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Abstract

was unstable in tobacco protoplasts.

expression vectors.

Background: Whole plants or plant cell cultures can serve as low cost bioreactors to produce massive amounts of a
specific protein for pharmacological or industrial use. To maximize protein expression, translation of mMRNA must be
optimized. Many plant viral RNAs harbor extremely efficient translation enhancers. However, few of these different
translation elements have been compared side-by-side. Thus, it is unclear which are the most efficient translation
enhancers. Here, we compare the effects of untranslated regions (UTRs) containing translation elements from six
plant viruses on translation in wheat germ extract and in monocotyledenous and dicotyledenous plant cells.

Results: The highest expressing uncapped mRNAs contained viral UTRs harboring Barley yellow dwarf virus (BYDV)-like
cap-independent translation elements (BTEs). The BYDV BTE conferred the most efficient translation of a luciferase
reporter in wheat germ extract and oat protoplasts, while uncapped mRNA containing the BTE from Tobacco necrosis
virus-D translated most efficiently in tobacco cells. Capped mRNA containing the Tobacco mosaic virus omega
sequence was the most efficient mRNA in tobacco cells. UTRs from Satellite tobacco necrosis virus, Tomato bushy stunt
virus, and Crucifer-infecting tobamovirus (crTMV) did not stimulate translation efficiently. mRNA with the crTMV 5" UTR

Conclusions: BTEs confer the highest levels of translation of uncapped mRNAs in vitro and in vivo, while the capped
omega sequence is most efficient in tobacco cells. These results provide a basis for understanding mechanisms of
translation enhancement, and for maximizing protein synthesis in cell-free systems, transgenic plants, or in viral

Background

Plant RNA virus genomes are among the most efficiently
translated mRNAs known. After invading plant cells,
positive strand RNA viruses employ diverse strategies to
take over the host translational machinery. All host cellu-
lar mRNAs and some viral RNAs have a 5" cap to recruit
the translational machinery via binding of the eIF4E sub-
unit of translation initiation factor complex eIF4F [1,2].
Many plant viral RNAs lack a 5’ cap and have either an
internal ribosome entry site (IRES) in the 5" untranslated
region (UTR) or a cap-independent translation element
(CITE) in the 3" UTR to facilitate translation (reviewed
in [3-6]). Many CITEs bind translation initiation factors,
including one or more subunits of eIF4F [6-9] which, in
plants, is a heterodimer of the cap-binding protein eIlF4E
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and the scaffolding protein eIF4G [10]. In most cases the
3" CITE must base pair to the 5" UTR, presumably to de-
liver initiation factors to the 5" end where the ribosome
is recruited and translation initiates [11-14]. Many viral
RNAs also lack the poly(A) tail that is required for effi-
cient translation initiation. Instead they have evolved
structures that replace the need for a poly(A) tail [15,16].

At least half of plant viruses have uncapped genomic
RNAs that are translated efficiently. The genomic RNAs
of Barley yellow dwarf virus (BYDV), Tobacco necrosis
virus D (TNV-D), Satellite tobacco necrosis virus 1
(STNV-1) and Tomato bushy stunt virus (TBSV) have no
cap or any other known modification at the 5’ end and
they lack a poly(A) tail. BYDV and TNV-D RNAs harbor
a BYDV-like CITE (BTE) in the 3" UTR, defined by a
conserved 17-nt sequence that forms part of a set of heli-
ces protruding from a central hub (Figure 1) [13,17-19].
STNV-1 RNA contains a completely different type of 3°
CITE, called the translation enhancer domain (TED),
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Figure 1 Maps of mRNAs and secondary structures of translation elements in the UTRs. fluc is the firefly luciferase ORF, flanked by viral
UTRs. Above each construct is the secondary structure and sequence of the translation element in that UTR. TMV omega and crTMV elements are
located in the 5" UTR, the others are in the 3" UTR. The numbers indicate the genomic coordinates of UTRs and the translation elements. Bold text
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consisting of a stem-loop with multiple bulges [20-23].
The TBSV 3" UTR has a third type of 3" CITE that forms
a Y-shaped structure (YSS) which is conserved in many
members of genus Tombusvirus [12,14,24]. These three
types of CITE are unrelated in sequence and structure
but all have potential to base pair to the 5" UTR via kis-
sing stem-loops (Figure 1). This base pairing is required
for the BYDV BTE and Y-shaped structures [11,12] but is
reported not to be required for the BTE of Red clover
necrotic mosaic virus (RCNMYV), called TE-DR1 [25] or
for the STNV-1 TED [26].

