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Abstract

Background: Fungal laccases are multicopper oxidases with huge applicability in different sectors. Here, we
describe the development of a set of high-throughput colorimetric assays for screening laccase libraries in directed
evolution studies.

Results: Firstly, we designed three colorimetric assays based on the oxidation of sinapic acid, acetosyringone and
syringaldehyde with λmax of 512, 520 and 370 nm, respectively. These syringyl-type phenolic compounds are re-
leased during the degradation of lignocellulose and can act as laccase redox mediators. The oxidation of the three
compounds by low and high-redox potential laccases evolved in Saccharomyces cerevisiae produced quantifiable
and linear responses, with detection limits around 1 mU/mL and CV values below 16%. The phenolic substrates
were also suitable for pre-screening mutant libraries on solid phase format. Intense colored-halos were developed
around the yeast colonies secreting laccase. Furthermore, the oxidation of violuric acid to its iminoxyl radical (λmax

of 515 nm and CV below 15%) was devised as reporter assay for laccase redox potential during the screening of
mutant libraries from high-redox potential laccases. Finally, we developed three dye-decolorizing assays based on
the enzymatic oxidation of Methyl Orange (470 nm), Evans Blue (605 nm) and Remazol Brilliant Blue (640 nm) giving
up to 40% decolorization yields and CV values below 18%. The assays were reliable for direct measurement of lac-
case activity or to indirectly explore the oxidation of mediators that do not render colored products (but promote
dye decolorization). Every single assay reported in this work was tested by exploring mutant libraries created by
error prone PCR of fungal laccases secreted by yeast.

Conclusions: The high-throughput screening methods reported in this work could be useful for engineering lac-
cases for different purposes. The assays based on the oxidation of syringyl-compounds might be valuable tools for
tailoring laccases precisely enhanced to aid biomass conversion processes. The violuric assay might be useful to pre-
serve the redox potential of laccase whilst evolving towards new functions. The dye-decolorizing assays are useful
for engineering ad hoc laccases for detoxification of textile wastewaters, or as indirect assays to explore laccase ac-
tivity on other natural mediators.
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Background
Laccases catalyze the oxidation of a variety of substituted
phenols and many other aromatic compounds without
any other requirement than oxygen from air. As a result,
these multicopper oxidases are promising green biocata-
lysts for several industrial sectors such as textile, food,
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wood and pulp, bioremediation, organic synthesis or elec-
trocatalysis [1-3]. Fungal laccases and, in particular, the
high-redox potential laccases (HRPLs) secreted by white-
rot basidiomycetes, exhibit high biotechnological applic-
ability due to the wider range of reducing substrates that
can be oxidized at the T1 copper site (E0 ≈ + 0.8 V, [4]).
Lignin biodegradation is an oxidative process carried

out by white-rot fungi in which the breakdown of aryl-
ether (β-O-4) linkages and the oxidative degradation of
the side chains from the p-hydroxyphenyl (H), guaiacyl
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(G) and syringyl (S) lignin units, releases a set of phen-
olic compounds (acids, ketones and aldehydes) [5]. Some
of them (e.g. acetosyringone, syringaldehyde, p-hydroxy-
cinnamic acids) show remarkable activity as laccase
redox mediators. Once oxidized by fungal laccases, they
act as diffusible electron shuttles, promoting the oxidation
of the own lignin polymer and a variety of different recal-
citrant aromatic pollutants [6-9]. In recent findings we
have highlighted the biotechnological potential of fungal
laccases and their natural redox mediators for improving
the conversion of plant biomass in the modern integrated
lignocellulose biorefinaries [10]. Moreover, sinapic acid,
acetosyringone and other bioactive compounds with anti-
bacterial and antioxidant properties [11,12] can be used to
add new properties to cellulose or wood fibers by grafting
reactions catalyzed by laccase [13]. Other phenolic com-
pounds that can be extracted from wood lignin like syrin-
galdehyde or vanillin provide flavor and fragrance or are
used as chemical precursors for pharmaceuticals [14,15].
Indeed, the occurrence of lignin-derived phenolic com-
pounds has been profusely described during the processing
of lignocellulosic materials. Black liquors from pulp cook-
ing constitute low-cost sources of natural mediators which
can be applied in laccase-mediator systems for Totally-
Chlorine-Free bleaching of paper pulps [16]. Lignin-related
phenolics are also released during the thermo-chemical
pretreatment of lignocellulose for bioethanol production,
inhibiting the subsequent fermentation step [17]. Detoxifi-
cation of these slurries can be achieved by the
polymerization of these phenols catalyzed by laccase [18],
although some of them (vanillin) are somehow resistant
[19]. Engineering robust laccases with improved activities/
specificities towards the above-mentioned compounds rep-
resents a valuable step forward to implement these en-
zymes in white –industrial– biotechnology processes for
conversion of lignocellulosic biomass into chemicals, mate-
rials and biofuels [10].
In this scenario, directed molecular evolution consti-

