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Abstract

Background: Enhancement of enzymatic digestibility by some supplementations could reduce enzyme loading
and cost, which is still too high to realize economical production of lignocellulosic biofuels. A recent study indicates
that yeast hydrolysates (YH) have improved the efficiency of cellulases on digestibility of furfural residues (FR). In the
current work, the components of YH were separated by centrifugation and size exclusion chromatography and
finally characterized in order to better understand this positive effect.

Results: A 60.8% of nitrogen of yeast cells was remained in the slurry (YHS) after hydrothermal treatment. In the
supernatant of YH (YHL), substances of high molecular weight were identified as proteins and other UV-absorbing
compounds, which showed close molecular weight to components of cellulases. Those substances attributed to a
synergetic positive effect on enzymatic hydrolysis of FR. The fraction of YHL ranged from 1.19 to 2.19 mL (elution
volume) contained over 50% of proteins in YHL and had the best performance in stimulating the release of glucose.
Experiment results proved the adsorption of proteins in YHL on lignin.

Conclusions: Supplementation of cellulases with YH enhances enzymatic digestibility of FR mainly by a
competitive adsorption of non-enzymatic substances on lignin. The molecular weight of these substances has a
significant impact on their performance. Different strategies can be used for a good utilization of yeast cells in terms
of biorefinery concept.
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Background
Expected shortage of fossil fuels and the concern for cli-
mate change has increased the interest for the production
of fuels and chemicals from renewable sources. Ethanol is
already being produced by the fermentation of sucrose
(from sugarcane or sugar beets) or starch (from corn or
wheat) carbohydrate-rich substances [1]. However, to meet
increasing demands for fuel, and to avoid conflict between
food and energy production, it will be necessary to use
other kinds of biomass, and in this context, lignocellulosic
materials have attracted interest as sources of fermentable
sugars [2]. Furfural residue (FR) is an industrial waste in
China. The corncobs are heated at high temperature
ranged from 170°C to 185°C under acidic conditions to
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hydrolyze arabinoxylans into xylose, and then the xylose
are converted into furfural. The cellulose and lignin in the
cobs are relatively stable under these conditions, so the resi-
dues left over after the furfural production are enriched in
cellulose (about 45%), which can be easily hydrolyzed by
cellulases. Currently, FR is only recycled as boiler fuel, but a
potential use could be as raw materials for biofuel produc-
tion [3].
The utilization of lignocellulosic feedstocks for biofuel

production requires the deconstruction of their polysac-
charides to free sugars, mainly by acid and enzymatic hy-
drolysis. Enzymatic biodegradation is one of the most
promising options for production of lignocellulosic bio-
fuels as mild and environmentally friendly process. How-
ever at the same time, the lignin-carbohydrate complexes
pose much challenge to decrease enzyme dosage in
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lignocellulose digestibility, while reducing the cost of etha-
nol production [4-6]. Other properties, including surface
properties and crystallinity, impede enzymatic hydrolysis,
which has been investigated in the literature recently [7].
It is well know that pretreatment is required to improve

enzymatic digestibility on lignocellulose [2]. Previous stud-
ies have been showed that post-pretreatments and addition
of some supplements increase the hydrophilicity of lignin
[8-10]. Some examples are the hemicellulase supplementa-
tions which stimulate glucose release by depolymerisation
of hemicelluloses [11,12]. Surfactants enhance release of
free glucose by reducing the interaction between enzymes
and lignin [13]. Non-protein surfactants contain synthetic
surfactants as Tween-20, Tween-80, PEG 4000 and PEG
6000 [13-15], and natural surfactants as Gleditsia saponins
[16]. Bovine serum albumin (BSA) is a protein surfactant
and its enhancement is mainly due to surface activity than
catalytic activities [11].
As the main microorganism for bioethanol production,

