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Abstract

cells has not been elucidated.

Background: There are few studies that have examined the potential of RNA inference (RNAI) to increase protein
production in the baculovirus expression vector system (BEVS). Spodoptera frugiperda (fall armyworm) (Sf)-caspase-1-
repressed stable cells exhibit resistance to apoptosis and enhancement of recombinant protein production.
However, the mechanism of recombinant protein augmentation in baculovirus-infected Caspase-repressed insect

Results: In the current study, we utilized RNAi-mediated Sf-caspase-1-repressed stable cells to clarify how the
resistance to apoptosis can enhance both intracellular (firefly luciferase) and extracellular (secreted alkaline
phosphatase [SEAP]) recombinant protein production in BEVS. Since the expression of molecular chaperones is
strongly associated with the maximal production of exogenous proteins in BEVS, the differential expression of
molecular chaperones in baculovirus-infected stable cells was also analyzed in this study.

Conclusion: The data indicated that the retention of expression of molecular chaperones in baculovirus-infected Sf-
caspase-1-repressed stable cells give the higher recombinant protein accumulation.
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Background

Programmed cell death, also known as apoptosis, is a nor-
mal physiological cell suicide program that is highly con-
served among vertebrates and invertebrates [1,2].
Apoptotic cells undergo a series of dramatic and charac-
teristic alterations in cellular morphology, such as DNA
fragmentation, chromatin condensation, cytoskeleton
reorganization, and plasma membrane blebbing [3]. Apop-
tosis plays an important role during development and tis-
sue homeostasis eliminating discarded cells from the
organism, including damaged and virus-infected cells. For
this reason, apoptosis acts as a host protection mechanism
by which virus-infected cells are removed to limit the pro-
liferation of viruses [4,5]. Thus, to overcome this defense

* Correspondence: chchlin@pu.edu.tw

Department of Cosmetic Science, Providence University, 200 Chung-Chi
Road, Shalu, Taichung 43301, Taiwan, RO.C

Full list of author information is available at the end of the article

( BiolMed Central

response in cells, baculoviruses carry anti-apoptotic genes
to inhibit programmed cell death [6-8].

Spodoptera frugiperda caspase-1 (Sf-caspase-1), the most
studied effector caspase of Lepidoptera, is the principal ef-
fector caspase of S. frugiperda 9 (S9) cells, and is activated
by various death stimuli, including baculovirus infection,
ultraviolet (UV) irradiation, and over-expression of pro-
apoptotic genes (Figure 1) [8-10]. Two types of anti-
apoptotic genes have been identified in baculoviruses, p35
(p49) and inhibitor of apoptosis (IAP) [6-8]. The p35 gene
from Autographa californica multicapsid nucleopolyhedro-
virus (AcMNPV) and p49 gene from Spodoptera littoralis
nucleopolyhedrovirus (SINPV) are required to prevent
apoptosis during the virus infection of S. frugiperda cells,
such as Sf9 and Sf21 [2,11,12]. The Op-IAP from the
Orgyia pseudotsugata multicapsid nucleopolyhedrovirus
(OpMNPV) and Sf-IAP from the host, S. frugiperda cells,
also suppress the apoptosis process (Figure 1) [1,2].
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Figure 1 The apoptosis pathway in S. frugiperda cells. Apoptotic signals trigger the activation of initiator Sf-caspase-X in S. frugiperda cells.
The Op-IAP and Sf-IAP suppress the activation of Sf-caspase-X, which proteolytically activates downstream effector caspases, including Sf-caspase-
1, by cleavage at the large-small subunit junction. The activated effector caspases can amplify this processing and different steps are inhibited by
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The baculovirus expression vector system (BEVS) is a
powerful tool used for the expression of foreign proteins
in numerous insect cells, including Sf9, Sf21 cells and
Trichoplusi ni cells [13-15]. Therefore, recombinant pro-
tein production using a BEVS can be used for many
pharmaceutical applications [16-18].

Exposure of cells to stressors, including high tempera-
tures or a wide variety of physical and chemical insults,
induces the expression of heat-shock proteins (HSPs) in
cells [19,20]. HSPs are molecular chaperones responsible
for maintaining cell homeostasis and promoting cell sur-
vival [21]. Baculovirus infection also serves as a stress
factor that can activate both death-inducing and
cellular-protective pathways, and the heat-shock re-
sponse is important for baculovirus replication in insect
cells [22]. Moreover, the rate-limited expression of endo-
plasmic reticular (ER) molecular chaperones is strongly
associated with the maximal expression of exogenous
proteins by BEVS [23].

