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Abstract

the production of a hard-to-assay protein.

constructs frequently need to be trialed.

Background: The glutamine synthetase-based protein expression system is widely used in industry and academia
for producing recombinant proteins but relies on the cloning of transfected cells, necessitating substantial
investments in time and handling. We streamlined the production of protein-producing cultures of Chinese
hamster ovary cells using this system by co-expressing green fluorescent protein from an internal ribosomal entry
site and selecting for high green fluorescent protein-expressing cells using fluorescence-activated cell sorting.

Results: Whereas other expression systems utilizing green fluorescent protein and fluorescence-activated cell
sorting-based selection have relied on two or more sorting steps, we obtained stable expression of a test protein at
levels >50% of that of an “average” clone and ~40% that of the “best” clone following a single sorting step. Versus
clone-based selection, the principal savings are in the number of handling steps (reduced by a third), handling time
(reduced by 70%), and the time needed to produce protein-expressing cultures (reduced by ~3 weeks). Coupling
the glutamine synthetase-based expression system with product-independent selection in this way also facilitated

Conclusion: Utilizing just a single fluorescence-activated cell sorting-based selection step, the new streamlined
implementation of the glutamine synthetase-based protein expression system offers protein yields sufficient for
most research purposes, where <10 mg/L of protein expression is often required but relatively large numbers of
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Background

Mammalian cells are useful for stably expressing recombin-
ant proteins for use in structural and functional studies, as
well as for the industrial production of, e.g., therapeutic
antibodies and cytokines [1-3]. Mammalian cell-based ex-
pression systems are essential when the protein of interest
cannot be expressed in bacterial- or yeast-based systems
and/or when conventional glycosylation is needed for the
folding or stability of the protein (reviewed in [4]).
Establishing stable cell lines expressing a given protein typ-
ically involves transfection with plasmid vectors carrying
the gene of interest and a selection marker [5-7]. Large
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numbers of resistant clones, often isolated in a multi-well
plate format, are then screened to identify high expressers.
This process is labor-intensive, time-consuming and limited
by the number of clones that can feasibly be screened.
Considerable effort has therefore gone into developing
selection strategies requiring reduced screening -effort
[8-10]. In particular, the development of fluorescence-
activated cell sorting (FACS) protocols has significantly in-
creased the throughput of selection using co-expressed
fluorescent reporter proteins, e.g. green fluorescent protein
(GFP), as second selectable markers [11]. Previously, imple-
mentation of this approach has involved either two [12] or
more (up to five) [13] rounds of FACS selection of the
GFP-expressing cells, resulting in these methods still being
labor-intensive and taking six months or longer. This effort
is justified in the context of the industrial expression of
therapeutic proteins, where production can be scaled and
repeated indefinitely. For research purposes, however,
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where milligram quantities of protein may only be required
on a one-off basis, faster and less labor-intensive solutions
are needed.

We are long-term users of the glutamine synthetase
(GS)-based protein expression system, developed by
Lonza Biologics, which utilizes a robust viral promoter
and selection via glutamine metabolism to allow the
generation of high-yielding and stable cell lines derived
from Chinese hamster ovary (CHO) cells, the major
mammalian host for recombinant protein production
[6,14]. We previously established cell lines producing
~400 mg/L of a soluble form of the T-cell surface pro-
tein, CD4 [6], and yields as high as 5 g/L of antibody
have been reported by others in commercial settings
[15]. The GS system utilizes the plasmid vector pEE14,
which carries the gene of interest and encodes a GS
mini-gene. Transfected cells are selected in the presence
of graded amounts of the competitive GS inhibitor me-
thionine sulphoximine (MSX), which allows the isolation
of cells with very high plasmid copy numbers (>2000/cell
[16]). However, CHO cells also readily amplify their own
GS gene, necessitating the isolation and screening of sin-
gle clones, adding 1-2 months to the generation of a
high-expressing cell line.