Crucifer-infecting tobamovirus (crTMV) has a capped
genomic RNA, but the coat protein ORF near the 3" end
of the genome is translated via an internal ribosome
entry site (IRES) [27]. This IRES, rich in GAAA repeats,
was reported to promote very efficient cap-independent
translation of reporter genes in plant and mammalian
cells [28]. The genomic RNA of Tobacco mosaic virus
(TMV, genus Tobamovirus) contains a 5 cap and is
translated very efficiently due to a 5'-leader sequence
(Q) that has few guanosine residues [29,30].

None of the above RNAs contains a poly(A) tail. TMV
and TNV-D genomes have different highly structured 3’
ends that functionally substitute for the poly(A) tail
[15,16]. The sequences in the other viruses that permit
poly(A) tail-independent translation are not well
characterized.

Translation enhancer elements, as parts of transgenes,
or in viral expression vectors, are useful for expressing
high levels of protein in plant cells [4,30,31] For biotech-
nological applications intended to maximize protein ex-
pression, it would be valuable to know which translation
elements stimulate translation to the highest levels. Also,
while studies on mechanisms of these elements have been
published, understanding how active each element is rela-
tive to the others would reveal the relative efficiencies of
the different mechanisms that have been reported. Because
side-by-side comparisons of these translation elements are
lacking, here we directly compare the translational stimu-
latory effects of viral UTRs harboring the translation ele-
ments of the six viruses discussed above. We compare
translation of mRNAs containing the complete 5 and 3’
UTR of each virus (except for crTMV, where we used the
3" UTR of TMV) in vitro and in vivo. The minimal se-
quence of each element has been defined, and each is con-
fined within a UTR, but rather than use only the minimal
translation enhancer as a UTR, we included the full viral
UTRs because sequence outside the translation element is
often needed for full translation activity in vivo, including
for example poly(A) tail “substitute” sequences that are
needed in addition to the 3" CITE for translation in vivo
[16]. Using these constructs, we found surprisingly wide
variations in efficiency of translation mediated by the
translation elements of the six viruses.
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Results and discussion

All constructs consisted of the firefly luciferase ORF
flanked by the complete UTRs of each virus (Figure 1).
This ensured that the 5" and 3" UTRs were compatible
and complementary in the BYDV, TNV-D and TBSV
constructs in which the 3" CITE must base pair to the 5’
UTR for efficient translation initiation. The omega se-
quence of TMV and the crTMV IRES are both located in
5" UTRs. Because we had no access to ctTMV virus, we
paired the 3" UTR of TMV with the 5" UTR of ctTMV,
which was synthesized. Both viruses are in the same
genus and have similar 3" UTRs [32]. Importantly, the
cr'TMV IRES was shown previously not to require a spe-
cific 3" UTR sequence in order to function in vitro or
in vivo [28]. The 3" UTR of TMV was shown previously
to facilitate efficient translation in vivo, as it contains a
pseudoknot-rich repeat region and a terminal tRNA-like
structure that obviate the need for a poly(A) tail [15,33].
Translation of capped and uncapped transcripts was
compared in the widely used, efficient and high fidelity
wheat germ extract, and in monocot (oat) and dicot
(tobacco) protoplasts.

Kinetics of translation in vivo

To determine the appropriate time points at which to
compare translation efficiencies of mRNAs, luciferase ex-
pression from the three constructs derived from STNV-
1, TNV-D and BYDV (named SlucS, TlucT and BlucB,
respectively) was measured at different times post elec-
troporation in oat and tobacco protoplasts. The lucifer-
ase levels increased during the first 6 hours after
electroporation (Figure 2). We conclude that, in subse-
quent experiments, assaying protoplasts at 4 hours post
electroporation would provide an accurate indication of
the translation efficiency of the various constructs to be
tested.

