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Abstract

Background: Activators of Nitrile hydratase (NHase) are essential for functional NHase biosynthesis. However, the
activator P14K in P. putida is difficult to heterogeneously express, which retards the clarification of the mechanism
of P14K involved in the maturation of NHase. Although a strep tag containing P14K (strep-P14K) was over-
expressed, its low expression level and low stability affect the further analysis.

Results: We successfully expressed P14K through genetic modifications according to N-end rule and analyzed the
mechanism for its difficult expression. We found that mutation of the second N-terminal amino-acid of the protein
from lysine to alanine or truncating the N-terminal 16 amino-acid sequence resulted in successful expression of
P14K. Moreover, fusion of a pelB leader and strep tag together (pelB-strep-P14K) at the N-terminus increased P14K
expression. In addition, the pelB-strep-P14K was more stable than the strep-P14K.

Conclusions: Our results are not only useful for clarification of the role of P14K involved in the NHase maturation,
but also helpful for heterologous expression of other difficult expression proteins.
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Background

Nitrile hydratase (NHase, EC 4.2.1.84) is composed of a-
and p-subunits. The enzyme contains either a non-heme
iron (Fe-NHase) [1] or non-corrin cobalt ion (Co-NHase)
[2] in the active center and catalyzes the hydration of a
nitrile to the corresponding amide, which is followed by
several consecutive reactions: amide — acid — acyl-CoA,
as catalyzed by amidase [3] and acyl-CoA synthetase [1],
respectively. The metal ions in both Co-NHase and Fe-
NHase are located in their a-subunits, which share a char-
acteristic metal-binding motif [CXLC(SO,H)SC(SOH)]
containing two modified cysteine residues: cysteine-sulfinic
acid (aCys-SO,H) and cysteine-sulfenic acid (aCys-SOH)
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[14,5]. The apoenzyme is likely to be unmodified,
according to previous studies on NHase [6] and a related
enzyme, thiocyanate hydrolase (SCNase) [7].

The trafficking of metal ions into NHases is mediated
by various “activator proteins” [8]. Fe-NHases require
activators for functional expression in Rhodococcus sp.
N-771 [9], Pseudomonas chlororaphis B23 [10] and
Rhodococcus sp. N-774 [11]. A proposed metal-binding
motif, CXCC, in the NHase activator of Rhodococcus sp.
N-771 has been identified and the activators for Fe-type
NHases have been shown to act as metallochaperones
[12]. For the two Co-NHases (L-NHase and H-NHase)
in Rhodococcus rhodochrous J1, cobalt incorporation has
been found to be dependent on self-subunit swapping:
the activator protein exists as a complex with the
a-subunit of NHase, the cobalt incorporation involves
the swapping of the cobalt-free a-subunit of the cobalt-
free NHase with the cobalt-containing a-subunit of the
complex [13-15]. NHase in Pseudomonas putida NRRL-
18668 and acetonitrile hydratase (ANHase, an NHase
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that catalyzes the hydration of small aliphatic nitriles)
from Rhodococcus jostii RHA1 are also Co-NHases, in
which P14K and AnhE, respectively, are essential for
NHase maturation [16,17]. However, their gene organiza-
tions are quite different from those of L-NHase and H-
NHase. The structural genes of L-NHase and H-NHase
have the order < -subunit> <a-subunit > <self-subunit
swapping chaperone>, while those in ANHase and the
NHase of P. putida NRRL-18668 have the order < a-sub-
unit > <AnhE > <f-subunit > [16] and < a-subunit > <f3-sub-
unit > <P14K > [17], respectively, with the latter protein
being identical to the metallochaperone in Fe-NHase
except that the molecular mass of the protein in Fe-NHase
is larger than P14K. While AnhE has been found to act as a
metallochaperone (not as a self-subunit swapping chape-
rone) during cobalt incorporation into ANHase [16], very
recently, we discovered that cobalt incorporation into the
NHase of P. putida NRRL-18668 is also dependent on the
self-subunit swapping, and the P14K is a complex with the
a-subunit [18]. However, the P14K is difficult to be hetero-
geneously expressed, though a strep tag containing P14K
was expressed, its low expression level and low stability
retard the further clarification of their detailed role for
cobalt incorporation.