We previously noticed that the expression levels of the
top ~50% of protein-expressing clones are generally rela-
tively uniform, which suggested that if weakly expressing
clones could be removed along with untransfected resistant
cells that had amplified their endogenous GS gene, clone
selection might be unnecessary. Here, using both MSX
selection and single-step fluorescence-activated cell sorting
(FACS) for high co-expression of a green fluorescent
protein marker, we establish a streamlined protocol in
which cloning is eliminated. With the new method, the
transfection-to-protein-purification stages can be com-
pleted in just two months. We also show that coupling the
GS-based expression system with product-independent se-
lection facilitates the high-level production of hard-to-assay
proteins.

Methods

Plasmid construction

The glutamine synthetase vector, pEE12 (Lonza Bio-
logics, Slough, UK) [17], consists of a multiple-cloning
site under the control of the human cytomegalovirus
(hCMV) promoter, a p-lactamase cassette, and SV40
promoter-driven glutamine synthetase cDNA (GS). The
single Kpnl site in pEE12 was deleted by site-directed
mutagenesis using the Quikchange™ kit (Stratagene,
Stockport, UK). A leader sequence and lacZ cassette were
amplified from the vector pOPING [18] and inserted
between the HindIII and EcoRI restriction sites of pEE12
to produce the vector pOPINEE12G (all oligonucleotide
sequences are given in Additional file 1: Table S1).
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IRES-Emerald GFP (eGFP) cDNA was generated by PCR
from an existing vector template (pHR-IRES-eGFP [19])
and cloned into the EcoRI/Bcll sites of pOPINEE12G.
The IgE-specific Fc receptor la (FcERa; residues
26-201), the extracellular region of human PD-1 (resi-
dues 21-167), or the human chemokine CCL18 (residues
21-89), followed by C-terminal BirA sequence (PD-1
and CCL18 only), hexa-histidine tag and a stop codon,
were cloned immediately upstream of this, between
the Agel and EcoRI sites, replacing the lacZ gene
and creating IRES-eGFP-GS-pOPINEE12G (Figure 1A).
An N-terminally tagged version of CCL18 (His-BirA-
CCL18) was also generated.

In T2A-eGFP-GS-pOPINEE12G (Figure 1C), expres-
sion of the eGFP is linked to the gene of interest via a
self-cleaving 2A peptide from the insect virus Thosea
asigna (T2A) [20]. This 18 amino acid sequence was in-
cluded in the 5 oligonucleotide used to amplify the
eGFP ¢DNA from pHR-IRES-eGFP. The stop codon be-
tween the gene of interest and T2A was omitted. The
Dual promoter-GS-pOPINEE12G constructs (Figure 1B)
were constructed by cloning the FcERa gene into the
Kpnl/Pmel sites of pOPINEE12G. eGFP under control
of a second hCMV promoter was then added down-
stream of the FCERa gene by first inserting eGFP into
the HindIII/EcoRI sites of pEE6 [21] and then PCR clon-
ing the resulting hCMV promoter—eGFP cassette into
the Notl/Sall sites of pOPINEE12G. FcERa was also
cloned via Xbal into pEE14 [14], the traditional GS sys-
tem vector.

For making stable FcERa-expressing HEK 293S cells, the
GS c¢DNA in FcERa-IRES-GS-pOPINEE12G was replaced
with a bacterial aminoglycoside phosphotransferase 3" II
(Neo) gene, which confers resistance to aminoglycoside an-
tibiotics. A transcription unit comprising the Neo gene
under control of the SV40 early promoter was amplified
from pcDNA-DEST40 (Invitrogen, Paisley, UK) and cloned
into the Nhel/BglII sites of FCERa-IRES-GS-pOPINEE12G
creating FcERa-IRES-eGFP-Neo-pOPINEE12G, which en-
ables the selection of transfectants with Geneticin (G418;
Sigma Aldrich Company Ltd., Gillingham, UK).