5' cap structure increases translation in vitro

To avoid complications involved in in vivo (protoplast)
assays due to differences in electroporation efficiency,
cell survival, RNA stability differences and RNA access
to ribosomes, we compared translation activities in
wheat germ extract. Luciferase activity obtained with un-
capped TlucT was defined as 100%, because this RNA al-
ways gave high translation levels. Of the uncapped
RNAs, BlucB translated about 25% more efficiently than
TLucT, SLucS was about one-fourth as efficient, while
the other uncapped RNAs translated less than 10% as
much as TLucT (Figure 3, note the log;o scale). The
presence of a cap stimulated TlucT and BlucB translation
by about 50%, in agreement with previous reports
[17,19]. SlucS was stimulated about 2.5-fold by a cap,
similar to the result reported by Timmer et al. [22] who
compared the translation of uncapped and capped
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Figure 2 Time-course of luciferase activity from selected uncapped mRNAs in protoplasts. A, oat protoplasts. B, tobacco protoplasts. Firefly
luciferase activity was measured at the indicated time points. Functional half-lives (+/— standard error) were calculated as described in Methods.

mRNA from a construct containing an a-globin ORF
flanked by STNV-1 5" and 3" UTRs.

Our in vitro analysis of reporter RNA containing TBSV
UTRs (TBSVIucTBSV) demonstrated that uncapped
RNA was 7% as efficient as TlucT, and capping increased
translation about 10-fold. Similar results were also
shown by Wu and White [34], who observed that un-
capped defective interfering RNA (DI-RNA), containing
TBSV 5 UTR, 3" CITE and GUS gene, was not func-
tional in wheat germ extract, while the addition of a cap
increased translation about 5-fold above background.

Presence of a cap stimulated translation of the reporter
with TMV UTRs (TMVIucTMV) about 5-fold, support-
ing previous observations of cap-dependent enhance-
ment of translation by the omega sequence in the 5’
UTR of TMV [33]. Surprisingly, translation of both
capped and uncapped mRNAs containing the reported
cr'TMV IRES sequence (crTMVIucTMV) was extremely

low. Overall, the differences in translation efficiency in
wheat germ extract imposed by various plant virus UTRs
reported to be translation enhancers are striking.

UTRs containing translation enhancers behave differently
in oat and tobacco cells

BYDV infects only moncotyledonous plants such as oat,
wheat and other grasses, while the other viruses are lim-
ited to dicots such as tobacco and do not infect wheat
from which the extract was obtained for in vitro analysis.
To investigate whether the translation stimulating activity
of viral UTRs varies between monocots and dicots, we
compared translation of the reporter constructs in oat
and tobacco protoplasts. Of the uncapped transcripts in
oat protoplasts, TlucT and BlucB yielded the highest luci-
ferase expression, while uncapped transcripts of TBSV,
cr’'TMV and TMYV yielded very low levels (Figure 4A).
Addition of a 5" cap increased translation of TlucT and
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Figure 3 Translational activity of indicated Luc mRNAs in wheat
germ extract. The relative luciferase activity (initially measured as
relative light units, rlu) of uncapped (white bars) and capped (black
bars) transcripts is presented as a percentage of the rlu obtained
from uncapped TlucT mRNA. Error bars show the standard errors.
The assays were performed in three independent experiments in
which each mRNA was tested in triplicate.

BlucB about 1.5 fold, in agreement with published results
[17,18,35]. For Luc mRNAs with TBSV UTRs, presence
of a cap increased translation 3-fold in oat protoplasts
(Figure 4A). The stimulatory effect of cap structure was
demonstrated originally in cucumber protoplasts [34].
The uncapped SlucS mRNA yielded less than one-hun-
dredth of the luc activity as TlucT or BlucB. Even the
capped version of this RNA translated with low
efficiency.

Strikingly, translation of all mRNAs was far more cap-
dependent in tobacco than in oat protoplasts. Addition
of a cap increased translation efficiency of all constructs
by at least four-fold (Figure 4B). The cap enhanced
translation of Luc mRNAs with TMV and < TMV 5’
UTRs by more than 10-fold (Figure 4B). This level of
stimulation by capping of TMV omega-containing
mRNAs was shown previously [33]. The reporter with
TMV UTRs was stimulated 12-fold by a cap, but the
omega sequence stimulated translation so efficiently that
even the uncapped version was 74% as efficient as un-
capped TLucT, the mRNA that exhibited the highest
translation efficiency among all uncapped mRNAs tested
in this experiment. In tobacco protoplasts, uncapped
BLucB mRNA vyielded only 18% as much luciferase as
TLucT (Figure 4B). The other uncapped mRNAs were
less than 10% as efficient as TlucT. Relative to BLucB,
the UTRs from tobacco-infecting viruses all stimulated
more efficient translation compared to oat protoplasts,
but expression of the uncapped STNV, TBSV, and
cr'TMV-derived RNAs was still lower than that of
BLucB.
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Luc mRNAs differ in stability