yeast contains about 8% of nitrogen (equivalent to 50% of
protein). Being rich in proteins attribute to that co-
product of 1G-ethanol industry could be marketed as ani-
mal fodder and the feasibility of the use of spent cells as
nutrient sources [17]. Occasionally, it was found that yeast
hydrolysates (YH), obtained by hydrothermal treatment,
can increase enzymatic digestibility of furfural residues
(FR) [18]. In the current work, YH was used as a cheap
supplementation of commercial cellulases and the compo-
nents of YH were separated by centrifugation and size ex-
clusion chromatography and then characterized. The aim
of this study is to better understand hydrothermal treat-
ment process of yeast, find out the mechanism for YH en-
hancement of enzymatic digestibility and evaluate the
absorption capacity of YHL protein on lignin.
Results
Hydrothermal treatment of yeast
After centrifugation, 159 g of YH was separated into
two phases, 132.3 g of supernatant (YHL, 83.8%) and
24.6 g of slurry (YHS, 16.2%) (Figure 1). The total mass
loss was about 1.4% after hydrothermal treatment and
centrifugation. The dry matter content of YHS and dis-
solved matter content (DMC) of YHL were 23.5 and
2.07%, respectively. As seen in Figure 1, the nitrogen
content of YHS was 7.25% and the protein concentra-
tion of YHL was 0.75 g/L, accounting for 2.28% of total
yeast nitrogen. One explanation for the relative small
nitrogen in YHL could be that there is nitrogen loss
during hydrothermal treatment and some nitrogen may
not be detected by the Bradford method. Soluble sugars
were not detected in the YHL according to the HPLC
analysis. The matter recovery after hydrothermal treat-
ment and centrifugation was 94.6%.
The effect of YHS on enzymatic hydrolysis and the
relative roles of pH control and YHL addition
For comparison, the addition of YHS and YHL in the FR
was tested in hydrolysis experiments. YHL and YHS were
separated by centrifugation, followed by being added to
hydrolysis. The yield of enzymatic hydrolysis was calcu-
lated based on FR cellulose (Figure 2). Based on the datas
of enzymatic hydrolysis of YH [18], when the YHS was
supplemented for the FR hydrolysis, the glucose yield from
FR was calculated to be 23.1%, which was lower than that
without YHS and YHL (31.9%) at neutral pH (Figure 2).
At neutral pH, the glucose yield with YHL (71.6%) was
two times higher than that without YHS and YHL (31.9%)
(Figure 2). Thus, these results could support that YHS had
almost no effect on the digestibility [18].
The pH and YHL addition are likely to have an effect

on the enzymatic hydrolysis of FR. In general, the opti-
mized pH of enzymatic hydrolysis is well recognized to
be 4.8. When neither of YHL and YHS was added, con-
trolling pH at 4.8 increased the glucose yield from 31.9
to 67.2%. The addition of YHL shortened the gap be-
tween the glucose yields at different pH values (Figure 2).
For instance, the yield of hydrolysis at neutral pH with
YHL was higher than that at pH 4.8 without YHL. These
results indicated that the interference of lignin on enzymes
had much higher impact on enzymatic hydrolysis than
non-optimum pH. The enzyme activity was not detected
in YHL. When YHL was added to control experiments
that use Cellulolytic Enzyme Lignin as sole substrate, Filter
paper activity (FPU) in the liquid fraction samples at 4, 24
and 72 h were increased by 0.1%, 6.6% and 5.7%, respect-
ively, indicating that YHL is a protein surfactant and its
enhancement is mainly due to surface activity than cata-
lytic activities [11,13].

Comparison of molecular weight distribution between
YHL and cellulases
As seen in Figure 3, two similar peaks were presented in
elution curves (UV at 280 nm) of Celluclast 1.5 L and
YHL, indicating that the components of cellulase and
YHL showed a close molecular weight. It should be noted
that the conductivity curve of Celluclast 1.5 L had a posi-
tive peak in retention time of 1.67 min (accumulated vol-
ume 5 mL) while an adverse peak was found for YHL. The
elution curve of Novozym 188 was similar to that of Cellu-
clast 1.5 L except for a straight line of conductivity curve
(data not shown).