Heterologous expression systems are commonly used
for protein research. Protein degradation in heterologous
expression systems often leads to failure for the isolation
of proteins of interest. Intracellular protein degradation
plays an essential role in many physiological processes by
removing damaged polypeptides and proteins that harbor
specific destruction tags. N-end pathway degradation re-
lates the metabolic stability of a protein to the N-terminal
residue of that protein [19]. The N-end rule defines the
stability of proteins according to the nature of their N-
terminal residues. These residues are classified as stabiliz-
ing and destabilizing residues, which serve as recognition
determinants for protein degradation [19-21]. In bacteria
such as E. coli, the N-end rule pathway is present.
According to the N-end rule, amino-terminal arginine,
lysine, leucine, phenylalanine, tyrosine and tryptophan
confer 2 minute half-lives to proteins, while the other
amino-terminal residues confer greater than 10 hour half-
lives to the same proteins (Figure 1) [22,23].

In the present study, we successfully expressed the
NHase activator P14K through site-specific mutagenesis
taking into account N-end rule degradation. We also in-
creased the expression and the stability of P14K by fusion
of a pelB leader and strep tag together at its N-terminus.
These results are useful for elucidation of the mechanism
of cobalt incorporation into the a-subunit of NHase in
P. putida NRRL-18668. Furthermore, these strategies,
which promote the over-expression of the instable P14K
in E. coli, might also be helpful for the heterologous
expression of other difficult expression proteins.
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Figure 1 The schematic diagram of N-end rule in bacteria. (A)
Relatively long protein half-life. If the second N-terminal amino-acid
is A, G, S, CorPand in some cases V or T, which can be processed
by methionine aminopeptidase (MetAP), the protein will have a long
half-life. (B) Relatively short protein half-life. When the second N-
terminal amino-acid is W, Y, F, L, R, K, M, D, E, I, H, Q or N, which can

not be processed by MetAP, the protein will have a short half-life.

Results and discussion

Molecular modification to improve the yield of P14K from
P. putida NRRL-18668

To clarify the mechanism of cobalt incorporation into
the NHase of P. putida NRRL-18668, we attempted to
isolate P14K, which is essential for NHase activity [17].
The transformant harboring pET-ABB which contained
the NHase and P14K genes, was used for NHase and
P14K expression. As a result, although NHase was
successfully expressed, P14K was hardly detected on
SDS-PAGE. This result is consistent with the previous
report [17]. Although a strep tag containing P14K was
expressed using a transformant harboring pET-AB(strep-P),
and the strep-P14K was found to be a complex with the
a-subunit [a-(strep-P14K)] [18], the low expression level
and the low stability of the complex retard the further
clarification of its detailed role for cobalt incorporation,
a strategy for enhancing P14K expression level and sta-
bility is expected. It has been shown that heterologous
expression of proteins in E. coli can be enhanced by
using a synthetically strong ribosome binding site (RBS)
[24], reducing the distance between the promoter region
and target gene [25] and gene codon optimization [26].
To enhance the expression of P14K, the putative RBS
(CTGGAG) within the B gene (encoding the B subunit)
(Figure 2A) was replaced with an enhanced RBS
(AAGGAG) between gene B and gene P (encoding
P14K) during the construction of the plasmid pET-ABP
(Figure 3). Simultaneously, the plasmid pET-PAB, with
the gene order < P> <A ><B>, was constructed. In this
plasmid, the distance between the promoter sequence
and the P14K gene was shortened and the strong
RBS was inserted upstream of each gene (Figure 3).
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Figure 2 Potential ribosome-binding site of P14K and the
codon-optimized nucleotide sequence of P14K. (A) Nucleotide
sequence of P14K. The underlined nucleotide sequence denotes the
potential ribosome-binding site. (B) Nucleotide sequence of the
codon-optimized P14K (Po) nucleotide sequence.