To determine contribution of mRNA stability to the dif-
ferences in luciferase expression, we determined the
functional and physical stabilities of selected mRNAs.
We used the data in Figure 2 to determine functional
stability of actively translated mRNAs by calculating
their functional half-lives using an equation that
describes protein accumulation as a function of time
[21], rewritten to allow for the calculation of both the
translation efficiency of mRNA and its half-life [26]. The
functional half-lives in tobacco and oat protoplasts, re-
spectively, were 83 and 66 min for TLucT, and 23 and
106 min for BlucB. The functional half-life of SLucS was
107 min in tobacco protoplasts, but its luciferase expres-
sion was too low to calculate a functional half-life in oat
cells (Figure 2). TLucT is the most efficient uncapped
mRNA in tobacco protoplasts and is nearly as efficient
as BLucB in oat protoplasts. SLucS is the least efficient
mRNA in both systems. In general, oat protoplasts create
a less stringent translation environment, both in terms of
higher mRNA stability, and translational efficiency for
TLucT and BLucB.

Physical stability was measured in tobacco protoplasts
by using real-time qRT-PCR to quantify mRNA levels
over time [36-38]. As seen with functional stabilities, the
half-lives of the mRNAs varied greatly, and they did not
always correlate with luciferase levels. Among all RNAs,
cr'TMV Luc mRNA was the least stable, with only 13%
remaining 4 hr after electroporation. In contrast, 65% of
SlucS Luc mRNA remained, agreeing with its relatively
high functional stability. The half-lives of SlucS and
TMVIucTMV RNAs were greater than 4 hr. The half-
lives of the other RNAs were calculated as:
TBSVIucTBSV  ty,, =240 min; TlucT ty,,=115 min;
crTMV-luc-TMV t;5 =92 min and BlucB t;;, =77 min
(Figure 5). The physical half-life of TLucT was similar
to the functional half-life, but the physical half-lives
appeared longer for SlucS and BlucB. This may be due
to partially degraded mRNA and mRNA that was not
available to ribosomes, but remained detectable by
qRT-PCR. These mRNA populations would not be
detected in functional half-life assays. We speculate that
the unusual nonlinear curves for crTMV and TBSV
RNAs are due to the RNA existing in more than one
conformation, with each conformation having a differ-
ent stability. Note that the TMV and ct'TMV RNAs dif-
fer only in their 5° UTRs, thus the 5" UTR of TMV
(the omega sequence) appears to confer substantially
more RNA stability than the GAAA-rich IRES in the
cr’'TMV 5 UTR which apparently induces rapid degrad-
ation. Instability of <cTMVIucTMV RNA may be
explained by its natural role as an internally located
IRES. This internal location may protect it from cellular
5" to 3" exonuclease activity, while the other 5° UTRs
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Figure 4 Expression of uncapped and capped luciferase mRNAs in protoplasts. A, oat protoplasts. B, tobacco protoplasts. Relative luciferase
activities from indicated uncapped transcripts (white bars) and capped transcripts (black bars) were measured 4 h after electroporation, and
shown as percentages of uncapped TlucT activity.

used in this study are naturally located at the 5 end The instability of the mRNA with the ctTMV 5" UTR
and thus likely to have evolved structures that reduce may explain the low expression levels to some extent,
susceptibility to exonucleases. but the BlucB and TlucT mRNAs also were not the most
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Figure 5 Stabilities of luc mRNAs in tobacco protoplasts.
Uncapped luc reporter mRNAs containing the indicated UTRs were
electroporated into tobacco protoplasts. Real-time qRT-PCR was
performed as described in the Methods. The relative amount of each
transcript at 0 hr was defined as 100%.

stable mRNAs yet they generated more luciferase activity
in tobacco protoplasts than any of the other uncapped
mRNAs, except uncapped TMVIucTMV. When stability
differences are accounted for, translation initiation on
TLucT mRNA appears to be more efficient than on un-
capped TMVIucTMV.

Conclusions
We draw the following conclusions.