tutes a powerful strategy to adjust the stability and cata-
lytic efficiency of the enzyme to the restrictive industrial
operational conditions. On the other hand, it is well
known that the availability of high-throughput screening
(HTS) assays is mandatory for exploring the enzyme li-
braries created by random mutagenesis and recombin-
ation of the parent gene(s) [20]. Indeed, one of the main
bottlenecks in directed evolution originates from the
lack of reliable HTS assays specific for the targeted en-
zyme, and laccase is not an exception. Another major
difficulty for engineering fungal laccases, in particular
those from basidiomycete fungi, is their tricky heterol-
ogous expression. Nevertheless, we have recently re-
ported the successful functional expression of two
HRPLs (from Pycnoporus cinanbarinus and PM1 basid-
iomycetes) in S. cerevisiae by directed evolution [16,21].
We have also obtained a set of chimeric HRPLs, secreted
by yeast, with improved thermostability, diverse pH activ-
ity profiles and high-rate oxidation activity as generalist
biocatalysts [22-24]. These platforms are good starting
points to face up to new challenges such as the design of
laccases with improved efficiency towards substrates of
biotechnological interest and stable under specific indus-
trial conditions. Promising laccase engineering targets
would be the first-order oxidation rate of certain phenolic
compounds derived from lignocellulose, to contribute to
the integral conversion of plant biomass, or of synthetic
organic dyes, for enzymatic removal of color from textile
effluents. The development of new HTS assays based on
the oxidation of phenolic compounds and organic dyes
(under preferred pH and temperature conditions) is of
high relevance for the aforementioned purposes.
The current work describes the design and validation

of an array of novel HTS assays based on natural com-
pounds derived from lignocellulose and synthetic organic
dyes to explore mutant libraries of fungal laccases. Specific-
ally, we developed colorimetric assays based on the oxida-
tion of phenolic compounds related to the S lignin units.
These compounds, which are natural substrates of laccases
(and ligninolytic peroxidases [25]), might constitute a key
step in the enzymatic deconstruction of lignocellulose due
to their role as linkages between carbohydrates and lignin
in the secondary cell wall of grasses [26]; or they may act
as efficient laccase redox mediators promoting the removal
of pollutants or complex polymers [16,27,28]. In addition,
the oxidation of the artificial mediator violuric acid was de-
vised as reporter assay for the preservation of the redox
potential of HRPLs through the evolution procedure. Fi-
nally, we performed the development of HTS assays based
on the enzymatic oxidation of synthetic dyes either directly
or indirectly (in the presence of mediators).