Moreover, plasmid pET-ABPo, with optimized P14K gene
codons and a strong RBS for each gene, was also
constructed (Figure 2B). However, P14K was not abun-
dantly expressed by the transformants harboring pET-ABB,
pET-PAB or pET-ABPo (Figure 4A).

Successful heterologous expression of P14K

The N-end rule states that the half-life of a protein is deter-
mined by the nature of its N-terminal residue [19-21]. This
fundamental principle of proteolytic regulation is conserved
from bacteria to mammals [19]. N-terminal arginine, lysine,
leucine, phenylalanine, tyrosine and tryptophan confer 2 mi-
nute half-lives to proteins, while the other N-terminal resi-
dues confer greater than 10 hour half-lives to the same
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Figure 3 Sketch of the plasmids used in this study. pET-ABP, a
plasmid containing the ABP genes; pET-ABP, a plasmid containing
the ABP genes with an enhanced RBS (AAGGAG) between the B and
P genes; pET-PAB, a plasmid containing the ABP genes with a <P >
<A > <B> order; pET-ABPo, a plasmid containing the AB and the
codon-optimized P genes; pET-AB(strep-P), a plasmid containing the
AB and a strep-tagged P genes [18]; pET-ABP(K2A), a plasmid
harboring the AB and a mutant P (the second lysine (K) is mutated
to alanine (A)) genes; pET-AB(*N-P), a plasmid harboring the AB and
a 16 amino-acid truncated N terminus P genes; pET-A(strep-P), a
plasmid containing the A and a strep-tagged P genes; pET-(pelB-A)B
(pelB-strep-P), a pET-22b plasmid containing the pelB-A, B and pelB-
strep-P genes.

proteins [22,23] (Figure 1). We analyzed the N-terminal
amino-acids of some weakly expressed NHase activators
from Bordetella petrii DSM 12804, P. putida NRRL-18668,
Bacillus BR449 and Bacillus RAPc8. Surprisingly, we found
that all of the second N-terminal amino-acids of the NHase
activators in these four strains are lysine (K) (Table 1).
Thus, it may be that N-end rule degradation leads to diffi-
culty with the expression and isolation of P14K. Based on
this speculation, we designed a mutant gene, ABP(K2A), in
which the Lys-2 in the N-terminus of P14K was substituted
with Ala in the plasmid pET-ABP(K2A). In addition, we
analyzed the secondary structure of the P14K as predicted
by JPRED3 (http://www.compbio.dundee.ac.uk/www-jpred/
index.html) and found the N-terminal 16 amino-acid group
is in an N-terminal loop (Figure 4B) and the 17th amino-
acid is a Gly that could avoid P14K degradation effectively
according the N-end rule [22,23]. Therefore, we con-
structed plasmid pET-AB("N-P), in which the N-terminal
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Figure 4 SDS-PAGE analysis of recombinant NHases and P14K, and the predicted secondary structure of P14K. (A) SDS-PAGE analysis of
the cell extracts of the transformants carrying pET-ABP, pET-ABP, pET-PAB or pET-ABPo. 1, mark; 2, pET-ABP; 3, pET-AB'P; 4, pET-PAB; 5, pET-ABPo. (B)
Predicted secondary structure of P14K. (C) SDS-PAGE analysis of the cell extracts of the transformants carrying pET-AB(strep-P), pET-ABP(K2A) or
PET-AB(*N-P). 1, mark; 2, pET-ABP; 3, pET-AB(strep-P); 4, pET-ABP(K2A); 5, harboring pET-AB(*N-P).
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16 residues of P14K were deleted, the second N-terminal
amino-acid in the truncated P14K was Gly. The trans-
formants harboring pET-ABP(K2A) and pET-AB("N-P)
were used for NHase and P14K expression. As shown in
Figure 4C, each mutant P14K was successfully expressed
and the crude NHase activity in the cell-free extracts of
each transformant was similar to that of the transformant
harboring pET-ABP (120.5 U/mg). However, compared
with the expression of P14K using the transformant harbor-
ing pET-AB(strep-P), the expression level of P14K in the
two mutants was not improved (Figure 4C).