Few studies have examined the potential of RNA infer-
ence (RNAI) to increase protein production in the BEVS
[24,25], however, several studies have demonstrated the
efficiency of this approach in both insect cells and larvae
[26,27]. In our previous studies, we used DNA vector-
based approaches with endogenously expressed double-
stranded RNA (dsRNA) to silence its target gene,
Sf-caspase-1, in Sf9 cells. Therefore, the Sf-caspase-1
mRNA level and plasmid copy number in the Sf
caspase-1-repressed stable cells were examined [25].
In addition, Sf-caspase-1-repressed stable cells exhibited
resistance to apoptosis and enhancement of recombin-
ant protein production [25,28]. These results were con-
sistent with later findings in 7. ni cells [24]; however,

the mechanism of recombinant protein augmentation in
baculovirus-infected Caspase-repressed insect cells was
not determined. Therefore, in this present study, we use
RNAi-mediated Sf-caspase-1-repressed stable cells to
clarify how resistance to apoptosis could enhance both
intracellular (firefly luciferase) and extracellular (secreted
alkaline phosphatase [SEAP]) recombination protein
production by BEVS. Furthermore, the differential ex-
pression of molecular chaperones in baculovirus-
infected stable cells was also analyzed in this study.

Results

Stable transfection plasmid verification by genomic DNA
PCR and RT-PCR in Sf9/pIBdsCasp-1 and Sf9/pIBdsCasp-2
cells

Stable cells (Sf9/pIB, Sf9/pIBdsCasp-1, and Sf9/pIBds-
Casp-2 cells) were established by transfection of the con-
trol vector pIB or vector pIBdsCasp (Figure 2), and
subsequently selected by BSD [25]. After more than 20
passages, stable cell lines were analyzed by genomic DNA
PCR and RT-PCR to examine the inverted-repeat DNA
sequence of Sf-caspase-1 and endogenous expressed Sf-
caspase-1 mRNA quantity. The corresponding primers
and PCR cycle number used for the experiments in
Figure 3 are shown in Table 1. As shown for the genomic
DNA PCR performed in Figure 3A, we supposed the
pIBdsCasp vectors were stably integrated with Sf9 cellular
genomic DNA. In addition, the data also showed that
levels of Sf-caspl mRNA in Sf9/pIBdsCasp-1 and Sf9/
pIBdsCasp-2 cells were apparently lower than those
observed in Sf9 and Sf9/pIB cells (Figure 3B). Further-
more, control actin mRNA was not obviously affected in
either of the cell lines. These results demonstrated that
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Figure 2 Inverted repeat vectors for the endogenous expression of Sf-casp1 dsRNA (A) and the recombinant baculovirus vectors (B).
The resulting stably transfected cell lines carry a plasmid that contains an 800 bp stretch of DNA sequence of Sf-caspl mRNA in both forward and
reverse orientations, containing a spacer of 100 bp between each element. Recombinant baculovirus vectors, pBacLuc and pBacSEAP contained

gene fragments encoding the luciferase and SEAP, respectively. Both genes were expressed under the control of the pPh promoter.

Sf-caspase-1 mRNA was successfully suppressed by Sf-
caspase-1 dsRNA in both Sf9/pIBdsCasp-1 and Sf9/
pIBdsCasp-2 cells. In our previous study, we tested the
expression of P35, a substrate inhibitor of Sf-caspase-1,

A Genomic DNA PCR

Sf9 plB dsCasp-1 dsCasp-2

B RT- PCR

Sf9 pIB dsCasp-1 dsCasp-2

steaspt mRNA [
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Figure 3 Genomic DNA PCR (A) and RT-PCR (B) analysis in Sf9/
pIBdsCasp-1 and Sf9/plBdsCasp-2 cells. Genomic DNA and total
RNA of the cells (Sf9, Sf9/plB, Sf9/plBdsCasp-1 and Sf9/plBdsCasp-2)
were extracted and analyzed by PCR and RT-PCR, respectively. The
corresponding specific primer sequences and PCR cycles are
presented in Table 1. pIB, Sf9/pIB cells; dsCasp-1, Sf9/plBdsCasp-1

cells; dsCasp-2, Sf9/plBdsCasp-2 cells.

in Sf9/pIBdsCasp-1 and Sf9/pIBdsCasp-2 cells, and found
that the level of P35 in pIBdsCasp transfected cells was
evidently higher than that found in normal cells [25].
Thus, we suggested that Sf-caspase-1 is suppressed in
these Sf-caspase-1-repressed cells.

