expressed by
E. coli BL21/ pET28a-p4hD was the highest among all
the constructed recombinant strains. The new cloned
and expressed genes from P. stutzeri and B. bronchiseptica
also showed interested activities. As for different host
strains, E. coli represented better than C. glutamicum,
which may be related to the performance of corresponding
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Figure 2 Expression of trans-P4Hs in different strains. A1: £ coli BL21/pET28a-p4hD; A2: E. coli BL21/pET28a-p4hP; A3: E. coli BL21/pET28a-p4hB. B1:
C. glutamicum ATCC15940/pECXKI9E-p4hD; B2: C. glutamicum ATCC21355/pECXKI9E-p4hD; B3: C. glutamicum ATCC21157/pECXKI9E-p4hD; B4:

plasmid. Four L-proline producing strains of C. glutamicum
were used as expression host strains and the resulted re-
combinant strains showed different enzymatic activities.
The highest specific enzymatic activity among C. glutami-
cum strains was 40.7 U/mg-wet cell by C. glutamicum
ATCC13032/pEC-XK99E-p4hB. However, the specific en-
zymatic activity of recombinant E. coli/pET28a -p4hD was
up to 60.4 U/mg - wet cell. The growth of three recombin-
ant E. coli strains was similar. But there was significant dif-
ference among the recombinant C. glutamicum strains.
The recombinant C. glutamicum strains with higher spe-
cific enzymatic activities grew less than those with lower
specific enzymatic activities. Additionally, the enzymatic
activity of E. coli BL21 /pET28a -p4hD was similar to that

of E. coli W1485/pWFH1 and higher than that of E. coli
BL21/pET24-p4h1 of [12,13]. The p4hD in E. coli W1485/
pWFH1 was the original one in Dactylosporangium sp.,
while p4hD in E. coli BL21/pET24-p4h1 was modified.
Although the codon optimization in this study was de-
signed for C. glutamicum, the results indicated that it
was also successfully in E. coli.

Trans-Hyp production in flasks

The production of trans-Hyp by different recombinant
C. glutamicum and E. coli strains was also shown in
Table 1. The yields of trans-Hyp by these recombinant
strains depended both on the enzymatic activity of P4H
and cell growth. E. coli BL21/ pET28a-p4hD had the

Table 1 Comparison of trans-P4Hs activities and trans-Hyp production by different recombinant C. glutamicum and

E. coli strains

Strains Specific activities (U/mg - wet cell weight) Trans-Hyp (g/L) 0D600 (0D620)*
C. glutamicum ATCC13032/pEC-XK99E- p4hD 374+£14 0.072+0.001 55+07
C. glutamicum ATCC13032/pEC-XK99E- p4hP 207+ 1.1 0.106 £ 0.002 73105
C. glutamicum ATCC13032/pEC-XK99E- p4hB 40.7+08 0.079+0.016 54+0.03
C. glutamicum ATCC15940/pEC-XK99E- p4hD 129£05 0.103+0.001 140£0.2
C. glutamicum ATCC21355/pEC-XK99E- p4hD 359+0.1 0.087 £ 0.005 66+0.2
C. glutamicum ATCC21157/pEC-XK99E- p4hD 123+09 0.112+0.004 133+0.1
C. glutamicum 49-1/pEC-XK99E- p4hD 124+06 0.113+0.001 138£05
E. coli BL21/pET-28a -p4hD 604+18 0470+0.028 65+02
E. coli BL21/pET-28a -p4hP 222+05 0.126 £ 0.007 7.3+£0.05
E. coli BL21/pET-28a -p4hB 500+22 0.115+0.006 69+0.1

*Optical density at 600 nm for E. coli and 620 nm for C. glutamicum.
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highest yield, which was coincided of its specific enzym-
atic activity. Although the recombinant E. coli strains
grew similarly in the production medium, there was sig-
nificant difference in the production of trans-Hyp which
did not keep the same level with the specific enzymatic
activities. The productions of trans-Hyp by recombinant
C. glutamicum strains were also much less than that of
E. coli BL21/pET28a-p4hD. It was due to both the less
expression of trans-P4H and less cell growth in C. gluta-
micum. The L-proline production of four C. glutamicum
strains was also less than 1 g/L. There was little differ-
ence of trans-Hyp production among the recombinant
strains of C. glutamicum with same gene p4hD, despite
that some strains had better enzymatic performance and
proline production.