Protein and mass distribution between fractions of YHL
Fractions of YHL were collected in 32 tubes separately
(Figure 1). The protein concentration of fraction in each
tube was detected with the Bradford method, except a rela-
tively small fraction, 0.15 mL, in tube 4 (Figure 1). Fraction
in tube 2 contained 96.97 mg/L protein, accounting for



Figure 1 Scheme for separating components of yeast hydrolysate (YH).
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about 51.8% of sample proteins. The protein concentra-
tion in tube 3 was out of linear range of the Bradford
method and proteins were not detected in other tubes.
Figure 4 shows the relative purity of protein in YHL at dif-
ferent UV elution curves (254 and 280 nm) [19,20]. The
lowest A254/A280, about 1, was found at the top of peak 1
(elution volume of 1.48 mL), meaning that the purity of
protein in tube 2 was the highest (Figure 4). These results
were consistent with protein concentration by the Bradford
method. A254/A280 increased with increasing mobile
phase volume from 2.11 to 6.25 mL, indicating that the
fractions in tube 5 and 6 contained certain amount of other
UV-absorbing compounds (Figures 4 and 5). Those com-
pounds are inferred to attribute to the adverse conductiv-
ity peak in Figure 3. However the molecular weight of
proteins and other UV-absorbing compounds in tube 2, 5
and 6 showed the close molecular weight to components
of Celluclast 1.5 L and Novozym 188.
DMC was detected to investigate the mass distribu-

tion between fractions of YHL as UV detector cannot
determine substances without ultraviolet absorption
(Figure 5). DMC of sodium citrate buffer is theoretic-
ally calculated to be 25.54 mg/mL. In practice, it was
21.68 mg/mL, showed as dotted line in Figure 5. One
explanation for this could be that some reactions dur-
ing the oven-dried process (105°C) decrease the value.
Figure 5 shows that the DMC of fractions in tube 2, 5,
15, 21 and 30 were higher than 21.68 mg/mL. A close
DMC was found between fractions in tubes 9, 13 and
27 and sodium citrate buffer, indicating that the mini-
mum components of YHL were transferred into those
tubes. Results demonstrated that substances with differ-
ent molecular weight were formed during hydrothermal
treatment and those of high molecular weight were
predominating.

The effect of YHL fractions with different molecular
weight on enzymatic hydrolysis
The effect of fractions in tubes 2, 5, 6, 10, 15, 21 and 30 on
enzymatic hydrolysis were investigated at a relatively high
DMC (Figure 5). As seen in Figure 6, the glucan digestibil-
ity was improved in tubes 2, 5 and 6 at 24 and 48 h. Frac-
tions in tube 2 had a better performance than fractions
between tubes 5 and 6. The highest concentration of pro-
tein is supposed to be the reason for the best performance
of fraction in tube 2 [3]. After 72 h, the glucose yield frac-
tion in tube 5 seems not be improved, probably due to that
enzyme effectiveness dropped over time by heat-induced
denaturation [21,22]. No significant effect of fractions elut-
ing after 7.5 mL (tube 10, 15, 21 and 30) on hydrolysis was
observed (Figure 6). The molecular weight of substances in
fractions is supposed to have an effect on their perform-
ance. Hydrolysis with the whole YHL obtained the highest
yield, indicating that there were a synergy between fractions
in tube 2, 5 and 6. However when the amount of YHL was
decreased from 12.6 g (Figure 2) to 6.29 g (Figure 6), the
hydrolysis efficiency decreased slightly, which is consistent
with the previous study [18].

Competitive adsorption of non-enzymatic protein from
YHL and cellulases on lignin
After hydrolysis of 3% FR, the nitrogen content of the
dried residues was 0.84%. For that with YHL, it was 1.27%.
There was 3.61 gram of liquid per gram of dried residue in
the slurry. When YHL were used in enzymatic hydrolysis,
the nitrogen in the residual liquid should be deducted to