High P14K expression yield

It has been reported that exporting a protein to the peri-
plasm to enhance its stability can be regarded as an effect-
ive strategy to optimize the production of recombinant

Table 1 N-terminal amino-acid sequence of NHase
activators in various strains

Strain

Bordetella petrii DSM 12804
Pseudomonas putida NRRL-18668
Bacillus BR449

Bacillus RAPc8

N-terminal amino-acid sequence
M K DERLPLP (YP_001630019.1)

M K DERFPLP (P14K in this study*)
M K SCENQPN (AAF69003.1)

M K SCENQPN (AAS84452.1)

Protein accession numbers are shown in brackets. * the correct N-terminal
amino-acid sequence of P14K was identified by our previous work [18].

proteins [27,28]. To yield large amounts of P14K in
recombinant E. coli cells, we attempted to secrete P14K
into the periplasmic space. As P14K formed a complex
with the a-subunit of NHase [18], we designed a mutant
gene (pelB-A)B(pelB-strep-P) in which the pelB signal
peptide was added upstream of the A and strep-P genes
in the plasmid pET22b-(pelB-A)B(pelB-strep-P). The
transformant harboring pET22b-(pelB-A)B(pelB-strep-P)
was used for recombinant P14K expression. Although no
target protein was observed in the culture supernatant, a
large amount of the full-length pelB-strep-P14K and pelB-a
subunit (the pelB signal peptides were not cut off in either)
were detected in the cell-free extract (Figure 5A). In
addition, the enzyme activity in the cell-free extract was
comparable to that of the wild-type NHase.

Stability of pelB-strep-P14K

To investigate the mechanism of how the fusion protein
pelB-strep enhances the recombinant expression of P14K,
we compared the difference in the protein stability between
the purified P14K-containing activator complex [a-(strep-
P14K)] and [a-(pelB-strep-P14K)]. SDS-PAGE analysis was
carried to investigate the stability of cobalt-containing
[a-(strep-P14K)] and [a-(pelB-strep-P14K)] (a culture con-
taining the cobalt ion) during storage at room temperature.
As shown in Figure 5B, the pelB-strep-P14K band from the
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Figure 5 SDS-PAGE analysis of recombinant pelB-strep-P14K. (A) SDS-PAGE analysis of the activators encoded by A(strep-P) and (pelB-A)B
(pelB-strep-P). 1, mark; 2, cell extracts of the transformant containing pET-A(strep-P); 3, cell extracts of the transformant containing pET-(pelB-A)B
(pelB-strep-P); 4, culture supernatant of the transformant containing pET-(pelB-A)B(pelB-strep-P). (B) SDS-PAGE analysis of stability of purified
activator complexes [a-(strep-P14K)] and [a-(pelB-strep-P14K)]. 1, mark; 2, purified [a-(strep-P14K)]; 3, purified [a-(strep-P14K)] after storage for
1 day; 4, purified [a-(strep-P14K)] after storage for 2 days; 5, purified [a-(pelB-strep-P14K)]; 6, purified [a-(pelB-strep-P14K)] after storage for 2 days;
7, purified [a-(pelB-strep-P14K)] after storage for 6 days.

