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Abstract

high-throughput based inhibitor screens.

vinyl sulfone.

Background: Covalent linkage of the ubiquitin-like protein ISG15 interferes with viral infection and USP18 is the
major protease which specifically removes ISG15 from target proteins. Thus, boosting ISG15 modification by
protease inhibition of USP18 might represent a new strategy to interfere with viral replication. However, so far no
heterologous expression system was available to yield sufficient amounts of catalytically active protein for

Results: High-level heterologous expression of USP18 was achieved by applying a chaperone-based fusion system
in E. coli. Pure protein was obtained in a single-step on IMAC via a Hisg-tag. The USP18 fusion protein exhibited
enzymatic activity towards cell derived 1SG15 conjugated substrates and efficiently hydrolyzed ISG15-AMC.
Specificity towards ISG15 was shown by covalent adduct formation with ISG15 vinyl sulfone but not with ubiquitin

Conclusion: The results presented here show that a chaperone fusion system can provide high yields of proteins
that are difficult to express. The USP18 protein obtained here is suited to setup high-throughput small molecule
inhibitor screens and forms the basis for detailed biochemical and structural characterization.

Background

Posttranslational protein modification by ubiquitin and
ubiquitin-like proteins (UBLs) serves as a versatile
mechanism to control multiple biological functions in
the cell [1]. The IFN-stimulated gene 15 (ISG15) is a
UBL strongly induced by type I IFN and ISG15 conjuga-
tion (ISGylation) is one of the major antiviral effector
systems [2-4]. Consequently, mice lacking ISG15 exhibit
enhanced susceptibility upon distinct viral pathogens.
Analogous to the ubiquitin modification process, conju-
gation of ISG15 is mediated by a cascade of E1, E2, and
E3 ligases and ISG15 linkage is counteracted by the ac-
tivity of deconjugating enzymes [5,6]. USP18 (UBP43)
was shown to be the major ISG15 deconjugating enzyme
and belongs to the peptidase C19 family [7]. As USP18
deficient mice and cells show elevated levels of ISG15-
conjugated substrates [8], it appears feasible to enhance
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ISGylation levels by inhibition of the USP18 protease ac-
tivity. This might also be of therapeutic interest as
USP18 deficient animals were shown to be more resist-
ant against certain viruses [3] and exhibit resistance
against PML-RAR- [9] and BCR-ABL-induced leukemia
[10]. A prerequisite for the identification of chemical
compounds suitable to inhibit USP18 is the availability
of a fast and sensitive enzymatic assay monitoring ISG15
deconjugation. High through-put screening based on
ubiquitin-AMC (Ub-AMC) has been used with success
for the identification of small molecules inhibiting USP
protease activity. [11]. The assay is based on the release
of the fluorophore AMC upon cleavage of the isopeptide
bond by the USP. Thus, presumably ISG15 deconjugase
inhibitors could be identified using ISG15-AMC in a
similar protease inhibitor assay. However, in the case of
USP18 the setup of such an assay for high-throughput
screening was hampered so far by limited amounts of re-
combinant enzymatically active USP18. Attempts to ex-
press USP18 in Escherichia coli (E. coli) resulted in
degraded protein [5]. Expression in Sf9 cells using the
baculovirus expression systems was successful but is
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difficult to scale up and cost intensive [12] compared to
bacterial expression systems. Here we report the devel-
opment of a bacterial expression system based on the fu-
sion of USP18 to a bacterial chaperone (Trigger Factor =
TF) that yields high amounts of enzymatically active
protein. USP18 was purified to homogeneity as a TF-
fusion protein. The recombinant protease is specific for
ISG15 as shown by enzymatic deconjugation of ISG15
from ISGylated cellular proteins and by the formation of
a covalent adduct with ISG15 vinyl sulfone. Finally, we
established assay conditions for USP18 mediated ISG15-
AMC cleavage suited for the setup of large scale inhibi-
tor screens.

Methods

Cloning methods

The consensus sequence for ubiqutinyl hydrolases
encompasses residues 46-368 of USP18. The 45 N-
terminal residues are of unknown function. cDNA en-
coding residues 46—368 of mouse USP18 in frame with a
Hise-tag and the recognition site for the 3 C protease
was amplified and cloned into pET15b (Novagen) and
pGEMEX (Promega) vector. All cloning steps were per-
formed according to standard protocols [13].