Figure 2 The effect of 2.43 g (YHS) and 12.6 g (YHL) on
enzymatic hydrolysis of 3% furfural residues at 45°C.
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determine how many proteins were absorbed on lignin.
Assuming that all nitrogen from yeast distributes in
YHL and YHS and there is no nitrogen loss during
hydrothermal treatment, the maximum nitrogen con-
tent of YHL is 2.05 mg/mL based on the total nitrogen
of yeast and the amount of nitrogen of YHS. When YHL
is diluted by 2 times in enzymatic hydrolysis (15 g YH
Figure 3 Comparison of the molecular weight distribution of cellulase
were added to enzymatic hydrolysis with a total working
weight of 30 g), the maximum nitrogen content in li-
quid phase is 1.03 mg/g hydrolysate. A 3.61 gram of hy-
drolysate contained 3.72 mg of nitrogen. The amount of
nitrogen absorbed on lignin was indirectly estimated by
subtracting the amount of free nitrogen in the residual
hydrolysate. More than 0.63 mg nitrogen from YHL
(12.7-8.35-3.72 = 0.63 mg) was absorbed on 1 gram of
lignin. Competitive adsorption of non-enzymatic pro-
teins and cellulases on lignin is probably a good reason
for the enhancement of glucose yield [4,13].

Discussion
The hemicellulase addition is not suitable for hydroly-
sis of materials that contain a little hemicellulose content
as FR. The supplementations of commercial cellulases with
other enzymes as hemicellulases that contribute novel
catalytic activities are simple methods to enhance the fer-
mentable sugar yields. Lignin controlled cellulose accessi-
bility by restricting xylan accessibility to some extent, so
hemicellulases promote enzymatic hydrolysis of cellulose
by depolymerisation of hemicelluloses [11]. However, the
pretreatment severity, fermentation mode and substrate
composition would affect the efficiency of hemicellulase
addition [12]. The xylosidase enhancement was not a gen-
eral protein effect because BSA at similar concentration
did not increase hydrolysis yields from corn stover [11].
The xylanases supplementation was observed to be only
positive effect in SHF (separate hydrolysis and fermenta-
tion) but not in SSF (Simultaneous saccharification and fer-
mentation) mode [5].
Lignin poses a bigger challenge to low enzyme dosage

during the enzymatic hydrolysis process than hemicellu-
loses. Two strategies, including increasing the hydrophilicity
s and YHL.



Figure 4 Comparison of elution curves of YHL at 254 and 280 nm.
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of lignin and removing lignin by post-treatment, have
been employed in reducing the interference of lignin on
enzymes [8,15]. When different substrates are used,
quantifying the relative roles that lignin might play in
either binding the enzyme or limiting the swelling of
the cellulose is helpful to decide which methods should
be used [4]. Besides the end product type affects the
severity of post-treatment and the degree of delignifi-
cation [23]. The surface active additives are the most
common supplementations used during hydrolysis and
pretreatment process [15]. According to a previous
study, addition of 2.5-5.0 mg/mL (123–245 mg/g of the
substrate) of BSA was found to be a highest digestibility
Figure 5 The total dissolved mater content (DMC) of fractions of YHL
in pretreated softwood [4]. Other study showed an
optimum BSA concentration of 25 mg/g DM using wheat
straw [13]. Both studies suggested that BSA to reduce the
adsorption of cellulases as surfactant on enzymatic hydroly-
sis. For instance, the maximum adsorption capacities of
pretreated corn stover were ranged from 38.7 to 67.5 mg/g
cellulose (corresponding to 77.8-124.6 mg/g substrates)
[21]. In this study, the protein concentration used in this
study ranged from 0 to11.77 mg/g FR. Since non-protein
substances (fractions in tube 5 and 6) could enhance the
sugar yield simultaneously, it is inferred that the potential
sites in FR were not occupied by proteins completely,
meaning that the optimum protein range of FR would
.