Cell culture and transfection

CHO-K1 cells were grown at 37°C, 5% CO, in high-
glucose Dulbecco's modified Eagle's medium (DMEM;
Gibco, Invitrogen) supplemented with 10% fetal calf
serum (Sigma Aldrich Company Ltd.), 1% L-glutamine
(Sigma Aldrich Company Ltd.), 1% sodium pyruvate
(Invitrogen) and an amino acid supplement. For stable
transfection, 10° cells (unless otherwise stated) were
seeded in a 75 cm® flask. The following day the medium
was changed to DMEM supplemented with 10% FCS
dialysed against PBS (First Link Ltd., Wolverhampton,
UK), 1% sodium pyruvate and amino acids, before the
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cells were transfected with 10 ug DNA using Genejuice
(Novagen, Merck Chemicals Ltd., Hoddesdon, UK)
according to the manufacturer’s protocol. The following
day, L-methionine sulfoximine (MSX; Sigma Aldrich
Company Ltd.) was added to the medium at concentra-
tions ranging from 20-50 pM. Medium was refreshed 5
days after transfection, and again after a further week.
Upon the appearance of substantial numbers of clones,
cells were removed with Accutase Cell Dissocation
Reagent (Gibco, Invitrogen). Cell numbers and viability
were assayed by trypan blue exclusion. Cells were spun
down and resuspended in PBS, ready for FACS. The
FACS-sorted cells were then expanded in MSX-
containing medium as above. Once cells were confluent
in cell factories or final-stage 175 cm? flasks, sodium bu-
tyrate was added at a concentration of 2 mM.

HEK 293S cells were grown in high-glucose DMEM
supplemented with 10% FCS and 1% L-glutamine.
Transfection was carried out as above, using G418 disul-
phide salt (Invitrogen) at a concentration of 0.8 mg/mL
to select for Geneticin-resistant clones.

Flow cytometry and preparative FACS

GFP expression of transfected CHO and HEK 293S cells
was monitored via flow cytometry on a CyAn ADP
Analyzer (Beckman Coulter, Krefeld, Germany). Prepara-
tive FACS was performed on a MoFlo high-speed cell
sorter (Beckman Coulter). The argon-ion laser was
tuned to 488 nm with 100 mW of power, and eGFP
fluorescence detected in FL1 through a 530/40-nm
bandpass filter. The top 30% (unless otherwise stated) of
live eGFP-expressing cells were sorted into a single tube,
stored on ice. Data analysis was performed using FlowJo
software (Tree Star Inc., Ashland, OR, USA).

ELISA

FcERa receptor yields were determined by competition
ELISA. Supernatant was sampled from confluent 175
cm® flask cultures of FACS-sorted cells, three weeks

after the addition of sodium butyrate. ELISA plates
(Costar, Corning Incorportated, New York) were coated
with 50 pL purified FcERa at 10 pg/mL and incubated at
4°C overnight. The next day, this was removed and the
plate washed three times with PBS 0.05% Tween 20
(Sigma Aldrich Company Ltd.), before blocking with 100
puL PBS 1% casein (VWR, Lutterworth, UK) for 30 mi-
nutes at room temperature. Meanwhile, competition
mixtures consisting of 55 pL of serially titrated sample
or standard (purified FcERa), and 55 pL mouse anti-
FcERa antibody (AbCam, Cambridge, UK) at 3.3 mg/L
were prepared, and incubated at 37°C for 30 minutes.
After washing the plate as before, 50 pL competition
mixture was then added to each well, and the plate was
incubated at 4°C for 1 hour. After another wash, 50 pL
hydrogen peroxidase-coupled goat anti-mouse IgG Fc
(Sigma Aldrich Company Ltd., diluted 1 in 2000 in
DMEM) was added, and the plate incubated at 4°C for a
further hour. Peroxidase detection was via TMB sub-
strate (Thermo Scientific, Hemel Hempstead, UK)
according to the manufacturer’s protocol. FcERa titre
was determined by plotting the absorbance of titrated
samples, and reading off the dilution factor at 50% inhib-
ition, compared to the standard. Where necessary the
PD-1 yield was similarly determined by competition
ELISA, using mouse anti-human-PD-1 antibody clone 2
(unpublished data, S. Morgan et. al.) at 2.5 mg/L, and
HRP-coupled anti-mouse IgG Fc as above.

For identifying peak fractions containing CCL18, the
sandwich ELISA method embodied in the Human
CCL18/PARC Quantikine ELISA kit (R&D systems, Inc.,
Minneapolis) was employed. The kit was used according
to the manufacturer’s instructions.