For USP18 constructs with codons optimized for ex-
pression in E. coli a synthetic cDNA encoding USP18
residues 46-368, as well as a 3 C protease recognition
site and a flexible linker at the 5 end was purchased
from a commercial supplier (Mr. Gene). cDNAs for
Hisg-SUMO and Hisg-SUMO-TFsa5 were generated by
PCR using vector pSUMO-tigaaa [14,15] as template.
The cDNAs were fused and cloned into the vector pACE
by sequence and ligation independent cloning (SLIC)
[16] yielding vectors pACE-Hisg-SUMO-TFasa-USP18
and pACE-Hisg-SUMO-USP18. Ndel and Xhol restric-
tion sites were inserted to allow further subcloning of
the constructs.

The following primers were used for vector and insert
amplification and ligation: XhoI-pACE-for: 5-CTCGA
GAGATCCGGCTGCTAACAAAG-3)Ndel-pACE-rev: 5'-
CATATGTATATCTCCTTCTTAAAGTTAAAC-3; Xhol-
USP18-rev: 5-CTTTGTTAGCAGCCGGATCTCTCGA
GTTAGGAGCCGGTTTTCG-3, SUMO-3C-for: 5-CAC
AGAGAACAGATTGGTGGTCTGGAAGTTCTGTTCC
AGGGTCCG-3] TF-for: 5-CACTTTCAACGAGCTGAT
GAACCAGCAGGC-3] TF-rev: 5-GCCTGCTGGTTCAT
CAGCTCGTTGAAAGTG-3; SUMO-3C-rev: 5-CGGACC
CTGGAACAGAACTTCCAGACCACCAATCTGTTCTC
TGTG-3, Ndel-His-for: 5-GTTTAACTTTAAGAAGGA
GATATACATATGATGGGTCATCACCATCATC-3.

For cloning into the pSUMO backbone [14,15], the
pACE expression vectors were digested with Ndel and
Xhol restriction enzymes and the inserts were ligated
into pSUMO vector digested with the same enzymes. A
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catalytic inactive mutant with substitution of the cata-
lytic cysteine 61 to alanine was generated using the
QuikChange II kit (Stratagene).

Expression and purification

The following strains were transformed with the differ-
ent vectors and tested for expression: E. coli BL21
(DE3), E. coli BL21(DE3)pLysS, E. coli Rosetta(DE3) ,
E. coli Tuner(DE3) and E .coli Tuner(DE3)pLysS
(Novagen). Expression was performed in shaking cul-
tures in DYT medium supplemented with appropriate
antibiotics, trace elements (Studier) and 0.2% (w/v)
glucose. For E. coli strains transformed with pET15b,
pGEMEX or pACE 100 pg/ml ampicillin was added to
the medium; for pSUMO 50 pg/ml kanamycin was
added to the medium. In case of E. coli strains E. coli
Rosetta(DE3), E. coli BL21(DE3)pLysS and E. coli
Tuner(DE3)pLysS additionally 17 pg/ml chorampheni-
col was added to the medium.

5 ml DYT medium was inoculated with a single colony
and incubated on a shaker at 37°C overnight. For inocu-
lation of expression cultures the overnight culture was
diluted 1:100 in the same medium. Test expression cul-
tures had a volume of 20 ml in 200 ml Erlenmeyer flasks
at different temperatures (15°C - 37°C). The culture was
grown until an ODggg nm of 0.6 was reached and expres-
sion was induced by addition of IPTG (Applichem) to a
final concentration of 0.1 - 1 mM. Large scale expression
was performed in 500 ml in baffled 2 1 Erlenmeyer flasks
at 15°C for 16 h with a final IPTG concentration of
0.1 mM.

Cells from expression cultures were harvested by cen-
trifugation. Cell pellets were suspended in ice-cold buffer
A (20 mM Tris-Cl, 500 mM NaCl, pH 7.9). Cell pellets
from small scale expression were disrupted by ultrasonic
treatment whereas cells from large scale expression were
broken by 2 passages through a French pressure cell at
137 Mpa. Typically, 8 g wet weight cells were used per
batch of protein purification.