Accumulated SEAP expression by Sf9/pIBdsCasp-1 and
Sf9/pIBdsCasp-2 cells

SEAP is a secreted (extracellular) recombinant protein
that can be assayed in culture medium using a standard
activity assay. Thus, we used rBacSEAP to infect the Sf9/
pIBdsCasp-1 and Sf9/pIBdsCasp-2 cells at a multiplicity
of infection (MOI) of 0.1-100 and analyzed the accumu-
lated SEAP expression in the culture medium every day
post infection (dpi). At 2—4 dpi, the accumulated SEAP
expression in rBacSEAP-infected Sf9/pIBdsCasp-1 and
Sf9/pIBdsCasp-2 cells was obviously higher than that in
the control group, Sf9 and Sf9/pIB cells, at all MOIs
(Figure 4). Moreover, at an MOI of 1 and 10, accumu-
lated SEAP expression in rBacSEAP-infected Sf9/pIBds-
Casp-1 and Sf9/pIBdsCasp-2 cells was approximately
two-fold higher than that in the control group after 4
dpi (Figure 4B and 4C). Moreover, the difference of
accumulated SEAP expression between normal and
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Gene Protein/product Predicted location Description Primer sequence PCR cycle Reference

Sf-caspl  Sf-caspl dsRNA nucleus/cytosol plBdsCasp DNA, forward 5-GATATGGAGAAGATCTGGCAC-3" 35 [25]
pIBdsCasp DNA, reverse 5-GTGGGGCAGGGCGTAGCC-3'

Sf-B-actin  B-Actin cytosol Sf-B-actin DNA/mRNA, forward ~ 5"-CAATCTGTCACCTTGGCA-3 25 [25]
Sf-B-actin DNA/mRNA, reverse  5-GACAATACAAACTAAGATTTA-3

Sf-caspl  Sf-Caspase-1 cytosol Sf-caspl mRNA, forward 5-TGTCAAACACCTTTTATG-3 25 [25]
Sf-caspl mRNA, reverse 5 - TATTATGACACATGGGCA-3’

atx1 Copper chaperone  cytosol atx] mRNA, forward 5-ATGTCATCTACACACATTTT-3 25 [29]
atx] mRNA, reverse 5" -CTATTGTGTGCCAACATAAG-3

cypA Cyclophilin A (CypA)  cytosol cypA mRNA, forward 5'-ATGGCTTTACCCCGAGTTT-3' 25 [29]
cypA MRNA, reverse 5 TGGTTTGTGAAGTCACCTCCT-3'

cypB Cyclophilin B (CypB)  secreted/ER cypB mRNA, forward 5'-GCGCTTTCGCAGCAGCTCTT-3' 25 [29]
cypB MRNA, reverse 5-AGCCCTGGCCTTCTGGTTT-3

hsc70 Heat shock cognate  ER hsc70 mRNA, forward 5"-ATGATCAAAATGCGGTGGA-3 25 [30]

70 (GRP78-like) hsc70 mRNA, reverse 5"-AGCCACATATGAGGGAGTGAT-3’
hsp90 Heat shock protein  ER hsp90 mRNA, forward 5-ATGCCCGAAGAAATGCAG-3 25 31]
90 (HSP90) hsp90 mRNA, reverse 5 TGTACAGCTCCTTGCCGCT-3

calr Calreticulin (CRT) cytosol calr mRNA, forward 5-ATTCTATTCGTGGCCAGTCC-3 25 [29]
calr mRNA, reverse 5-GAACTTTCCAGCAGTCAGCTT-3'

pdi Protein disulfide ER pdi mRNA, forward 5"-GCCATTGACGCTGACGAA-3' 25 [29]

isomerase (PDI)

pdi mRNA, reverse

5'-CCTCGCTCAACAAGTGCTGT-3

ER, endoplasmic reticulum.

Sf-caspase-1-repressed stable cells increased with
MO, such as that at MOIs of 10 and 100 (Figure 4).
These data demonstrated that the secreted recombin-
ant protein production in Sf-caspase-1-repressed stable
cells was higher than that in normal insect cell after
baculovirus infection.