Purification with Ni-NTA column

The soluble His-tagged proteins were purified from the
supernatant on a Ni-NTA column followed by gel filtra-
tion as previously described [22].
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Results and discussion

Optimization of FACS-based selection

We set out to establish a shortened protocol for generating
stable CHO cell cultures expressing proteins of interest
using the glutamine synthetase-based gene expression sys-
tem. Our principal test protein was the Type I IgE-specific
Fc receptor (FcERa), which is involved in the control of al-
lergic responses [23,24]. We compared three approaches
for co-expressing the eGFP selectable marker (see below),
but initial optimization of the method was based on a vec-
tor that expressed eGFP from an internal ribosome entry
site (IRES). The gene encoding a soluble form of FcERa
(residues 26—-201) [25] was cloned into the pOPINEE12G
expression vector downstream of a start codon and se-
quence encoding a heterologous signal peptide, and up-
stream of sequence encoding an IRES and Emerald GFP
(eGFP) reporter (residues 1-240), giving FcERa-IRES
-eGFP-GS-pOPINEE12G (Figure 1A). Expression of both
genes is in this way controlled by the human cytomegalo-
virus promoter, with the downstream position of the eGFP
reporter ensuring that its expression will be lower than
that of FcERa. Following transfection of CHO-K1 cells in a
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75 cm? flask with this vector, the cells were left undisturbed
for 3 weeks, after which substantial numbers of clones were
visible by eye. In preliminary experiments using 40 pM
MSX, a low seeding density of 10° cells/flask produced the
largest numbers of resistant clones (>200) (Additional file 2:
Figure S1); cells at higher initial densities overgrew in the
first week when MSX selection was presumably beginning
to take effect.

Our initial goal was to optimize expression versus cell re-
covery since high MSX concentrations were expected to
give higher expression but fewer clones, slowing the pro-
duction of protein-expressing cultures. Selection at a range
of MSX concentrations, from 20 to 50 pM showed that
eGFP expression at 20 M was uniformly low, with trans-
fection variability increasing at higher MSX concentrations
(Figure 2A). Cell recoveries and eGFP expression were opti-
mal after selection at 40 uM (Figure 2A,B). Transfected
cells (in 3 x 75 cm? flasks) selected at this MSX concentra-
tion were pooled and sorted for the brightest 10%, 30% or
50% of cells by FACS; the results of one such sort are
shown in Figure 3A. Each sorting run yielded >10° cells,
which grew to confluence in a 175 cm® flask within a week.
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Figure 2 Cell yields and eGFP expression prior to cell sorting. A. eGFP expression by cells from triplicate transfections selected at MSX
concentrations of 20-50 uM. Populations were gated on live cells. B. Cell recovery on the day of cell sorting. Cell growth and eGFP expression
were best at 40 UM MSX. Error bars indicate standard errors for triplicate transfections.
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Sodium butyrate was added to enhance protein expression
[26], and after three weeks FcERa yields were determined
by competition ELISA (Figure 3B). The advantages of
FACS-based selection are immediately apparent: sorting of
the brightest 10% of cells yields five-fold more FcERa than
the unsorted population, and nearly double that of the
brightest 30%. To maximize cell recovery and to speed line
generation, however, lines established from the top 30% of
expressers were selected for further characterization.

The stability of the sorted cell populations was investi-
gated during continuous culture for a period of three
months. Flow cytometry, performed every two weeks,
showed that eGFP expression decreases by up to 40%
with time, presumably as high-expressing cells are out-
grown by low-expressing cells not excluded by cell-
sorting (Figure 4A). A similar loss of FcERa expression
was also observed over this period (Figure 4B). Import-
antly, however, both eGFP and FcERa expression levels
are constant for the first month, the maximum period
for which large-scale cultures would likely be kept. Cells
can always be re-sorted for eGFP expression if expres-
sion levels drop significantly. eGFP expression is very
stable upon freeze-thawing of the cells (Figure 4A,B).