Crude extracts from test expressions were centrifuged
at 4°C at 16,000 g for 60 minutes. Supernatant and pellet
fraction were mixed with sample buffer and analyzed on
SDS-PAGE. Crude extracts from large scale expression
were centrifuged at 100,000 g for 60 min. All purifica-
tion steps were performed at 4°C using a FPLC system
(GE-Healthcare). The supernatant was applied to a
Cobalt-IMAC column (1 ml column volume, Novagen)
equilibrated in buffer A. Absorption at 280 nm was
monitored and column was washed with the same buffer
until absorption reached baseline level again. Three
washing steps were performed with buffer A supplemen-
ted with 10 mM, 20 mM and 30 mM imidazole, respect-
ively. The bound protein was eluted with buffer A
containing 1 M imidazole. The pure protein was dialyzed
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against 5 | buffer A overnight, concentrated to 8 mg/ml
and analyzed by SDS-PAGE and subsequent Coomassie
staining.

Generation of I1SGylated cell lysates and delSGylation
assay

USP18 deficient murine embryonic fibroblasts (MEFs)
were stimulated with 250 U/ml IEN f (Sigma) for 24 h
to induce ISGylation of endogenous proteins or left un-
treated. MEFs were lysed in 50 mM Tris-Cl pH 7.4,
150 mM NaCl, 1 mM EDTA, 1% Triton X-100. The cell
lysate was cleared by centrifugation at 16,000 g for
30 min at 4°C. 5 pl of the supernatant (20 pg) were incu-
bated with 2 pl (16 pg) TEaaa-USP18 and 20 pl reaction
buffer (50 mM Tris-Cl pH 8.3, 25 mM KCl, 5 mM
MgCl,, 1 mM DTT) for 0, 1 and 2 h at 37°C. The reac-
tion was stopped by addition of SDS containing sample
buffer. The samples were separated on a 12% SDS-PAGE
gel, transferred to a nitrocellulose membrane and ana-
lyzed with the following antibodies: ISG15 [17] and f-
Actin (I-19, Santa Cruz). For quantification the optical
densities of protein bands were obtained using Image]
[18]. The densitometric values of free and conjugated
ISG15 were normalized to p-Actin and depicted relative
to the ISG15 values in IEN p-treated cells at 0 h without
addition of TFx45-USP18.

Reaction with ubiquitin and ISG15 vinyl sulfone
HA-Ubiquitin (Ub-VS) and HA-ISG15 vinyl sulfone
(ISG15-VS) were purchased from Boston Biochem. 1 pl
(8 pg) of TFaaa-USP18 or TFasa-USP18-C61A was
combined with 1 pl (0.5 pg) Ub-VS or ISG15-VS, re-
spectively. Reaction was performed in 50 mM Tris-Cl
pH 7.4, 5 mM MgCl,, 250 mM sucrose, 1 mM DTT,
2 mM ATP for 1 h at 37°C [19]. The samples were ana-
lysed on a Coomassie-stained 10% SDS-PAGE gel.
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Measurement of ISG15-AMC cleavage
ISG15-amidomethyl coumarin (AMC) was purchased
from Boston Biochem. Different amounts of TFaax-
USP18 (final concentration 0, 0.36, 0.72, 1.43 uM) were
incubated with 600 nM ISG15-AMC in a total volume of
28 pl. For each TFxas-USP18 concentration duplicates
were analyzed. The reaction was performed in 50 mM
Hepes-NaOH pH 7.5, 0.01% (v/v) Tween 20, 10 mM
DTT. The release of AMC was detected over a period of
30 minutes using a Safire II fluorescence spectrophoto
meter with excitation and emission wavelength of 380 nm
and 460 nm, respectively.

Results and discussion

High-throughput screening requires large amounts of ac-
tive protein. Recombinant expression of USP18 in a bac-
terial system as well as in insect cells has been reported,
however with very low yields [5]. Until now, there has
been no expression system available for production of
sufficient amounts of recombinant USP18. Therefore, we
aimed to establish a high-yield and easy-to-apply expres-
sion system for catalytically active USP18.