Results and discussion
Oxidation of natural phenolic compounds of
biotechnological interest
Among lignin-related phenolic compounds, we chose
three S-type phenolic compounds whose enzymatic oxi-
dation generates colored products (acetosyringone, sina-
pic acid and syringaldehyde) to develop the HTS assays.
S-type compounds are easily oxidized by both high- and
low-redox potential laccases (LRPLs), as we confirmed
here by using the commercial HRPL from Trametes villosa
(TvL) and the LRPL from Myceliophthora thermophila
(MtL). The changes in the UV-visible spectra of sinapic
acid, acetosyringone and syringaldehyde during their oxi-
dation by laccase showed similar patterns: a rapid decrease
of maximum absorbance at 300 nm along with the appear-
ance of absorbance peaks in the visible spectrum (Figure 1).
In the case of sinapic acid, we detected a rapid pinkish
response (with maximum absorbance around 515 nm)
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Figure 1 Oxidation spectra of S-type phenolic compounds. Changes in the absorption UV-Vis spectra of sinapic acid (A), acetosyringone
(B) and syringaldehyde (C) during oxidation by M. thermophila laccase (50 mU) at 0, 1, 2, 5, and 10–60 min (in 10 min intervals) reaction times.
Insets show the visible initial spectra (dashed lines) and after 10h (continuous lines).
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resulting from oxidized dimeric products derived from the
dehydrosinapic acid dilactone [29]. Once sinapic acid is ox-
idized by laccase, the high tendency of its phenoxyl radicals
for β-β' coupling are responsible for the accumulation
of phenolic dimeric products, which are again oxidized
by the enzyme. The oxidation of acetosyringone and
syringaldehyde generated an immediate increase of ab-
sorbance around 370 nm (yellow color). The color kept
stable for syringaldehyde but turned to red in the case
of acetosyringone, whose maximum wavelength shifted
to 520 nm and was maintained for several hours. Syrin-
galdehyde oxidation finally rendered a strong absorption
maximum at 284 nm with a smaller peak at 370 nm, in
concordance with the yellow product 2,6-dimethoxy
p-benzoquinone. The latter has been reported as end
product from the enzymatic oxidation of syringalde-
hyde, acetosyringone, syringic acid or sinapic acid, de-
pending on the reaction conditions [21,29,30].
Figure 2 Determination of conditions for the HTS assays with S-phen
(A), syringaldehyde (B) and acetosyringone (C) measured at 512 nm, 370 a
assays with time using 250 μM of sinapic acid (D) and 2 mM of syringaldeh
S. cerevisiae micro-cultures secreting 3A4 HRPL. Each point represents the m
The λmax for measuring the oxidation of the S-type
substrates were established as follows: 512 nm for the
sinapic acid's pinkish product, 370 nm for the syringal-
dehyde's yellow product and 520 nm for the acetosyrin-
gone's reddish product. Laccase oxidation rates showed
the typical Michaelis-Menten kinetics for the three com-
pounds with Km values of 85, 120 and 93 μM, respect-
ively, for TvL (Figure 2A-C). The concentrations used in
the HTS assays (providing stable response without pre-
cipitation) were 2 mM acetosyringone or syringaldehyde
and 250 μM sinapic acid. The assays were validated
using fresh supernatants from the micro-fermentations
of S. cerevisiae transformed cells secreting laccase (in
96-well plate format). In particular, to check the repro-
ducibility and linearity of the assays, we used S. cerevi-
siae cells expressing either a LRPL, R2 (obtained from
the directed evolution of MtL [31]), or a HRPL, 3A4 (a
chimeric laccase engineered by family shuffling of
olic compounds. Oxidation rates of TvL (10 mU) for sinapic acid
nd 520 nm, respectively; and color responses of the endopoint HTS
yde (E) and acetosyringone (F) with 15 μL of crude extracts from
ean and SD derived from three independent experiments.
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evolved PcL and PM1L [24]). The colored responses
were feasibly quantified by the increment of absorbance
with time (Figure 2D-F), although in the case of the
sinapic acid assay an initial lag time was observed due
to the multiple oxidation, coupling and cyclization steps
required to provide the colored product (oxidized
dimer) [29]. Regardless of the compound used, the col-
ored responses were linear (absorbance increased with
increasing volumes of supernatant) with both laccases,
the LRPL R2 and the HRPL 3A4, expressed by S. cerevi-
siae cells (Figure 3A-C). The lowest detection limits for
the acetosyringone and syringaldehyde endpoint assays
(carried out in 5 h) were around 0.6 laccase mU/mL
(0.15 mU in the well, referred to ABTS activity), whereas,
R² = 0,9565
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Figure 3 Validation of HTS colorimetric assays with S-phenolic compo
(A) and syringaldehyde (B) after 5 h, and sinapic acid (C) after 2 h, using crud
or R2 LRPL (squares). Coefficient of variation (CV) of the HTS colorimetric assay
and sinapic acid (F). Laccase activities from different replicates of the same clo
due to the initial lag phase of the sinapic acid assay,
1 mU/mL (0.25 mU in the well) was the lowest activity de-
tected during the 1-2 h of reaction. However, it is worth
noting that for longer reaction times, lower laccase activ-
ities may also be detected with sinapic acid. The validation
of the assays was completed by replicating the same clone
in a test 96-well plate and measuring the laccase activities
of each well with the target substrate. In all cases, the CV
values ranged from 11 to 16% (Figure 3D-F), which is sat-
isfactory to guarantee the reliability of the assays for di-
rected evolution studies.
Finally, the assays were tested for screening mutant li-