Comparison of methods for co-expression of eGFP

The efficiency with which eGFP-based FACS allows se-
lection of cells expressing the highest levels of the pro-
tein of interest depends on the relationship between the
expression levels of the two proteins. In an effort to vary
this relationship, two other co-expression strategies were
trialed. Firstly, a version of the pOPINEE12G vector was
generated wherein eGFP expression was driven by a sec-
ond CMV promoter (referred to as the “dual promoter”

vector, FCERa-Dual-eGFP-GS-pOPINEE12G; Figure 1B).
Secondly, the 18 amino acid self-cleaving 2A peptide
from the insect virus Thosea asigna (T2A) [20] was used
to link the translation of the protein of interest directly
to that of eGFP, in the vector FcERa-T2A-eGFP-GS-
pOPINEE12G (Figure 1C). Three weeks after transfec-
tion with each vector, half of the cells in each flask were
sorted by FACS for 30% of cells expressing the highest
eGFP levels; the remainder was left unsorted. Both sets
of cells were expanded into 175 cm? flasks, treated with
sodium butyrate and left for three weeks. Competition
ELISAs once again revealed significant variation between
triplicate transfections performed on the same day
(Figure 5A). Overall, the IRES-based vector gave slightly
higher average FcERa expression, although the differ-
ences were not significant (p > 0.05), owing to the con-
siderable variability in FcERa expression by the FACS-
sorted cells. The high level of variability was unexpected
and possibly arises from the amplification of small differ-
ences in the transfected cultures present at the time
of sorting. It suggests that the protocol would benefit
from pooling three or more transfected flasks of cells
prior to sorting. A second test protein, ie. a soluble form
of human PD-1, a transmembrane protein that regulates
T- and B-cell responses [27], gave similar results (Add-
itional file 3: Figure S2).

Productivity of FACS-selected lines versus clones

The question arises of how the yields from the FACS-
selected lines compare with those of clones generated
with  FCERa-IRES-eGFP-GS-pOPINEE12G. We also
wanted to make comparisons with clones obtained using
pEE14, the traditional vector used with CHO cells,
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Figure 4 Stability of the sorted cell populations. eGFP
expression (A, gated on live cells) and FcERa yield (B) of FCERa-IRES
-eGFP-GS-pOPINEE12G transfected CHO cells are stable for the first
month after sorting, but then decrease over time. Cells were
passaged in 75 cm? flasks, split twice weekly. Every two weeks,
4x10° cells were used to seed a 75 cm? flask. Forty-eight hours later,
supernatants were collected for FcERa titre determination by
competition ELISA, and for testing eGFP expression by flow
cytometry. The levels of expression are lower than those in Figure 3
owing to the shorter period for accumulation of the protein. Error
bars indicate standard errors for triplicate ELISA readings. “Freeze/
thaw” denotes cells frozen at week 1 and thawed at week 11.

which utilizes a GS mini-gene [14] rather than a GS
cDNA. The FcERa gene was cloned into pEE14 and
stable clones generated with this vector and FcERa-IRES
-eGFP-GS-pOPINEE12G. The six best-expressing clones
in each case, based on initial dot-blot analysis as de-
scribed in [6], were expanded to 175 cm? flask cultures,
treated with sodium butyrate and left for 3 weeks. The
average expression of the pEEl4-derived but not the
pOPINEE12G-derived clones was significantly higher
(p = 0.002) than that of the FACS-selected lines, but this
amounted to a less than 1.7-fold difference in expression
(Figure 5B). Similarly, the best of the clones expressed
the protein only ~1.6 fold better than the best of the
sorted lines. However, the most important comparison is
between the best of the clones and the average expres-
sion of the FACS-selected lines, assuming that multiple
transfections will be pooled prior to sorting in order to
reduce the effects of transfection variability. In this case

Page 6 of 10

the best clone performs 2.5-fold better than the
pOPINEE12G-derived FACS-selected line (taking the
average of the three replicates). It needs to be borne in
mind, however, that if needed, better expressing lines
could be obtained by FACS-selecting the top 10% of
expressers. It is possible that the synthesis of an add-
itional protein (eGFP) may burden the cell machinery in
the case of the FcERa-IRES-eGFP-GS-pOPINEE12G
transfected clones and lines, accounting for the reduced
expression [13].