Expression trials using murine ¢cDNA for USP18
cloned into pET15b or a pGEMEX vector were per-
formed in E. coli Rosetta(DE3). However, no expression
of Hise-tagged USP18 could be observed in Western
blots (Table 1). We reasoned that some rare codons in
the cDNA of the USP18 clone might obstruct expression
and therefore switched to an expression construct with
codons optimized for expression in E. coli. In addition,
we introduced a SUMO-tag at the N-terminus of USP18
as such a tag was reported to enhance expression levels
of this protein in the baculovirus expression system [12].
Sequence and ligation independent cloning (SLIC) was
performed to generate the Hise-SUMO-USP18 construct
in the pACE vector backbone [20,21] (Figure 1A).

Table 1 Constructs tested for expression of different USP18 fusion proteins

Construct (promoter, pGEMEX-His-USP18 pPET15b-His-USP18

pACE-Hisg-SUMO-USP18 PACE-Hisg-SUMO-TF-USP18

antibiotic resistance) (T7, ampicillin) (T7, ampicillin) (T7, ampicillin) (T7, ampicillin)

strain Rosetta(DE3) Rosetta(DE3) BL21(DE3) BL21(DE3)pLysS BL21(DE3) BL21(DE3)pLysS
temperature 25°C 25°C 37°C 37°C 25°C 37°C 37°C
expression + + ++ ++
soluble nd. nd. nd. nd. nd. nd. nd.
Construct (promoter, pPSUMO-His-SUMO-TFaa-USP18 (T7, kanamycin)

antibiotic resistance)

strain BL21(DE3) BL21(DE3)pLysS Tuner(DE3)pLysS Tuner(DE3)
temperature 25°C 37°C 15°C 25°C 37°C 15°C 15°C
expression +++ +++ + +++ +++ ++ +++
soluble nd. nd. + - ++ +

n.d.: not determined, -: no expression observed, +: detectable on Western Blot, but not on Coomassie-stained SDS PAGE gel, ++: detectable on Coomassie-stained

gel, but not the dominant band, +++: dominant band on Coomassie-stained gel.
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Subsequently, E. coli BL21(DE3) as well as E. coli BL21
(DE3)pLysS were used as host strains for test expres-
sions. In contrast to the clone derived from mouse
c¢DNA, expression of the SUMO-USP18 fusion protein
could be detected in both E. coli strains on Western
blot with an anti-Hise-tag specific antibody. However,
expression levels of the fusion protein were too low

Page 4 of 8

to be detected on Coomassie-stained SDS-PAGE gel
(Table 1).

Overproduction of soluble recombinant protein in
E. coli can be limited by the deprivation of host cell
chaperones that are required for correct folding of the re-
spective protein. Co-overexpression of E. coli chaperones
was reported previously to enhance solubility and yield

target vector pSUMO synthetic DNA
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Figure 1 (A) Generation of SUMO-USP18 and SUMO-TF,as-USP18 expression vectors using sequence and ligation independent cloning
(SLIC). The target vector pACE was linearized using primers Ndel-pACE-rev and Xhol-pACE-for. Recognition sites for the restriction enzymes Ndel
and Xhol were introduced during the amplification process. Two vectors served as templates for amplification of the inserts: pSUMO encoding a
Hisg-tag-SUMO-Trigger Factoraaa fusion protein, and a synthetic DNA construct consisting of the 3" end of the Trigger Factor, a flexible linker,