1. Viral UTRs vary by orders of magnitude in efficiency
of facilitating translation in wheat germ extract and
in protoplasts.

2. The UTRs containing BTEs (BYDV and TNV-D)
conferred more efficient cap-independent translation
than UTRs containing the other 3" translation
elements.

3. The TMV omega sequence gave much more efficient
translation in tobacco than in oat cells, relative to
the other RNAs, and the mRNA with capped omega
sequence was the highest-expressing mRNA in
tobacco cells.

4. The UTRs from monocot-infecting BYDV yielded
higher expression in monocot systems, relative to
the UTRs from dicot (tobacco)-infecting viruses,
suggesting a correlation between virus host range
and translation efficiency.

5. The TNV BTE is more efficient than the STNV TED
sequence. This observation rules against the hypothesis
that STNV parasitizes TNV due to its being a more
translationally efficient mRNA. We propose that
instead, STNV RNA outcompetes TNV RNA for the
viral replication machinery, which would make STNV
a less efficient mRNA because of antagonism between
translation and replication of viral RNA.
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6. Translation is more cap-dependent in protoplasts
than in wheat germ extract, in agreement with
previous observations of the TNV BTE [17,19]. Also
it is more cap-dependent in tobacco relative to oat
protoplasts (Figure 4). This may be due to different
levels of eIF4F (or its subunits) in oat vs tobacco, or
more efficient mRNA recognition and/or scanning
by the 40 S ribosome in oat compared to tobacco.

This work provides perspective for future studies on
relative efficiencies of the mechanisms of the translation
elements investigated here. For example, these elements
appear to interact differently with translation initiation
factors [7,8,39]. The BTE binds directly to elF4G and not
elF4E, although presence of eIF4E slightly enhances the
BTE-elF4G interaction [8]. Other CITEs appear to de-
pend on both eIF4G and eIF4E [7,8,39,40]. This ability to
stimulate translation in the absence of eIF4E may explain
why BTEs confer the most efficient cap-independent
translation of the translation elements studied here.

The comparisons reported in this work have biotech-
nological relevance. Large scale wheat germ extracts are
being adapted for high throughput, massive production
of proteins, without the limitations of the cell [41], for
structural and other studies [42,43]. Addition of a cap-
independent translation element to the mRNA encoding
a desired protein, obviates the need for capping large
amounts of mRNA which is expensive and reduces yield
in transcription. Of the elements tested here, the BYDV
BTE and UTR sequences appear to be the most effective
cis-acting sequences for maximal translation in wheat
germ extract, while the TNV BTE and UTRs provide
most efficient cap-independent translation in tobacco
cells. These elements may also be useful for high level
expression of genes in transgenic plants, and for plant
virus expression vectors [44-46].

Methods
Plasmid construction
pTlucT containing UTRs of TNV-D (GenBank ID:
D00942) was constructed by Shen and Miller [17].
pBlucB, formerly called pLUC869, containing UTRs of
BYDV (GenBank ID: X07653) was constructed by
Wang et al. [47]. In pSlucS, pTBSVIucTBSV and
pTMVIucTMYV, reporter firefly luciferase gene was
flanked by 5" and 3" UTRs of STNV-1 (GenBank ID:
L06057), TBSV (GenBank ID: M21958) and TMV (Gen-
Bank ID: V01408), respectively. In pcrTMVIucTMYV, the
firefly luciferase gene was flanked by the IRES of ccTMV
(GenBank ID: Z29370) and the 3" UTR of TMV.
Standard molecular techniques used to make con-
structs were as described in Sambrook and Russell [48].
The primers used for plasmid construction are listed in
Table 1. Purification of DNA fragments by agarose gel



Fan et al. BMC Biotechnology 2012, 12:22
http://www.biomedcentral.com/1472-6750/12/22

Table 1 Primers and sequences used in making plasmid
constructs

Primer Sequence (5'— 3')