braries of HRPLs secreted by yeast. It is important to
highlight that the sinapic acid assay has been recently
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used to screen mutant libraries generated during the di-
rected evolution of P. cinnabarinus laccase (PcL) [22]. In
the present study, we used this assay (together with
ABTS and DMP assays) to screen a laccase library ob-
tained by random mutagenesis and in vivo DNA shuf-
fling of chimeric HRPLs recently engineered in our lab
[24]. The 3D landscape obtained from the multi-
screening of this library demonstrated that most of the
2000 clones kept the characteristic substrate promiscuity
of laccases and some of them showed slight activity im-
provements respecting the parent types (Figure 4). To
complete the study, small libraries of around 250 clones
were constructed by error-prone PCR of 3A4 HRPL
(with a mutational rate of 1–3 amino acid substitutions
per protein sequence) and explored with acetosyringone
and syringaldehyde. Landscapes from the dual screen-
ing were similar and the data were quite consistent for
the two assayed protocols. Approximately 100 clones
were inactivated by the mutagenesis and no notable ac-
tivity increases respecting the parent type were ob-
served (Figure 5A-B). The small size of the mutagenic
library probably precludes the selection of remarkable
mutants (typically, a directed evolution generation com-
prises the screening of 2000–3000 clones). Even so, as
we could detect slight differences in laccase activity
among the different clones, the sensitivity of the colori-
metric assays was confirmed.
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Figure 4 3D Landscape from the multi-screening with sinapic acid, AB
mutagenesis and in vivo shuffling of HRPLs. Laccase activities of the clo
best parental (3A4 laccase). Sinapic acid (SI), 2,6-dimethoxyphenol (DMP).
It is worth mentioning that the abovementioned S-
phenolic substrates might also be used for pre-screening of
mutant laccase libraries in solid format. We cultured fresh
S. cerevisiae laccase transformants on agar-SC-expression
plates supplemented with acetosyringone, syringaldehyde
or sinapic acid. Laccase secretion was detected by the pres-
ence of intense colored halos around the colonies grown in
plates supplemented with syringaldehyde or sinapic acid,
as compared with the negative control. The intensity of the
halos when using acetosyringone was, however, much less
intense (Figure 6).
Lignin-related phenolics have been proved to mediate

the in vitro degradation of recalcitrant aromatics by laccase
[6,8], and they constitute an alternative for expensive artifi-
cial mediators such as 1-hydroxybenzotriazol (HBT) or
violuric acid. Moreover, by contrast to the restricted use of
HBT or violuric acid as mediators of HRPLs [32], S-type
phenolic mediators from lignocellulosic feedstock could be
applied with other laccases. Indeed, S-phenolic compounds
notably promote oxidative reactions catalyzed by LRPLs
such as MtL from the ascomycete M. thermophila [33,34]
or even by bacterial laccases with lower redox potentials
[21]. This fact is of high interest for the biotechnological
application of ascomycete or bacterial laccases that have
the advantage of being more easily amendable by protein
engineering than basidiomycete laccases. The prompt oxi-
dation of the S-type phenolic compounds (due to the
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presence of two methoxyl substituents in the aromatic
ring) make feasible the use of the new HTS assays for di-
rected evolution studies of LRPLs or other phenoloxidases
depicted in bacterial genome databases [35].