a recognition site for the 3 C protease and a USP18 cDNA for residues 46-368. For both the SUMO-USP18 and the SUMO-TFaas-USP18 construct,
two PCR products with overlapping 5" and 3" ends were generated. For the SUMO-USP18 construct primers Ndel-His-for together with SUMO-3C-rev
as well as primers SUMO-3C-for together with Xhol-USP18-rev (blue) were used. For the SUMO-TFaxs-USP18 construct, primer Ndel-His-for was
combined with TF-rev and primer TF-for with Xhol-USP18-rev (red). Treatment of the PCR products with T4 DNA polymerase in the absence of dNTPs
resulted in complementary single stranded overhangs that were subsequently annealed. The resulting vectors encoded for two different USP18
fusion proteins: SUMO-USP18 and SUMO-TFaaa-USP18. Both proteins exhibit a Hisg-tag for purification and a SUMO-tag to enhance solubility of the
protein. In the SUMO-TFaaa-USP18 protein the bacterial chaperone Trigger Factor carrying three exchanges to alanine (F43A, R44A, K45A; =TFaan) is
additionally fused to the N-terminus of USP18 to provide each expressed USP18 molecule a chaperone that facilitates folding. The flexible linker
between TFaas and USP18 was introduced to allow interaction of USP18 with the chaperone. (B) Schematic drawing of TFaaa -USP18. Newly
synthesized TFaaa folds and takes up the nascent chain of USP18. The fusion protein dissociates from the ribosome and USP18 can fold in the cradle
of TFaaa. (C) Molecular model of TFAas-USP18. TFaaa is shown as surface representation and USP18 as cartoon with secondary structure elements.
TFaana is shown in yellow, the linker in grey, and USP18 in green, respectively.
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Figure 2 Expression of TFaaa-USP18 in pSUMO vector backbone under different conditions (A) TFaaa-USP18 was expressed in E. coli
BL21(DE3)pLysS at 37°C. Expression was verified by analyzing protein content directly after lysis on SDS-PAGE followed by Coomassie staining.
After 3 h of induction TFaaa-USP18 fusion protein made up more than 50% of whole cellular proteins. (B) Soluble and insoluble fractions from (A)
were analysed by Western blot with an anti Hisg-Tag antibody. AlImost all fusion protein was present in the insoluble fraction and only a faint
band for soluble protein was observed. (C) Expression of TFaaa-USP18 at 15°C in E. coli BL21(DE3)pLysS yielded soluble protein. Western blot
analysis using an anti Hisg-Tag antibody detected TFaasa-USP18 only in the soluble fraction. (D) E. coli Tuner(DE3) and E. coli Tuner(DE3)pLysS were
tested for expression of TFaaa-USP18 at 15°C. Soluble and insoluble fractions were analysed by SDS-PAGE and subsequent Coomassie staining.
Strong expression was only observed in E. coli Tuner(DE3). The major portion of the fusion protein was observed in the soluble fraction.

of recombinant proteins [22]. Recently, also successful
expression of a fusion of the chaperone Trigger Factor
with the protein of interest was reported using a cold

RN
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Figure 3 One-step purification of TFaaa-USP18. TFosn-USP18 was
bound to a Co-IMAC column and eluted with imidazole. Purity of
the eluted fusion protein was visualized by SDS-PAGE with
subsequent Coomassie staining.

shock expression system in E. coli [23] (Takara, pCold TF
plasmid). This system provides each translated protein
its own chaperone. As the chaperone Trigger Factor
(TF) is the first chaperone newly translated proteins
encounter [24] we fused this chaperone to the N-
terminus of USP18. TF interacts with the bacterial
ribosome and incorporates nascent polypeptide chains
that emerge from the ribosomal exit tunnel. In this
way, it provides a protective environment that facili-
tates folding [24,25]. To assure interaction of USP18
with TF, which forms a large hydrophobic cradle, we
introduced a long flexible linker consisting of six GSS
repeats between USP18 and the chaperone (Figure 1B, C).
Moreover, the long linker ensures that the folded
USP18 is accessible for substrates and not sterically
blocked by TEF.

TF binds to the ribosome via the motif 43-GFRxGxxP-
50 [26,27]. Although TF binds with low affinity to the
ribosome [28], overexpression of TF might become a
serious problem for protein synthesis in the expression
host. In order to reduce binding of the TF-USP18 fusion
protein to the ribosome and facilitate dissociation, resi-
dues G43, F44 and R45 of TF were exchanged to alanine
(TFaaa)- These residues have been shown previously to
be critical for TF-ribosome interaction [27].

The resulting fusion protein consists of an N-terminal
Hisg-tag, SUMO, Trigger Factorsaa, and USP18 (= TFxaa-
USP18). TFs5A-USP18 in the pACE vector backbone was
tested for expression in E. coli BL21 (DE3) and E. coli BL21
(DE3) pLysS. In contrast to SUMO-USP18, insertion of TF
increased expression levels so that the fusion protein could
be detected on Coomassie-stained SDS-PAGE gel (Table 1).
However, it did not represent the major fraction com-
pared to endogenous bacterial proteins.