Figure 6 The effect of fractions of 6.29 g YHL on enzymatic hydrolysis of 3% of furfural residues at 45°C.
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be higher than 11.77 mg/g FR. However, although these
sites were not all associated with proteins, further addi-
tions increased hydrolysis yield slightly, indicating that
non-protein substances played an important role in en-
hancement of sugar yield. Interestingly, it has been found
that the levelling off concentration of the surface active
performance of YHL was about 30 g/L (15 g YH were
added to enzymatic hydrolysis with a working weight of
30 g) [18]. Possibly, it is difficult to improve the per-
formance of YHL further only by changing the severity
of hydrothermal treatment. The use of diluted acid can
improve the performance of YH as nutrients but may
decrease the molecular weight of product, thus result-
ing in losing the function of enhancement of enzymatic
hydrolysis [17].
This study showed that fermentation residues from

bioethanol process can be reused to produce YHL or pro-
teins that can improve enzymatic hydrolysis. The process
had such advantages that there is no need to dry YHL and
to deal with storage and transport, thus resulting in less
production cost. When byproduct of dry-mill starch to
ethanol production is used, the majority of yeast nitrogen
will be dissolved in YHS, thus indicating that the feasibility
of marketing YHS as animal fodder. Other studies gave
methods to utilize carbohydrates in YHS [3-27]. Integra-
tion process of 2G bioethanol with 1G has been proved to
be competitive with 1G bioethanol [25]. This study could
provide a potential way to utilize the fermentation residues,
which is difficult to be marketed as animal fodder [3].
The YHL supplementation is supposed to be positive

effect on SSF mode. Hydrolysis experiments revealed
that there were few inhibitors produced during hydro-
thermal treatment. The addition of YHL will reduce the
decrease of enzyme activity due to non-optimal pH in
SSF as the interference of lignin on enzymes has much
higher impact on enzymatic hydrolysis than the decrease
of enzyme activity due to non-optimum pH. Besides
YHL are inferred to be nutrients for fermentation ac-
cording to a previous study [18]. Further investigations
are needed, however, to use SDS-PAGE and mass spec-
trometry for characterization of the elution fractions to
balance the relative contribution of YHL as fermentation
nutrients and hydrolysis promoter. Besides more works
are needed to investigate the effect of substances with
low molecule weight on the impurities of fermentation
broth and product purification cost, especially for lactic
acid fermentation [28].

Conclusions
The majority of nitrogen and carbohydrate of yeast cells
were transferred into YHS during hydrothermal treatment.
The increase in enzymatic convertibility of FR is only due
to YHL. There were soluble substances of different mol-
ecule weight in YHL and those of high molecular weight
were predominating, including non-enzymatic proteins
and other UV-absorbing compounds, which showed close
molecule weight to components of cellulases. Supplemen-
tation of cellulases with YH enhanced enzymatic convert-
ibility mainly by competitive adsorption of proteins and
cellulase on lignin. Since YH can be used as nutrients for
fermentation, different strategies can be used for a good
utilization of yeast cells in terms of biorefinery concept.
Methods
Raw material preparation
Raw furfural residue was kindly provided by Chunlei
Company (Hebei province, China). The initial pH of the
material was between 2 and 3. After raw furfural residue
was water-rinsed until neutral pH and then dried at 60°C
for 12 h. Saccharomyces cerevisiae was used in the form of
dry yeast (Angel Yeast Company Ltd, China).
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Fractionation of yeast hydrolysate (YH)
Nine grams of yeast cells were added into a 180 mL-sealed
pressure flask. Each flask was contained 150 mL of dis-
tilled water and then autoclaved at 121°C for 30 min [18].
The YHS and YHL were collected by centrifugation at
1368 × g for 6 min. The determination of moisture content
of YHS was made in an oven-dried at 105°C (Figure 1).
The pH of YHL was about 6. A 1 mL supernatant was
oven-dried (105°C) and the residual solid was quantified
to determine DMC of aqueous phase. DMC were calcu-
lated as follows:

DMC mg=mLð Þ ¼ The residual solid after oven‐dried mgð Þ
The liquid volume mLð Þ � 100%

Component separation of YHL
Before separation, YHL was filtered using 0.45-μm fil-
ters. The separation of each component was made on an
AKTA purifier (Amersham Pharmacia Biotech; Uppsala,
Sweden) equipped with a pump (P-920), UV monitor
(UPC-900), a valve (INV-907), a mixer (M-925), and a
fraction collector (Frac-920). The separation was per-
formed in a 5 mL HiTrap desalting size exclusion col-
umn at room temperature with 3 mL/min of sodium
citrate buffer (pH 4.80 and 50 mM) as mobile phase.
The injection volume was 0.5 mL and injections were
carried out 14 times to separate 6.29 g of YHL (7.5 g YH
contains 6.29 g YHL). When there is no peak, Frac-920
collects 1 mL fraction in each tube (Figure 1). When there
is a peak, the peak will be collected as one large fraction
or in several tubes each collecting at most 1 mL fraction
(Figure 1). A 0.33 mL of Celluclast 1.5 L was added to a
10-mL volumetric flask and diluted with sodium citrate
buffer to obtain 40 g/L solution for component separation.