A\

recombinant [a-(pelB-strep-P14K)] complex decayed to
90% of the original intensity after 2 days of storage and

eventually to 60% after 6 days. However, the strep-P14K Table 2 Oligonucleotide primers used in this study

band from the [a-(strep-P14K)] complex decreased to 60%  Name Sequence
after only 1 day of storage and to 10% after 2 days. The  AUP 5-GGAATTCCATATGGGGCAATCACACACGLS
finding that pelB-strep-P14K is far more stable than strep-  P-down 5-CCGGAATTCTCAAGCCATTGCGGCAACGA-3'

P14K indicated that thermal stability may be a key factor in  B-down(rbs) 5 ATATCTATATCTCCTTTCACGCTGGCTCCAGGTAGTC-3
P14K expression. P-up(rbs) 5 TGAAAGGAGATATAGATATGAAAGACGAACGGTTT-3'
. P-up 5-GGAATTCCATATGAAAGACGAACGGTTT-3

Conclusions

In conclusion, the activator P14K from P. putida NRRL- P-down(PAB)  5-CATATCTATATCTCCTTTCAAGCCATTGLGRLAACG S
18668 was successfully expressed based on the N-end A-up(PAB) 5-TGAAAGGAGATATAGATATGGGGCAATCACACACGC-3'
rule degradation, the stability of the P14K was improved  B-down(PAB)  5-CCGGAATTCTCACGCTGGCTCCAGGTAGT-3'

by adding a pelB signal peptide. Further study of the in-  po-yp 5-GGAATTCCATATGAAAGACGAACGTTTC-3

fluence of P14K on the maturation of NHase is currently 4 own 5 CCGGAATTCTCAAGCCATAGCAGCAACAAS'

underway. The strategy used for P14K expression in this
study may be useful for the heterologous expression of
other difficult expression proteins.

5-GCGGGTGGCTCCAGCTTGCCATATCTATATCTCCTTTCA
CGCTGGCTCCAGGTAGTCATC-3'

B-down(strep)

P-up(strep) 5-AAGCTGGAGCCACCCGCAGTTCGAAAAGGGTGCAAAA
GACGAACGGTTTCCATT-3
Methods K2A-up 5 TGAAAGGAGATATAGATATGGCGGACGAACGGTTTC-3'
Bacterial strain and plasmids
K2A-down 5'-GCAATGGAAACCGTTCGTCCGCCATATCTATATCTCC-3'
NHase and the P14K gene (ABP) were cloned from P. )
P-up("N) 5-TGAAAGGAGATATAGATATGGGCCCTGTGTTTGACG-3'

putida NRRL-18668. E. coli BL21 (DE3) was used as the
host for the plasmid pET-24a(+), which was used for
ABD, AB’R, PAB, ABPo, AB(strep-P), ABP(K2A), AB(°N-P)

5'-GCGGGTGGCTCCAGCTTGCCATATCTATATCTCC A
ATGAGATGGGGTGGGTTGGGT-3"

A-down(strep)

and A(strep-P) expression. The plasmid pET-22b was  SeCAUP > -CCOGAATTCGOOGLAATCACACACOCAT-S

used for (pelB-A)B(pelB-strep-P) expression. secB-down 5-GATATCCATGGCCATCGCCGGCTGGGCAGCGAGGAG
CAGCAGACCAGCAGCAGCGGTCGGCAGCAGGTATTTCA

' _ TATGTATATCTCCTTTCACGCTGGC-3'
Construction of plasmids p 5-CAGCCGGCGATGGCCATGGATATCGGAATTAATGCAA
. . . secP-up -

The genomic DNA of P. putida NRRL-18668 was iso- GCTGGAGCCACCCGCAGTTCGAAAAGGGTGCAAAAGAC

lated for ABP cloning with the primers A-up and P- GAACGGTTTCCATTGCCAG-3'

down (Table 2 and Figure 3). The PCR products were  secp-down  5-CGACCCAAGCTTTCAAGCCATTGCGGCAACGACC-3'

digested and ligated into pET-24a(+) to generate the
plasmid pET-ABP. The recombinant plasmid pET-ABP