Basters et al. BMC Biotechnology 2012, 12:56
http://www.biomedcentral.com/1472-6750/12/56

Page 6 of 8

72— "

30 minutes. RFU: Relative fluorescence units.

A -IENB +IFNB B
0 0 1 2 hours 4- EEE free ISG15
KDa + - + - + - + TF,,,-USP18 - =1 ISG15 conjugates
— B
130—| ‘ ’ < TFn- ° _
gg— ! i USP18 2g
— B3 i ) et (]
_HT) Banl Rt =
55— I1SG15 @
43— conjugates
34— TFana-
UsP18
26 — 0 1 2 hours
17 — | e free ISG15
— ] — — — D — — D TFM-USP18:
43— | — — || ——— —— ] p-Actin 20000 —— 1.43uM
— 0.72pM
—— 0.36 M
TFapa-USP18- 15000~
c TF,-USP18  “Eg1a == oum
=
> % & 10000
¥ P & P
ka & &F - & ¥ 5000
170~ «—TF,,,-USP18-ISG15
95 — | w—————— | 4— TF,,,-USP18 0 T T

Figure 4 Enzymatic activity of TFaaa-USP18 (A) Cell lysates of USP18 knockout mouse embryonic fibroblasts were stimulated with IFN
B resulting in elevated ISGylation or left untreated. Cell lysates were incubated with and without TFaas-USP18 for the indicated times at
37°C. TFaaa-USP18-mediated 1SG15 deconjugation was monitored by Western blot with an ISG15-specific antibody. A decrease of protein
ISGylation with a concomitant increase of free ISG15 was observed. (B) Quantification of ISGylation and free I1SG15 from (A) revealed a 3-fold
decrease of conjugated and a corresponding increase of free ISG15 upon incubation with TFAas-USP18. Densitometric values of free ISG15 and
ISGylated proteins were normalized to -Actin and to the protein levels in IFN B-treated cells at O hours without addition of TFaaa-USP18. (C)
TFaaa-USP18 or the catalytically inactive mutant TFaaa-USP18-C61A were incubated with substoichiometric amounts of either ISG15 vinyl sulfone
(ISG15-VS) or ubiquitin vinyl sulfone (Ub-VS) for 1 h at 37°C. The covalent adduct of USP18 with ISG15 is shown by a shift to higher molecular
mass visualized on a Coomassie-stained SDS PAGE. (D) Catalytic activity of TFaaa-USP18 monitored by cleavage of I1SG15-AMC: different amounts
of TFaaa-USP18 were incubated with 600 nM ISG15-AMC. Release of AMC was monitored by its specific fluorescence at 460 nm over a period of
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Therefore, we changed the vector backbone from
pACE to pSUMO. This boosted expression of the fusion
protein which now represented the major band on SDS
gel when expression was performed at 37°C (Table 1
and Figure 2A). However, these expression conditions
resulted in poor solubility of the protein as demon-
strated by Western Blot with a Hise-tag specific anti-
body (Figure 2B). Almost all recombinant protein was
detected in the pellet fraction whereas only a weak band
was detected in the soluble fraction. Lowering
temperature is often reported to increase yield and solu-
bility of expressed proteins [29-31]. Test expressions at
25°C had no observable effect and resulted in insoluble
protein (not shown). Decreasing further the expression
temperature to 15°C yielded soluble TFas-USP18
(Figure 2C). However, the drop in temperature caused
also a severe decrease in protein expression (Table 1).