Violuric acid as reporter assay for assessing redox
potentials during protein engineering
Unlike the straightforward oxidation of S-type phenolic
compounds, violuric acid is effectively oxidized only by
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of laccase (1 and 2 correspond to HRPL mutants, and 3 to LRPL mutant) as
HRPLs due to its high-redox potential (E0 ≈ +1.1 V) [32].
The distinct oxidation rates of violuric acid by low (MtL)
and high-redox potential (TvL) fungal laccases confirmed
this assessment (Figure 7A). When engineering fungal
laccases a single amino acid change in the coordinating
sphere of T1 copper may alter the complex modulation of
laccase redox potential [36]. Thus, it would be helpful to
have an assay to check if the high redox potential of the
parental type is being maintained in the selected mutants.
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We devise here a HTS colorimetric assay based on the
oxidation of violuric acid as an easy method to initially
evaluate the redox potential of the laccase mutants gener-
ated through directed evolution of fungal laccases.
The oxidation of violuric acid generates very stable

iminoxyl radicals (without dimerization products) whose
purple color can be detected and quantified in the visible
spectrum (λmax around 515 nm) [37]. The color turned to
reddish when using crude extracts from S. cerevisiae
micro-cultures due to coupling of violuric radicals to the
Cu2+ ions from the expression medium, which produces
an increment of absorbance at 420 nm [38]. Nevertheless,
the increment of absorbance at 515 nm could be measured
without interferences (Figure 7B). Crude extracts of S. cere-
visiae cells secreting laccase in microplate wells were used
to validate the assay. We used 20 mM violuric acid be-
cause, though it was not a saturating concentration, it
rendered soluble and quantifiable colored response with
absorbance values within the plate reader's detection limit.
With a CV around 15% and high linearity, the assay
worked for the evolved HRPL (3A4), whereas, as expected,
no oxidation of violuric acid was obtained with the evolved
LRPL (R2), even when both crude cell extracts showed
closely similar activity on ABTS (around 120 mU/mL
supernatant) (Figure 7C-D). The lowest detection limit for
this assay was around 0.6 mU/mL supernatant (0.15 mU in
the well).
Finally, the mutagenic library obtained by error-prone

PCR from the evolved HRPL 3A4 was also screened with
violuric acid as substrate (Figure 5C). We observed a dir-
ect correlation among the activities of the clones with vio-
luric acid, acetosyringone and syringaldehyde (Figure 5D).
In other words, active mutants on S-type phenolic com-
pounds were also capable of oxidizing violuric acid. Thus,
by using this reporter assay, we can assess whether the
high redox potential of a parental laccase is preserved in
all the active mutants generated through the evolution
pathway or not.

Decolorization of synthetic organic dyes
Three synthetic organic dyes, Methyl Orange (MO), Evans
Blue (EB) and Remazol Brilliant Blue (RBB), were assayed
as substrates for the HTS of laccase libraries. The three
dyes were selected among a set of different dyes on the
basis of their chemical structure since azoic (MO and EB)
and anthraquinoid (RBB) dyes are the most common
chromophores utilized in the dying industry [39]. Besides,
they were directly oxidized by commercial HRPL (TvL).
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Changes in the absorption visible spectra carried out dur-
ing the enzymatic oxidation of the three dyes provided the
following λmax for measuring their decolorization: 470,
605 and 640 nm for MO, EB and RBB, respectively.
Figure 8 illustrates the oxidation of EB as an example.
The elevated initial absorbance values of high dye con-
centrations were beyond the plate-reader's detection
limit (Figure 8B), thus precluding the calculation of
maximum velocities during decolorization of the three
dyes by TvL (Figure 8C). However, we fixed 200 μM
RBB and 50 μM MO and EB for the HTS assays because
these concentrations provided perceptible responses
(see Figure 8A, inset, for the de visu responses given by
three replicates of the same laccase sample with each
dye) and quantifiable decolorization rates (Figure 8D il-
lustrates the linear response obtained with 2–100 mU
laccase and 50 μM EB). Decolorization percentages of
49% for EB, 24% of RBB and 10% of MO were obtained
after 3 h of reaction with TvL (10 mU). The presence of
two hydroxyl substituent groups probably favors the
rapid oxidation of Evans Blue (diazo) by laccase as com-
pared to Methyl Orange (azo), whose redox potential is
around +1 V (E0 = +0.961 V vs NHE [40]).
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The oxidation of the three dyes was assayed in high-
throughput format using crude extracts from S. cerevisae
cells secreting the evolved HRPL 3A4 or the evolved
LRPL R2. The latter was unable to oxidize any dye under
the conditions used, whereas the HRPL decolorized the
three dyes. The decolorizing yields obtained with 3A4
HRPL followed the same patterns as those obtained with
TvL for the three dyes: EB >MO > RBB. Decolorization
yields were around 39%, 11% and 6%, for EB, RBB and
MO, respectively, after 6 h of reaction using 15 μl of
supernatant from the well. The direct correlation between
the volume of supernatant used and the decolorization
values attained demonstrated the linearity of the three
endpoint assays. Moreover, the CV values for the three
dye-decolorizing assays were on average around 15%,
which are acceptable to start directed evolution studies.
The linearity and reproducibility of MO and RBB-based
HTS assays are illustrated in Figure 9.
The three dye-decolorizing HTS assays were finally