Italicized letters denote the Ndel, EcoRI and Hindlll recognition
sites, respectively.
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was then transformed into E. coli BL21 (DE3) for heter-
ologous expression. An overlap extension PCR protocol
was used for construction of the plasmid pET-ABP
(represents an insertion of RBS sequence) through two
rounds of PCR. The first round of PCR was performed
using the primer pairs A-up and B-down(rbs) and P-up
(rbs) and P-down, respectively, the plasmid pET-ABP
was used as the template. The second round of PCR was
performed to produce the full-length AB’B using the
primers A-up and P-down and mixing equal molar
amounts of the first-round products as template. The
following plasmids were prepared similar to pET-AB’P.
The plasmid pET-PAB was prepared with the primer
pairs P-up and P-down(PAB) and A-up(PAB) and B-
down(PAB). The plasmid pET-ABPo was constructed
with the primer pairs A-up and B-down(rbs) and Po-up
and Po-down. The plasmid pET-Po (Po, codon optimized
P gene synthesized by Sangon Biotech Ltd.) was used
as the template. The plasmid pET-AB(strep-P) was
constructed with the primer pairs A-up and B-down
(strep) and P-up(strep) and P-down as described previ-
ously [18]. The plasmid pET-AB("N-P) was constructed
with the primers A-up and B-down(rbs) and P-up(°N)
and P-down. The plasmid pET-A(strep-P) was generated
from pET-ABP with the primers A-up and A-down
(strep) and P-up(strep) and P-down. The plasmid
pET22b-(pelB-A)B(pelB-strep-P) was prepared with the
primers of secA-up and secB-down and secP-up and
P-down. The plasmid pET-ABP(K2A) mutant was
constructed to produce full-length ABP(K2A) with the
primers K2A-up and K2A-down using pET-AB’P as the
template. The PCR products were digested with Dpnl to
degrade the template plasmid and then transformed
into E. coli BL21 (DE3).

Expression and purification of enzymes and enzyme assay
E. coli BL21 (DE3) transformants containing the recom-
binant plasmids were grown at 37°C in TB medium
containing CoCl,.6H,O (0.05 g/l) and kanamycin (50 pg/
ml) until culture Aggo reached 0.8. Isopropyl B-D-thio-
galactopyranoside was added to a final concentration of
0.4 mM. The cells were then incubated at 24°C for 16 h.
All purification steps were performed at 4°C. The pro-
cedures were conducted with an AKTA purifier (GE
Healthcare UK Ltd.). Potassium phosphate buffer (KPB)
(10 mM, pH 7.5) containing 0.5 mM dithiothreitol
(DTT) was used in the purification steps. Both NHase
and its activator complex were purified with a HisTrap
HP column (GE Healthcare UK Ltd.). The target pro-
teins were eluted off the column with gradient concen-
trations of imidazole from 0 mM to 500 mM (40 mM,
80 mM, 200 mM, 300 mM and 500 mM) in 10 mM
KPB. The preliminarily separated proteins were further
purified with a Hiload 16/60 Superdex 200 pg column
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(GE Healthcare UK Ltd.). The process of separation and
purification was monitored by SDS-PAGE analysis.

NHase activity was assayed in a reaction mixture com-
prising 10 mM KPB (pH 7.5), 20 mM 3-cyanopyridine as
a substrate and 0.1 pg enzyme in a total volume of
500 pL. The reaction mixture was incubated at 20°C for
20 min and terminated by addition of 500 pL of aceto-
nitrile. The activity of NHase was determined by moni-
toring the formation of nicotinamide in the reaction
mixture with high-pressure liquid chromatography
(HPLC) as previously described [13]. One unit of NHase
activity was defined as the amount of enzyme that cata-
lyzed the formation of 1 umol of nicotinamide per min
at 20°C.
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