To achieve again high expression levels combined
with high solubility of TExsa-USP18 we changed to the
stringent expression host strains E. coli Tuner(DE3)
and E. coli Tuner(DE3)pLysS. Tuner strains are defi-
cient in lactose permease (lacY) and thus allow uniform
uptake of IPTG via diffusion. Whereas E. coli Tuner
(DE3)pLysS only showed a weak expression of TFyax-

USP18, strong expression of soluble fusion protein was
observed when the E. coli Tuner(DE3) strain was grown
at 15°C (Table 1 and Figure 2D). Therefore, these
conditions were applied for large scale expression and
purification. 2 liter expression cultures typically yielded
24 g of wet weight pellet. For purification of TFasa-
USP18, different IMAC columns were tested of which a
cobalt IMAC column provided the best results. Using
this column, pure TFxp5-USP18 was eluted allowing
one-step purification without need of further purifica-
tion steps (Figure 3). A minor band running at lower
molecular weight was observed when the sample was
boiled only for a short time or without fresh DTT
added. This band most likely represents protein con-
taining an intramolecular disulfide bond formed during
boiling. Typical yield was 10 mg pure protein out of 8 g
wet weight pellet.

Once expression and purification was established we
checked whether the large scale preparations represent
also catalytically active enzyme. Therefore, we tested iso-
peptidase activity of TFy55-USP18 towards ISG15 modi-
fied cellular proteins (Figure 4A). High levels of ISGylated
cellular protein were obtained using USP18 deficient mouse
embryonic fibroblasts (MEFs) stimulated with [FN . MEF
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cell lysates were incubated with and without TFasa-
USP18 and changes in ISGylation levels were moni-
tored by Western blot with an ISG15-specific antibody.
Incubation with TFsa5-USP18 drastically decreased the
amount of ISGylated proteins, simultaneously the
amount of free ISG15 increased demonstrating the
ability of the TFsaa-USP18 to recognize and cleave
ISG15 from cellular target proteins. To further evaluate
enzymatic specificity, TEAso-USP18 as well as a TFapa-
USP18 variant, where the catalytic cysteine is exchanged
to alanine (TFyao-USP18-C61A), were incubated with the
suicide inhibitors ubiquitin vinyl sulfone (Ub-VS) and
ISG15 vinyl sulfone (ISG15-VS), respectively. These sui-
cide inhibitors form a covalent adduct upon reaction with
the active site cysteine of ubiquitin-specific proteases. The
reaction can be visualized as a shift in molecular mass on
a Coomassie-stained gel. For TFsaa-USP18, covalent
complex formation was detected with ISG15-VS whereas
mutation of the catalytic cysteine to alanine resulted in
complete loss of the interaction. Neither TF5A-USP18
nor TFyxo-USP18-C61A showed cross-reactivity towards
Ub-VS (Figure 4B). In summary, these experiments show
that TFA5o-USP18 is catalytically active and underline its
specificity towards ISG15.

Screening for potential USP18 inhibitors requires a
method that allows quantification of USP18 activity and is
compatible with standard detection instruments. There-
fore, we established assay conditions for TFss-USP18-
mediated ISG15-AMC cleavage. Different amounts of the
fusion protein were incubated with ISG15-AMC and
cleavage was measured over a period of 30 minutes. The
measured rate of ISG15-AMC cleavage was constant for
more than 20 minutes and the rate increased linearly with
enzyme concentration (Figure 4C). At the highest concen-
tration of TFoas-USP18, a slight decrease in the rate was
observed after 25 minutes that is most likely due to a limi-
tation of substrate and not caused by a decrease in enzyme
activity. TF itself has no isopeptidase catalytic activity and
does not interfere with the assay. These results demon-
strate that TFax5-USP18 is very well suited for kinetic
analysis and the assay presented here can be easily adapted
for high-throughput screening for specific inhibitors of
USP18.

Conclusion

Today, the analysis of genomic and expressions array data
provide a plethora of data on proteins in the regulation of
vital cellular processes representing potential therapeutic
targets. The entire process of drug development relies on
the availability of correctly folded and active target pro-
teins provided by heterologous production in eukaryotic
and prokaryotic expression systems. However, for fast,
efficient, and easy-to-scale-up expression E. coli is still the
expression system of choice. Here, we describe a new and
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efficient method to express and purify high yields of re-
combinant catalytically active USP18. Starting from zero
expression we could boost the yields of active protein by
optimization of codons, vector backbone, and a novel
chaperone fusion system. The excellent yields obtained
for USP18 put forward that this system is also very well
suited for other proteins where recombinant expression
failed so far.
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