Using the recombinant strains to directly synthesize
trans-Hyp from glucose via fermentation was achieved
since both the enzymes and precursors needed in the
process were available. The over expressed foreign trans-
P4Hs catalyzed the hydroxylation of L-proline at the
trans-4 position, while 2— ketoglutarate was supplied by
glucose through TCA cycle and then oxidatively decar-
boxylated to succinate (Figure 1). It was reported that
proline was demanded in the production of Hyp by re-
combinant E. coli only with p4h gene. The carbon in
proline added during the fermentation only flowed into
amino acids synthesized from TCA cycle intermediates
and not into gluconeogenesis [13]. However, the accumu-
lated Hyp was at a relative high level even without the
addition of proline in this study. It could be understood
that Corynebacterium had the powerful biosynthetic path-
way of proline [32,33]. The biosynthetic pathway of proline
has also been identified in E. coli, which may contribute to
the synthesis of trans-Hyp by recombinant E. coli strains.
The modification of proline pathway in E. coli enhanced
the yield of Hyp, whereas the formation of Hyp can also
relieve the feedback inhibition of proline [24]. The amount
of proline (0-4 mM) promoted the production of trans-
Hyp. However, continuously addition of L-proline didn’t
improve the production yield significantly (Table 2). In this
study, the time of cultivation was significantly less than
those reported in the literatures, which might attribute to
the different media used and also indicated there was great
potential with optimization. In fact, 2.28 g/L of trans-Hyp
was produced by recombinant E. coli without adding
L-proline in flasks with a little modification of media
and 6.72 g/L was achieved by supplement only 4 mM
L-proline.

Table 2 Hyp production under different L-proline
supplementation

Supplementary addition 0 1 2 4 8 12
of L- proline (mM)
Hyp (g/L) 2.28 2.81 325 6.72 556 6.32
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In order to further increase the biosynthesis of trans-
Hyp by recombinant C. glutamicum and E. coli, alternative
approaches should be considered as well. In E. coli, the
degradation of proline should be overcome. Although the
trans-Hyp production by a putA mutant of E. coli was not
improved furthermore, the yield based on the proline
utilized was enhanced greatly. In both C. glutamicum
and E. coli, the expression of recombinant P4H as one
of the oxygenases is involved in the physiological metabol-
ism of host cells including the cofactor, co-substrate and
oxygen. Moreover, without a powerful proline synthetic
pathway in E. coli, the availability and transportation of
substrate will limit the transformation seriously.

Conclusions

In this study, two new and a modified trans-P4Hs were
expressed in C. glutamicum and E. coli successfully. Differ-
ent amount of trans-Hyp were produced by these recom-
binant strains detected. Although the yield in recombinant
C. glutamicum was less than that in recombinant E. coli,
C. glutamicum as a native proline producing strain was
worthy of further optimizing. This is the first report of pro-
ducing trans-Hyp by introducing L-proline 4-hydroxylase
into C. glutamicum.

Methods

Strains and plasmids

The bacterial strains and plasmids used in this study are
listed in Table 3. E. coli BL21(DE3) and five C. glutamicum
strains among which four were reported to produce
L-proline were used as hosts. Plasmids pET-28a and
pEC-XK99E were applied as the vectors respectively.
Trans- 4-hydroxy-L-proline was purchased from Sigma-
Aldrich Trading Co., Ltd.

Construction of recombinant strains

The full sequences of p4h encoding predicted hydroxy-
lases were amplified from the strains’ genomic DNA as
followed in Table 4. The primers used in this study for
gene cloning and plasmid construction were also as listed
in Table 4, which were incorporated Sall/EcoRI restriction
sites for recombinant E. coli and Sall/Xbal for recombinant
C. glutamicum. The PCR products were digested with
restriction enzymes above and inserted into the vector
pET-28a and pEC-XK99E respectively, which resulted into
the expression plasmid pET-28a-p4/4 and pEC-XK99E-p4/.
The inserted fragment was sequenced and verified the
identity to the anticipated sequence. Recombinant plasmid
was transferred into E. coli competent cells by chemical
CaCl, method. The preparation of C. glutamicum compe-
tent cell and electro transformation of exogenous gene
were conducted according to the method in reference [34].
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Table 3 Strains and plasmids used in this study
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Strains & plasmids Properties Source/reference
E. coli

JM109 Cloning host Our laboratory
BL21(DE3) F-, ompT, hsdS(rBB-mB-), gal, dcm (DE3) Our laboratory

C. glutamicum

ATCC13032 Wild-type Our laboratory
ATCC 15940 L-Proline production Our laboratory
ATCC 21355 L-Proline production [27]

ATCC 21157 L-Proline production [27]

49-1 Plasmids L-Proline production Our laboratory
pET-28a His,-tag, T7 promoter, Kan" Our laboratory
PEC-XK99E E. coli - C. glutamicum shuttle expression vector, Kan" Our laboratory
pET-28a-p4hP pET-28a containing the p4h gene from P. stutzeri This study
pEC-XK99E-p4hP PEC-XK99E containing the p4h gene from P. stutzeri This study
pET-28a-p4hB pET-28a containing the p4h gene from B. bronchiseptica This study
pEC-XK99E-p4hB pEC-XK99E containing the p4h gene from B. bronchiseptica This study
pET-28a- p4hD pET-28a containing the p4h gene from Dactylosporangium sp. This study
PEC-XK99E-p4hD PEC-XK99E containing the p4h gene from Dactylosporangium sp. This study

"indicates resistant.