Enzymatic hydrolysis
The enzymatic hydrolysis (EH) of furfural residue was per-
formed using Celluclast 1.5 L (with activity of 75 FPU/
mL) and supplemented with the β-glucosidase preparation
Novozym 188 (43.9 IU/mL). Both enzyme preparations
were provided by Novozymes A/S, Bagsvaerd, Denmark.
The filter paper units (FPU) were determined according to
the IUPAC method [29] and β-glucosidase activity by [30].
The EH was made using 3% FR in 60-mL conical flasks
with a working weight of 30 g. The amount of Celluclast
1.5 L and Novozym 188 added corresponded to a 12.5
FPU and 13.5 IU/g cellulose of FR, respectively. The flasks
were kept in a shaker bath at a temperature of 45 ± 0.1°C
at 150 rpm. YHL was used in hydrolysis experiments at
one of two scales. Small and large scale hydrolyses were
done using 6.29 and 12.6 g of YHL, respectively. The ini-
tial reaction mass was kept 30 g by adding sodium citrate
buffer (pH 4.80 and 50 mM). After 144 h, the insoluble
phase of hydrolysate (mainly rich in lignin) was collected
by centrifugation at 1368 × g for 6 min and then oven-
dried at 105°C. Duplicate samples were withdrawn at 0, 4,
6, 24 and 48 h for carbohydrate analysis by HPLC. Liquid
fractions were separated by filtration and subsequently
stored at −18°C awaiting analysis.
In control experiments, EH were carried out by using

0.425 gram of cellulolytic enzyme lignin as sole substrate
with or without 6.29 g of YHL. Duplicate samples were
withdrawn at 4, 24 and 72 h for FPU analysis.

Cellulolytic enzyme lignin isolation
Enzyme hydrolysis of FR was carried out as above without
the addition of YHL. The hydrolysate at 96 h was filtered
and the residues were collected for a second hydrolysis.
After the second hydrolysis using identical amounts of cel-
lulase and β-glucosidase, the residues were recovered by
filtration and washed with 400 mL of distilled water (about
50°C), followed by aqueous dioxane extraction of ball-milled
wood meal [31]. The final lignin was put into vacuum oven
and dried at room temperature. The lignin samples were
ground and screened through 40 mesh.

Compositional analysis
The chemical composition of water-rinsed furfural residue
(FR) and yeast were analysed and prepared according to
the standard procedure by NREL [32]. FR composition on
an original dry weight (DW) residue basis was glucan,
48.2%; Klason lignin, 43.3%; and ash, 6.42%. Yeast has a
composition of glucan, 18.4%; protein, 48.1%; and man-
nan, 2.77%. The total nitrogen content of YHS and the lig-
nin residue was determined by the conventional Kjeldahl
method [33]. The protein content was obtained by multi-
plying the elemental N content by the universal factor of
6.25. The protein content of YHL was measured with the
Bradford method using BSA as a standard [34].

Sugar analysis
Previous analysis, the hydrolysates were centrifuged at
1368 × g for 6 min and filtered using 0.20-μm filters.
Monosaccharides were quantitatively determined on an
Aminex HPX-87P column at 85°C with 0.6 mL/min water
as eluent. The HPLC system used as a Waters 2695e
(Milford, MA, USA), comprising a Waters performance-
PLUS vacuum degasser, a Waters four channels solvent
delivery system, a Waters high temperature column oven,
a Waters 2414 refractive index (RI) detector and a Waters
plus auto-injector. All experiments were performed in du-
plicates, and the analysis was carried out at least three
times for each sample.
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