tested for screening a mutagenic library created by error
prone PCR of the HRPL 3A4. Landscapes showed quan-
tifiable differences among the decolorizing activities of
the different clones and some slight laccase activity
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improvements respecting the parent type (Figure 10 A-C).
In general, we observed a direct correlation among the ac-
tivities of the different laccase mutants for the three dyes
(Figure 10D).
Textile wastewaters contain high concentrations of

unfixed dyes (mostly azo and anthraquinone dyes) which
cause great pollution problems due to their recalcitrance
against conventional aerobic treatments and the generation
of toxic aromatic intermediates during anaerobic treatment
[39]. By contrast, oxidative decolorization of azo dyes by
laccase produces a detoxifying effect [41,42]. These dye-
decolorizing HTS methods can be useful for engineering
laccases for decolorization and detoxification of synthetic
organic dyes. In addition, the dye-decolorization assays can
be used as indirect methods to evaluate the oxidative
capability of laccase-mediator systems [43] or, more in
particular, for screening laccase activity on natural
mediators whose oxidation by laccase does not render
colored products. This is the case of H-type phenolic
compounds such as p-coumaric acid or methyl couma-
rate [6,27]. We tested the decolorization of MO by
HRPL (TvL) and LRPL (MtL) in the absence or presence
of phenolic mediators related to H or S-lignin units
(Figure 11). In general, decolorization was significantly
improved in the presence of S-type and H-type phenolic
compounds, demonstrating their capability to mediate
the enzymatic oxidation of the dye. Both laccases
rendered similar decolorization values with the S-type
mediators, whereas the decolorization attained in the
presence of H-type mediators were much lower with
MtL than with TvL. The low redox potential of S-type
phenolic compounds (sinapic acid E0 = +590 mV, [44];
syringaldehyde E0 = + 660 mV, [45]) facilitates their oxi-
dation by both enzymes. By contrast, the oxidation of
methyl-coumarate and p-coumaric acid (E0 ≈ +700 mV,
[46]), although thermodinamically feasible, is limited for
the LRPL MtL (E0 at T1 copper site ≈ +470 mV), but
not for the HRPL TvL (E0 ≈ +780 mV) [47], thus
explaining the better decolorization values attained with
the latter when using H-mediators. Nonetheless, the
decolorization assay might still be useful as an indirect
method for the in vitro evolution of fungal laccases to-
wards H-type mediators whose oxidation cannot be de-
tected by the naked-eye.

Conclusions
We have devised and validated a set of colorimetric activ-
ity assays in high-throughput format for exploring laccase
activity in mutant libraries generated by directed evolu-
tion. The assays are based on the enzymatic oxidation of
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natural redox mediators derived from lignocellulose and
synthetic organic dyes. Besides, the use of violuric acid
assay as reporter of laccase redox potential can be useful
to preserve this significant property whilst evolving to-
wards new functions. As we demonstrate here, these new
0 10 20 30