Luciferase expression in Sf9/plBdsCasp-1 and Sf9/
pIBdsCasp-2 cells

To estimate different kinds of recombinant protein pro-
duction in Sf-caspase-1-repressed stable cells, we use an
intracellular recombinant protein, luciferase, as the assay
target. The rBacLuc-infected Sf9/pIBdsCasp-1 and Sf9/
pIBdsCasp-2 cells showed higher luciferase activities than
that in control cells at all MOlIs at 2 or 3 dpi (Figure 5).
However, at all MOls, the difference of luciferase expres-
sion was not apparent at >5 dpi (Figure 5) and might re-
sult from the lysis of virus-infected cells during the later
phase of infection releasing intracellular proteins [32].

SEAP expression at each day’s period in Sf9/pIBdsCasp-1
and Sf9/pIBdsCasp-2 cells

To further investigate the differences of recombinant
protein production between the normal and Sf-caspase-
1-repressed stable cells, specific SEAP activity at every
24 hour period of time in the culture media of rBac-
SEAP infected cells was analyzed. At an MOI of 0.1 and

1, SEAP activities in culture medium of Sf9/pIBdsCasp-1
and Sf9/pIBdsCasp-2 cells were higher than that of nor-
mal cells at 3-5 dpi (Figure 6A and 6B). Moreover, at an
MOI of 10 and 100, peak SEAP expression in Sf-
caspase-1-repressed and normal cells occurred at 2—4 dpi
(Figure 6C and 6D). Although during the assay the re-
placement of culture medium of virus-infected cells may
affect not only the energy sources for protein expression
but also virus replication in cells, the difference of re-
combinant protein production between Sf-caspase-1-
repressed and normal cells may be caused by the diverse
cellular states that occur during the middle phase of the
infection process.

Expression of molecular chaperones in baculovirus-
infected Sf-caspase-1-repressed stable cells

The heat shock response is important for baculovirus repli-
cation in insect cells and the expression of ER molecular
chaperones is strongly associated with the maximal expres-
sion of exogenous proteins in BEVS [22,23]. Therefore, we
analyzed the mRNA expression of some molecular chaper-
ones involved in virus replication, including copper
chaperone, cyclophilins, HSPs, calreticulin (CRT), and pro-
tein disulfide isomerase (PDI). The B-actin mRNA level in
Sf9 and Sf9/pIBdsCasp-1 cells was relatively equivalent at
each time point analyzed and decreased at 9-48 hours
post-infection (hpi) (Figure 7B). However, the mRNA
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Figure 4 Accumulated SEAP expression of Sf9/plBdsCasp-1 and Sf9/pIBdsCasp-2 cells. Cells (59, Sf9/plIB, Sf9/plBdsCasp-1 and Sf9/
plBdsCasp-2) were infected with rBacSEAP at MOls of 0.1 (A), 1 (B), 10 (C) and 100 (D). At each day post-infection, culture media were analyzed
for relative specific SEAP activity. Data is presented as the mean + S.D. of two independent experiments, and statistically analyzed using the
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expression of chaperones, including atxl, cypA, cypB,
hsc70, calr, and pdi, exhibited differential expression be-
tween baculovirus-infected Sf9 and Sf9/pIBdsCasp-1 cells
at 9-48 hpi (Figure 7). Most chaperones demonstrated an
induction response for virus infection within 9 hpi. Fur-
thermore, expression of /sp90 was persistent during the
infection process and no dramatic difference was
observed between normal and Sf-caspase-1-repressed cells
(Figure 7G). In contrast, expression of /sc70 did not show
the same stable expression (Figure 7E). These data are
consistent with a study performed by Nobiron et al. [33]
that identified the cause of this effect to be HSC70, a
virus-induced member of the HSP70 family.

Discussion
In this study, our data demonstrated that both intracel-
lular (luciferase) and extracellular (SEAP) recombinant