GEM-T7-STNV caggcggccgctaatacgactcactataggGAGTAA
AGACAGGAAAC

Luc340R ctgttgagcaattcacgttc

STNV-luc GGGAGTAAAGACAGGAAACTTTACTGAC
TAACCatggaagacgccaa

STNV-3'F1 CCGCTTGAAGTCTTTAATTAAATAC

STNV-3'F2 CCAAATTGtaagcttctcgagCCCAGAGGTTCACAATG

STNV-3'R1 CCTCTGGGACctcgagaagc ITACAATTTGGACTTTCCG

STNV-3'R2 CCAGGTATAGTTCTACAgttaacccggg

TBSV-3'F 999ctcgagGTTTGTGGAGATGAGTGT

TBSV-3'R 9999ttaacGGGCTGCATTTCTGCAA

TBSV-5'F Gacggeggecgctaatacgactcactatagg

TBSV-5'R €ccgecatggTCGCTTGTTTGTTGGAA

TMV-3'F 999caagcttGGTAGTCAAGATGCATAA

TMV-3'R tttcccgggTGGGCCCCTACCGGGGGTAA

The sequence is in 5'— 3' direction. The underlined sequences are recognized
by restriction enzymes. Nucleotides in lowercase are non-viral sequences.
Nucleotides in uppercase are viral derived sequences.

electrophoresis was accomplished with the Qiagen Gel
Extraction Kit. Plasmids were purified with the Qiagen
Plasmid Miniprep Kit. All clones were sequenced at the
Iowa State University DNA Sequencing Facility.

A plasmid containing cDNA of STNV-1 was a gift from
Dr. Karen Browning (University of Texas at Austin). By
using primers GEM-T7-STNV and Luc340R, the STNV-1
5" UTR was amplified from the template, a PCR product
generated from pBlucB by primers STNV-luc and
Luc340R. The STNV-1 5" UTR was then cut with Xba I
and Eag I and ligated into the Xba I/Eag I sites of plasmid
pBlucB, generating the intermediate plasmid pSlucB,
which contains STNV-1 5° UTR and BYDV 3" UTR.
pSlucB was manipulated to obtain pSlucS harboring
STNV-1 5" UTR and 3" UTR as follows. The STNV-1 3’
UTR was amplified by overlapping PCR. The left half of
the 3" UTR was achieved by amplifying pBlucB with pri-
mers STNV-3" F1 and STNV-3" R1. The right half of the
3" UTR was achieved by amplifying STNV-1 plasmid
with primers STNV-3" F2 and STNV-3" R2. The full
length 3" UTR was amplified by overlapping PCR with
the left half and right half of 3" UTR, and the resulting
full length 3" UTR product was excised with Pac I and
Sma I. The cassette was cloned into the Pac I/Sma I sites
of the intermediate plasmid pSlucB, generating pSlucS.

The viral genomic 5° UTR of c'TMV was synthe-
sized into pZERO2 plasmid by Integrated DNA Tech-
nologies (Coralville, IA). The 5" UTR was flanked by a
Not I site and T7 promoter sequence at the 5 end
and an Nco I site at the 3" end. Plasmid pZERO2 was
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digested with Not I and Nco I, and cloned into the
Not I/Nco I site of plasmid pSlucS, resulting in
pcrTMVluceS. The TMV 5° UTR was cut out from a
plasmid containing TMV omega sequence and ligated
into Not I/Nco I-cut pSlucS, creating an intermediate
plasmid pTMVlucS. The TMV 3" UTR was amplified by
reverse transcription PCR of TMV viral RNA. TMV vir-
ions were provided by Dr. John Hill at Iowa State Uni-
versity. Viral RNA was isolated from purified virions by
the SDS-phenol method [49]. Viral cDNA was synthe-
sized by reverse transcription with primer TMV-3" R.
The TMV 3" UTR was amplified from viral cDNA with
primers TMV-3" F and TMV-3" R. The product was cut
by Hind III and Sma I and ligated into the Hind III/Sma I
site of pcrTMVlucS or pTMVlucS. The resulting plas-
mids were named pcrTMVIucTMV or pTMVIucTMV.
To generate TBSV UTRs, plasmid pTBSV-100 [50]
was amplified with primers TBSV-5" F and TBSV-5" R,
and with primers TBSV-3" F and TBSV-3" R. The two
PCR products were ligated into Not I/Nco I and Xho I/
Hpa I sites of plasmid pSlucS, creating pTBSVIucTBSV.

In vitro transcription

All mRNAs were transcribed from plasmids linearized
with Smal. Uncapped and capped RNAs were synthesized
using the T7 MegaScript, and mMESSAGE mMACHINE
kits (Ambion), respectively. Integrity of transcripts was
confirmed by agarose gel electrophoresis.