Utility of the method in other selection systems

We also sought to determine whether single-step FACS-
based selection for a fluorescent marker would be useful
in the context of other types of selection. The bacterial
aminoglycoside phosphotransferase 3’ II (Neo) gene,
which confers resistance to aminoglycoside antibiotics,
including Geneticin (G418 Sulfate), is widely used to se-
lect transfected mammalian cells [28]. This enables the
survival of any cell bearing one copy of the gene,
whereas for the GS system, only cells with very high
plasmid copy numbers survive selection. We transferred
the Neo gene to the pOPINEE12G vector, generating
FCERa-IRES-eGFP-Neo-pOPINEE12G, and used it to
transfect embryonic kidney (HEK) 293S cells lacking N-
acetylglucosaminyltransferase 1 (GnTI) activity, which
are used for the expression of recombinant proteins de-
void of complex N-glycans [29]. A high concentration of
G418 (0.8 mg/mL) allowed the selection of uniformly
high eGFP-expressing cells (Figure 6A), from which it
was difficult to select a high-expressing fraction using
FACS. Sorting for the single population of eGFP-
expressing cells yielded a line expressing 13 mg/L of
FcERa (Figure 6B). However, in contrast to CHO cells
selected with MSX, there was little, if any, advantage
obtained by sorting, whereas up to ~4-fold higher ex-
pression was obtainable by cloning the cells (Figure 6B).

An example: CCL18

The identification of the highest-expressing clones using
the GS system conventionally relies on there being a
convenient small-scale assay for the target protein soon
after the clones appear. However, the target-independent
nature of FACS-based selection and close-to-maximum
level of expression thus obtainable (i.e. within a factor of
2-2.5 fold of the best clone) obviates the need for any
small-scale or intermediate assays, which is particularly
helpful when the protein target is difficult to assay. Illus-
trating this, we obtained high-level expression of a
biotinylatable form of CCL18, a 7.8 kDa orphan chemo-
kine implicated in the lung-specific recruitment of lym-
phocytes to, e.g,, the lung in asthmatics [30], using the
new approach. It was not clear whether folding of the
chemokine would tolerate the N- or C-terminal addition
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of biotinylation sequences, so constructs tagged at either  express at all (data not shown), whereas the yield of
end were tried. In our experience relatively small pro- well-folded N-terminally tagged CCL18 was approxi-
teins cannot be easily transferred to nitrocellulose for  mately 3 mg/L (Figure 7).

Western blotting, which is among the simplest ways to

assay for expression, and this was the case for CCL18 Conclusions

(data not shown). We therefore eschewed assaying for = The expression of recombinant mammalian proteins is
CCLI18 at early stages of production and instead waited  time-consuming and labor-intensive. We have established a
until we could determine how much Ni-NTA-reactive  streamlined method for implementing the glutamine
protein could be purified from 2L cultures grown from  synthetase-based protein expression system, based on the
FACS-selected eGFP-expressing cells, prepared as de-  co-expression of GFP driven by an IRES sequence alongside
scribed above. The C-terminally tagged protein failed to  the gene of interest. The new FACS-based selection
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Figure 6 FcERa expression by stably transfected HEK 293S cells. (A). eGFP expression by sorted and unsorted FcERa-IRES-eGFP-Neo-
pOPINEE12G transfected cells, one week after cell sorting. FcERa yield from these cells was four-fold lower than that of a clonal cell line (Neo
clone 32), isolated previously by conventional limited dilution cloning. FcERa titre was determined by competition ELISA on supernatant samples
collected from 175 cm? flasks after three weeks (B). Error bars indicate standard errors for triplicate ELISA readings.
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Figure 7 Expression of CCL18. A. Elution profile for Ni-NTA Week 8 107 cells
-purified CCL18 (second peak) eluting from a Superdex 75 HR 10/30 (Total: 20.5 hours)
gelfiltration column. Peak 1 corresponds to an unidentified Figure 8 Comparison of conventional GS system-based, stable
histidine-containing impurity detectable with anti-pentahistidine cell-line isolation using limiting dilution cloning, with the new
antibodies on Western blots (data not shown). Fractions containing protocol. Labor hours include media preparation and are based on,
this protein lacked CCL18 reactivity according to a sandwich ELISA in the case of the conventional, cloning-based method (left), the
assay (data not shown). The elution positions of two proteins of production of 107 clonal cells, for which nine 96-well plates are
known size (43 and 13.7 kDa) are indicated. B. SDS-PAGE analysis of plated out in addition to those needed for mock transfections. For
the proteins eluting from the G-75 column under non-reducing the new protocol (right), the calculation of labor hours is based on
conditions. The identit?/ of the small prot_em in the late-eluting peak the generation of a starting population of 107 cells obtained
(black arrow) was confirmed as CCL18 using the ELISA assay (data following the flow-cytometric sorting of three transfected 75 cm?
not shown). The identity of the ~40 kDa protein (white arrow) was flasks of cells.