Laccase

L+ p-coumaric acid

L+methyl coumarate

L+ methyl syringate

L+ syringaldehyde

L+ acetosyringone

Decol

Figure 11 Decolorization of 50 μM Methyl Orange by 10 mU of lacca
or without phenolic mediators. Mean values from two replicates after bl
reaction time).
colorimetric HTS assays are reproducible and reliable
enough for contributing to face up to new evolution
challenges. The engineering of laccase variants with bet-
ter catalytic efficiencies towards key natural phenolic
compounds, under preferred conditions, might be of
40 50 60 70 80 90 100

orization (%)

se from M. thermophila (white bars) or T. villosa (black bars), with
ank subtraction are shown (molar ratio of mediator/dye = 4; 5 h
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relevance for the application of these enzymes in indus-
trial processes of conversion of plant biomass. The dye-
decolorizing HTS assays can be used for engineering ad
hoc laccases to be applied in detoxification of textile in-
dustrial wastewaters. In addition, they can be used as in-
direct HTS assays for searching for better oxidation
activities on phenolic mediators of interest, whose enzym-
atic oxidation cannot be detected in the visible spectrum.

Methods
Reagents and enzymes
Crude laccases from Trametes villosa (TvL) (NS-
51002) and Myceliopthora thermophila (MtL) (NS-
51003) were purchased from Novozymes (Denmark).
Reagents Methyl Orange (MO), Evans Blue (EB), Rema-
zol Brilliant Blue (RBB), Sinapic acid, Acetosyringone
(3′,5′-dimethoxy-4′-hydroxyacetophenone), Syringalde-
hyde (3,5-dimethoxy-4-hydroxybenzaldehyde), violuric acid
(5-(Hydroxyimino)-2,4,6(1H,3H,5H)-pyrimidinetrione) and
ABTS were purchased from Sigma–Aldrich.

Culture media
Minimal medium contained 100 ml 67 g/l sterile yeast
nitrogen base, 100 ml 19.2 g/l sterile yeast synthetic
dropout medium supplement without uracil, 100 ml
sterile 20% raffinose, 700 ml sterile double-distilled H2O
(ddH2O), and 1 ml 25 g/l chloramphenicol. Yeast extract-
peptone (YP 1.55X) medium contained 10 g yeast extract,
20 g peptone, and ddH2O to 650 ml. Expression medium
contained 720 ml YP 1.55X, 67 ml 1 M KH2PO4, pH 6.0,
buffer, 110 ml 20% galactose, 2 mM CuSO4, 25 g/l etha-
nol, 1 ml 25 g/l chloramphenicol, and ddH2O to 1,000 ml.
The yeast extract-peptone-dextrose (YPD) solution con-
tained 10 g yeast extract, 20 g peptone, 100 ml 20% sterile
glucose, 1 ml 25 g/l chloramphenicol, and ddH2O to
1,000 ml. Synthetic complete (SC) dropout plates con-
tained 100 ml 67 g/l sterile yeast nitrogen base, 100 ml
19.2 g/l sterile yeast synthetic dropout medium supple-
ment without uracil, 20 g bacto agar, 100 ml 20% sterile
glucose, 1 ml 25 g/liter chloramphenicol, and ddH2O
to 1,000 ml. The SC drop-out plates to test the screening
assays in solid format contained 10 μM CuSO4, 2 g/l
galactose instead of glucose and 200 μM syringaldehyde,
acetosyringone or sinapic acid.

Oxidation assays with commercial laccases
Standard assay with 3 mM ABTS was used for initial
measurement of laccase activities by recording the in-
crease of absorption with time at 418 nm (εABTS

•+ =
36,000 M-1 cm-1). Changes in the UV-Vis spectra of S-
type phenolic substrates, dyes and violuric acid during
oxidation by TvL or MtL (20 mU) in 100 mM tartrate
buffer pH 4.0, were recorded in the spectrophotometer
(Shimadzu UV-1800) to determine the corresponding
λmax and concentrations to be used in the HTS assays.
Then, oxidation of S-type phenolics was measured by
the increase of absorbance at 370 nm for syringaldehyde
(2 mM), 520 nm for acetosyringone (2 mM) and 512 nm
for sinapic acid (250 μM); decolorization of dyes was
measured by the decrease of absorbance at 470 nm for
MO (50 μM), 605 nm for EB (50 μM) and 640 nm RBB
(200 μM); and oxidation of violuric acid (20 mM) was
measured by the increase in absorbance at 515 nm. All
measurements were carried out in buffer sodium tar-
trate pH 4.0 (250 μL final volume) in a plate reader
(SPECTRAMax Plus 384, Molecular Devices).