In vitro translation

In vitro translation was conducted by adding 0.4 pmol of
RNA transcript to 50 pl wheat germ extract (Promega)
based on the manufacturer’s instructions. After two
hours incubation at room temperature, luciferase activity
was measured using the Dual Luciferase Reporter system
(Promega) on a Glomax 20/20 luminometer (Promega).
Each assay was repeated at least three times.

In vivo translation

Tobacco NT1 protoplasts and oat protoplasts were pre-
pared from cell suspension as described [51,52]. The
electroporation and luciferase assays were performed as
described [13]. The firefly luciferase activity for each
construct was normalized against Renilla reniformis luci-
ferase activity generated from the control transcript,
RlucA [17], that was co-electroporated into protoplasts
along with the luciferase-encoding test constructs. RlucA
is a capped, polyadenylated transcript encoding Renilla
luciferase and lacking viral sequences. The relative luci-
ferase activity of uncapped TlucT mRNA was set as
100%. The relative luciferase activities of other con-
structs were presented as percentages of TlucT.
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Functional stability of mRNAs

Functional half-lives of mRNAs were determined accord-
ing to Meulewaeter et al. [26] using this equation de-
scribing protein accumulation (P) as function of time (t):

P(t) = (A ty)p/1n2) (1-e (n2/1/210-T)) (1)

A represents translational efficiency of mRNA (number
of protein molecules translated from mRNA molecule per
time unit) when the input of translatable mRNA is equal
under all conditions. T corresponds to the time point at
which the first protein molecule is completed and t to the
assay time point. The functional half-life of mRNA (t;/,) is
defined as the time in which the protein accumulation rate
equals half the maximal rate and thus measures the stabil-
ity of the actively translated mRNA. Values for A, t;,, , and
T were obtained by nonlinear regression using Equation
(1) in the GraphPad Prism 4.0 software to calculate a best
fitting curve to the experimental data points.

Real-time quantitative PCR analysis of relative quantity of
mRNA in tobacco cells

Tobacco NT1 protoplasts were electroporated with
10 pg uncapped transcripts of various constructs and
incubated at room temperature. Cells were harvested at
different times after electroporation and washed 3 times
with 0.4 M mannitol. Total RNA was isolated from cells
by RNeasy Mini Kit (Qiagen) and the residual amounts
of DNA were removed by RNase-Free DNase Set (Qia-
gen) according to the manufacturer’s instructions. By
using random hexamers, single strand c¢DNA was
synthesized from 3 pg total RNA by Invitrogen Super-
Script III first-strand synthesis kit, according to the man-
ufacturer’s instructions. ¢DNA was used in the
amplification reaction directly after dilution. Primers,
LUCF1 (5'-GGCGCGTTATTTATCGGAGTT-3') and
LUCR1 (5'-TTCATACTGTTGAGCAATTCACGTT-3"),
were designed specifically for Luc cDNA. The amplifica-
tion reaction was performed on an Applied Biosystems
7300 real-time PCR system using SYBR green as a fluor-
escent dye. Each reaction was performed in a final vol-
ume of 50 pL with the following components: 5 pmoles
of each primer, cDNA corresponding to 30 ng input
RNA in the reverse transcription reaction, 25 pL of
Power SYBR Green Mix (Applied Biosystems), and water
to a final volume of 50 pL. The thermal cycle conditions
were 50° C for 2 min, 95° C for 10 min, followed by 40
cycles of amplification (95° C for 15 s and 60° C for
1 min). Agarose gel electrophoresis was performed after
each real-time quantitative PCR reaction to assess the
presence of a unique final product. Amplification of
18 S rRNA was used as an internal control for expres-
sion of a housekeeping gene with the primers, 18 S
rRNAF (5’'ACTACGTCCCTGCCCTTTGTAC- 3’) and
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18 S rRNAR (5'-GAACATTTCACCGGATCATTCAA- 3').
Fold changes in Luc mRNA abundance were calculated
based on the relative quantification analytical method
(2724¢T) using 18 S rRNA amplification as internal stand-
ard. The results presented are averages of technical tripli-
cates and represent at least two independent experiments.
The relative quantity of RNA at O hr was set at 100%. The
RNA quantity at 1 hr, 2 hr and 4 hr was determined as
percentages of quantity at 0 hr. Half-life of Luc mRNAs
was calculated as described in Leclerc et al. [36].
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