not determined.

protocol is compared with the conventional, cloning-based
approach in Figure 8. The principal savings are in the form
of handling steps (reduced by almost half) and handling
time (reduced by ~75%). However, the method also re-
duces, by ~ 3 weeks, the time needed to produce a protein-
secreting culture of 107 cells. This estimate is based on
FACS selection of 3 x 75 cm? flasks of cells (i.e. ~1.2 x 107
cells) from which 10° cells are recovered, and could be fur-
ther reduced by sorting larger numbers of cells. Overall, the
new approach yielded cell populations that expressed our
protein of interest, FCERa, relatively stably over a period of
5 weeks, at levels >50% of that obtainable with an “average”
clone, and within ~40% of the best clone. No significant ad-
vantages were obtained by using dual promoters to express
the two proteins, or 2A sequences. The success of the
new approach likely hinges on the inherent strength of
the expression system since previous attempts to utilize
fluorescence-based selection used two [12] or more (up to
5) [13] rounds of FACS selection. The ease with which

close-to-optimal expression is obtainable in a single step
with the new approach, coupled with the target protein-
independent selection of expressing cells, offsets some of
the risk in producing hard-to-assay proteins, as exemplified
by our expression of biotinylatable CCL18.

In using the new method the trade-off between speed
and expression levels could nevertheless be further
considered. When low-expressing proteins are being
studied, higher percentage sorts may be suitable, and in
extreme cases, single-cell sorting could be applied to
generate a highly expressing clone. One slight drawback
with the new method is its dependence on the efficiency
of transfection, which we generally find to be variable on
a flask-to-flask basis over extended culture periods.
However, combining replicate transfected flasks easily
circumvents this issue. A final matter is that sorting for
high expression is only worthwhile when there is large
variability of expression among the selected cells. In the
case of G418 selection, for which the levels of expression
among GFP-positive cells was very uniform, almost no
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advantage was gained by sorting the GFP expressing
cells, whereas substantially increased expression was ob-
tainable by conventional cloning. Although unsuitable,
of course, for prolonged expression of therapeutic pro-
teins on an industrial scale, this method provides yields
more than sufficient for research purposes, where less
than 10 mg/L of protein is generally required and often
large numbers of constructs have to be trialed.

Additional files

Additional file 1: Table S1. Primer sequences used for generating the
pOPINEE12G expression vectors. Restriction sites are underlined; infusion
tag sequences are indicated in parentheses. F = forward primer;

R = reverse primer.

Additional file 2: Figure S1. Clone growth versus seeding density. Cell
recovery (ie. clone growth), determined three weeks after transfection,
was highest following seeding at low initial densities of 10° cells/flask.

Additional file 3: Figure S2. Soluble PD-1 expression from IRES, T2A
and dual promoter pOPINEE12G-stably transfected sorted or unsorted
CHO-K1 cells. PD-1 titre was determined by competition ELISA on
supernatant samples collected from 175 cm? flasks after three weeks. As
with FcERa, results between triplicate transfections were variable, with
the IRES-containing vector giving on average slightly higher PD-1 yields.
Average yields from the triplicate sorted cells are indicated by the dotted
lines; error bars indicate standard errors for triplicate ELISA
measurements.
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