protein production in Sf-caspase-1-repressed stable cells
was higher than that in normal insect cell after baculo-
virus infection (Figure 4 and 5). Although luciferase ex-
pression did not correlate with accumulated SEAP
expression, it was apparent that both extracellular and
intracellular recombinant protein production in Sf
caspase-1-repressed stable cells was higher than for par-
ental cells (Figures 4 and 5). Thus, these data indicate
that Sf-caspase-1-repressed stable cells express a higher
amount of recombinant protein in BEVS, consistent
with previous studies in S. frugiperda cells by our group
[25] and in T. ni cells by Bentley’s group [24,34]. Hence,
we can suggest that the apoptotic repressed insect cells
have greater recombinant protein production when
infected with recombinant baculovirus, providing an ef-
fective production tool for BEVS. Besides, results also
indicated that the difference of recombinant protein
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Figure 5 Luciferase expression in Sf9/pIBdsCasp-1 and Sf9/pIBdsCasp-2 cells. Cells (59, Sf9/pIB, Sf9/pIBdsCasp-1 and Sf9/plBdsCasp-2) were
infected with rBacLuc at MOls of 0.1 (A), 1 (B), 10 (C) and 100 (D). At each day post-infection, cells were collected and analyzed for relative
specific luciferase activity. Data is presented as the mean + S.D. of two independent experiments, and statistically analyzed using the Student’s

dpi

production between Sf-caspase-1-repressed and normal
cells may be caused by the diverse cellular states that
occur during the middle phase of the infection process
(Figure 6).

Molecular chaperones are important and highly asso-
ciated with the state of cells. The results of molecular
chaperone mRNA levels in baculovirus-infected normal
and Sf-caspase-1-repressed stable cells demonstrated
that these cells were appeared in different states during
the infection progression (Figure 7). Therefore, we
assumed that this is a key explanation for baculovirus-
infected Sf-caspase-1-repressed stable cells have a higher
recombinant protein production than that in normal
cells. The persistent expression of molecular chaper-
ones in baculovirus-infected Sf-caspase-1-repressed
stable cells resulted in a higher recombinant protein
production than that in normal cells, which can be

suggested by some earlier studies that focused on the
co-expression of molecular chaperones, Bip (GRP78),
Calreticulin and Calnexin in BEVS to improve the re-
combinant production and secretion from cells and
larvas [35-38]. Therefore, we also suppose that expres-
sion of molecular chaperon in combined with RNAi
technique may have opportunity to further improve
BEVS.

During the baculovirus infection process, the condition
of infected insect cells often represents key factors that
affect both baculovirus replication and recombinant pro-
duction. Therefore, there appears to be a distinct differ-
ence of the baculovirus infection process that occurs in
normal and Sf-caspase-1-repressed cells. We proposed
that the Sf-caspase-1-repressed stable cells have a different
status and this response improves the ability of infected
cells to express a higher amount of recombinant proteins.
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Figure 6 SEAP expression at each day’s period in Sf9/pIBdsCasp-1 and Sf9/pIBdsCasp-2 cells. Cells (5f9, Sf9/plIB, Sf9/plBdsCasp-1 and Sf9/
plBdsCasp-2) were infected with rBacSEAP at MOls of 0.1 (A), 1 (B), 10 (C) and 100 (D). At each day post-infection, old culture media were
replaced with fresh media and analyzed for relative specific SEAP activity. Data is presented as the mean + S.D. of two independent experiments,

and statistically compiled by Student’s t-test. *p < 0.05, compared to corresponding controls.

Conclusions

In summary, the differential expression of molecular cha-
perones in baculovirus-infected Sf-caspase-1-repressed
stable cells affects the production of recombinant protein
when compare with normal cells. Therefore, the current
study identified critical virus-cell interactions that are
likely to improve the development of BEVS in future
studies.

Methods

Construction of plasmids and recombinant baculovirus
Stable transfection plasmids were constructed using the
pIB vector (Invitrogen, Carlsbad, CA) as the backbone.
The 5" end 800 base pairs (bp) forward and reverse DNA
fragments of the Sf-caspase-1 (Sf-caspl) gene were amp-
lified by polymerase chain reaction (PCR) from the gen-
omic DNA extracted from Sf9 cells. The resulting

construct was named pIBdsCasp, containing an
inverted-repeat sequence of Sf-caspl under the control
of the opIE2 promoter, as described previously [25] and
shown in Figure 2A. Illustrations of pBacLuc and pBac-
SEAP are provided in Figure 2B, and the construction of
these plasmids was performed using the Bac-to-Bac sys-
tem according to the manufacturer’s protocols (Invitro-
gen) as described previously [25,28]. Luciferase and
SEAP were expressed in rBacLuc-, and rBacSEAP-
infected insect cells, respectively. Recombinant baculo-
virus were amplified twice and titers were determined by
the end-point dilution method [39].