Micro-cultures of S. cerevisiae cells expressing laccase
mutants
Colonies from yeast transformed cells were picked and
transferred to 96-well plates where they were cultured in
50 μl of minimum medium for two days. Then, 160 μl of
expression medium [22] were added and the plates were
incubated during another three days. Micro-fermentations
(210 μl) were carried out at 30°C and 200 rpm in a humid-
ity shaker.
To determine laccase activity in the wells, plates were

centrifuged and aliquots of the supernatant were trans-
ferred to new plates with the help of a liquid handler
(Quadra96, Tomtec, USA). Target substrates in tartrate
buffer pH 4.0 were added to a final volume of 250 μL and
endpoint absorbances at the corresponding λmax were
measured in the plate reader, except for ABTS, which was
measured in kinetic mode.

Validation of the HTS colorimetric assays
Linearity of the endpoint assay
To test the linearity and sensitiveness of the assays, wells
were inoculated with yeast cells expressing the evolved
laccases R2 or 3A4. Un-inoculated wells were used as
negative control. Micro-fermentations were carried out as
mentioned above and, after centrifugation, different vol-
umes of supernatant (1–30 μL) were transferred to new
plates. Next, target substrates were added in tartrate buffer
to a final volume of 250 μl and laccase activities were mea-
sured in the plate reader as described above.

Reproducibility of the endpoint assay (CV)
Yeast transformed cells expressing the evolved HRPL
3A4 were cultured in each well of the same 96-well plate
and incubated as above mentioned. Thereafter, 30 μL of
the supernatants containing the secreted laccase were
transferred to new plates and 220 μl of the different sub-
strates in tartrate buffer pH 4.0 were added. The reac-
tions were kept during 24 h and the oxidation products
were measured at the corresponding λmax using the plate
reader in endpoint mode.
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Construction of the mutagenic libraries
A small mutagenic library was created by error-prone
PCR of the chimeric HRPL 3A4 [24] to test the HTS-
assays. Reaction mix contained 5 μl 10× Taq buffer, 3%
DMSO, 1.5 mM MgCl2, 0.01 mM MnCl2, 0.3 mM dNTP
mix, 90 nM of primers RMLN and RMLC, 4.6 ng parent
plasmid DNA (pJRα3A4) and 2.5 units of Taq DNA
polymerase in a final volume of 50 μl. PCR cycles were
95° for 2 min; 28 cycles of 94° for 0.45 min, 53° for
0.45 min, 74° for 3 min; and 74° for 10 min. Reaction
products were loaded into 0.8% agarose gels and 1.9 kb
bands were cut and purified. 400 ng of this purified prod-
uct was used to transform yeast together with 100 ng of
the pJRoC30 expression vector previously linearized with
BamHI and NotI.
A larger laccase library created by error-prone PCR

and in vivo shuffling of selected chimeric laccases [24],
was used for testing the sinapic acid assay. The error-
prone PCR reactions of five chimeric laccases were the
same as described above. Then, the amplified products
were purified and jointly transformed in the yeast, using
133 ng of each parental insert and 200 ng of the linear-
ized plasmid.

High-throughput screening of laccase libraries
The endpoint colorimetric assays were tested in the
abovementioned mutagenic libraries. Two hundred col-
onies were picked from SC-dropout plates and individual
clones were grown in wells of 96-well plates as described
above. Column 6 from each plate was inoculated with par-
ent type, while well H1 was not inoculated (blank). After
centrifugation, 30 μl supernatants were transferred to
replica plates where 220 μl of 2 mM acetosyringone,
2 mM syringaldehyde, 20 mM violuric acid, 50 μM MO,
50 μM EB or 200 μM RBB in tartrate buffer pH 4 were
added. The plates were briefly stirred, and the absorption
at the corresponding λmax (see above) were measured. The
plates were incubated at room temperature in darkness
and laccase activities were measured by the increase (me-
diators) or decrease (dyes) of color. Relative activities were
calculated from the difference in absorption over time
normalized against the parental type in the corresponding
plate. The colorimetric assay with sinapic acid as substrate
(250 μM) was evaluated with two thousand colonies from
a larger laccase library, following the same procedure.
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