Media
Luria broth (LB) medium, tryptone 10 g/L; yeast extract
5 g/L; solium chloride 10 g/L, was used for seed cultiva-
tion of E. coli strains. LBG medium containing 1% glucose
additionally was used for C. glutamicum seed cultivation.
The medium (MEC) for batch culture of E. coli in shake
flasks contained: glucose 10 g/L, glycerol 5 g/L, CO(NH,),
10 g/L, yeast extract 10 g/L, K,HPO, 1 g/L, NaCl 2 g/L,
MgSO,-7H,0 0.2 g/L, FeSO,-7H,O 1 mM, MnSO,-
4H,0 10 mg/L, ZnSO, - 7H,0 10 mg/L, VB, 200 ug/L.
The medium (MCG) for batch culture of C. glutamicum
in shake flasks contained: glucose 10 g/L; glycerol 5 g/L;

CO(NH,), 10 g/L; corn syrup 15 g/L; K;HPO, 1 g/L; NaCl
2 g/L; MgSO4-7H,0 0.2 g/L; FeSO4-7H,O 1 mM;
MnSO,-4H,O 10 mg/L; ZnSO,-7H,O 10 mg/L; VB,
200 mg/L; ethyl alcohol absolute 1.5%.

Cultivations

The seed culture of E. coli strains was prepared by trans-
ferring 1 ml of glycerol stock to 30 ml of LB medium in
a 250-ml flask, which was incubated overnight at 37°C
and 220 rpm. Then 6% of seed culture was inoculated into
30 ml of MEC medium in a 250 ml flask and incubated at
37°C and 220 rpm for about 36 h. The initial pH of the

Table 4 Primers used in this study for gene cloning and plasmid construction

Primer name Sequences (5" — 3’) Source
p4hP —pET-28a-S TGTAGAATTCATGATCTCACCTGCGCA P. stutzeri
p4hP —pET-28a-A ATATAAGCTTCTAGCTGCCGACCAGCTTC

p4hP -pEC-XK99E-S TAATGAATTCGTGAACCCTATGCAAGC P. stutzeri

p4hP -pEC-XK99E -A
p4hB-pET-28a-S
p4hB —pET-28a-A
p4hB -pEC-XK99E-S
p4hB -pEC-XK99E -A
p4hD —pET-28a-S
p4hD —pET-28a-A
p4hD -pEC-XK99E-S
p4hD -pEC-XK99E-A

ATAGTCTAGATCAGAGATACTGTTGCGG
TGATGAATTCCTAGCGCTCGACCAGTTT
CTGCAAGCTTATGATTTCACCTGCTCAGG
TATAGAATTCATGATCTCACCTGCCCAG
TGTCTCTAGATTATTCCACCAGCTTCAG
TATAGAGCTCATGCTGACTCCGACCGA
GATCAAGCTTTTAAACTGGCTGGGCAAG
TATAGAGCTCATGCTGACTCCGACCGA
GATCTCTAGATTAAACTGGCTGGGCAAG

B. bronchiseptica

B. bronchiseptica

Dactylosporangium sp.

Dactylosporangium sp.
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medium was adjusted to 7.4. Induction (0.5 mM IPTG)
was performed when the optical density was around 0.5,
and the growth temperature was reduced from initial 37°C
to 30°C. The cultivation of C. glutamicum was similar to
that of E. coli expect that they were conducted at 30°C in
the whole process using MCG medium. Experiments were
performed in parallel on the same media without any
induction.

Trans-P4H activities

The intracellelular frans-PAH activities were measured by
the whole-cell reaction procedures. After 8 hours induction
in fermentation medium, cells were harvested by centrifuga-
tion at 12000x g for 20 min. The harvested cells were resus-
pended in the reaction mixture as followed. Each reaction
mixture contained 80 mM 2-[N- morpholino] ethanesulfonic
acid (MES) buffer (pH 6.5), 4 mM L-proline, 8 mM 2 - keto-
glutarate, 2 mM FeSO4, 4 mM L-ascorbic acid The final cell
concentration was about 100 g wet weight/L. The reaction
mixtures were incubated at 35°C for 10 min and then cellular
activity was inactivated completely by heat treatment at
100°C and 5 minutes. The amount of trans-4-hydroxy-L-
proline in the supernatant of each mixture after centrifuga-
tion was determined. The amount of the enzyme which
forms 1 nmol of Hyp in one minute was defined as 1 U.

Analytical methods

The cell concentration was determined by measuring the
optical density of appropriately diluted sample at 600 nm
(E. coli, ODggp) and 620 nm (C. glutamicum ODgyo) with a
UV-visible spectroscopy system (Xinmao, Shanghai, China).
Hyp was oxidized by Chloramine T and analyzed using
spectrophotometric determination [35].

Statistical analysis

All measurements for growth, trans-Hyp production and
trans-P4H activity were performed in triplicate, and the
data were averaged and presented as the mean + standard
deviation.
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