Cell culture and transfection

Sf9 cells were cultured in Grace’s insect cell culture
medium (Invitrogen) with 10% (v/v) heat inactivated
fetal bovine serum (FBS; Hyclone, Logan, UT) at 27°C.
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Figure 7 RT-PCR analysis of molecular chaperones in baculovirus-infected Sf-caspase-1-repressed stable cells. Total mRNA of baculovirus-
infected cells, Sf9 and Sf9/pIBdsCasp-1, at each hour post infection (hpi) were extracted and analyzed by RT-PCR. The marked numbers below
images were relative mRNA level (%), which were normalized with rRNA and compared with corresponding mRNA level of Sf9 cell at 0 hpi. The
corresponding specific primer sequences and PCR cycles were presented in Table 1. dsC1, Sf9/plBdsCasp-1 cells; act, B-actin.
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asc1 [T

128 125 119 128 111 54 39 28 (%)

D cypB
0 3 6 9 12 18 24 48 hpi

8f9
100 89 90 94 62 64

30 16 (%)
dsC1

90 108 77 86 98 68 50 48 (%)

F calr
0 3 6 9 12 18 24 48 hpi

Sf9

100 113 101 114 78 79 46 30 (%)
dsCA1

109 140 135 125 141 87 79 57 (%)

H pdi
0 3 6 9 12 18 24 48 hpi

Sf9
100 98 95 110 62 64 27 25 (%)

dsC1

92 101 95 96 71

64 49 40 (%)

J

Cell density was determined by hemocytometer counts
and cell viability was evaluated by the Trypan Blue ex-
clusion method. The pIB vector or pIBdsCasp plasmids
were transfected into Sf9 cells by Transfast reagent (Pro-
mega, Madison, WI) and stable cell lines were selected
by the addition of 60 pg Blasticidin (BSD)/mL (Invitro-
gen), as previously described [25]. Stable clones encod-
ing pIB vector and pIBdsCasp plasmid were designated
Sf9/pIB and Sf9/pIBdsCasp (Sf9/pIBdsCasp-1 and Sf9/
pIBdsCasp-2) cells, respectively.

PCR and RT-PCR analysis

Primers used for PCR and reverse transcription PCR
(RT-PCR) analyses are listed in Table 1. The genomic
DNA was extracted from 5 x 10* stable insect cells using
the Dneasy Tissue Extraction kit (Qiagen, Hilden, Ger-
many) and 500 ng of extracted genomic DNA was used
in each 50 pL PCR. For genomic DNA PCR analysis,
after an initial incubation at 94°C for 4 min, the reaction
mixture was subjected to 25 or 35 cycles (Table 1) of
PCR amplification at 94°C for 15 s, at 55°C for 30 s, and
at 72°C for 1 min. PCR products were resolved by 1%
agarose gel electrophoresis and analyzed after ethidium
bromide staining.

Total RNA were isolated from cells using Trizol re-
agent (Invitrogen) according to standard protocols [40]
and RNA concentrations were determined by UV ab-
sorption at 260 nm. To avoid DNA contamination, RNA
samples were treated with RNase-free DNase I (Invitro-
gen) for 20 min at 37°C. For each RT-PCR, 200 ng of
RNA were used in a 50 uL reaction. A reverse transcrip-
tion step (50°C for 30 min and 94°C for 2 min) was fol-
lowed by 25 cycles (Table 1) of denaturation at 94°C for
15 s, annealing at 55°C for 30 s, and extension at 72°C
for 1 min. RT-PCR products were resolved by 1.2% agar-
ose gel electrophoresis and analyzed after ethidium
bromide staining. The ribosomal RNA (rRNA) of insect
cells served as a loading control in the RT-PCR analysis.

Luciferase and SEAP activity analyses

For luciferase activity analysis, enzyme activity in the cell
lysate from 2 x 10* cells was determined by the Lucifer-
ase reporter assay system (Promega) according to the
manufacturer’s procedures and analyzed by a Victor?
Multilabel Counter (PerkinElmer Life Sciences, Norwalk,
CT). Specific luciferase activities are presented as mean
values normalized against those of the control (infected
Sf9 cells).
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For SEAP activity analysis, production of SEAP in 10 uL
cultured medium was quantified by using a p-
nitrophenylphosphate-based (pNPP) light absorbance time
course method [41] and also analyzed by a Victor* Multi-
label Counter. The specific SEAP activities are presented
as mean percentage relative to control (infected Sf9 cells).

Statistical analysis

Quantitative data were analyzed using Student’s ¢-test and
presented as means + standard deviation (S.D.) of two or
three independent experiments. The P-values <0.05 were
considered significant.
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