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component free, serum-free media is described.
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Background: Influenza virus is a major health concern that has huge impacts on the human society, and
vaccination remains as one of the most effective ways to mitigate this disease. Comparing the two types of
commercially available Influenza vaccine, the live attenuated virus vaccine is more cross-reactive and easier to
administer than the traditional inactivated vaccines. One promising live attenuated Influenza vaccine that has
completed Phase | clinical trial is deltaFLU, a deletion mutant lacking the viral Nonstructural Protein 1 (NS1) gene.
As a consequence of this gene deletion, this mutant virus can only propagate effectively in cells with a deficient
interferon-mediated antiviral response. To demonstrate the manufacturability of this vaccine candidate, a batch
bioreactor production process using adherent Vero cells on microcarriers in commercially available animal-

Results: Five commercially available animal-component free, serum-free media (SFM) were evaluated for growth of
Vero cells in agitated Cytodex 1 spinner flask microcarrier cultures. EX-CELL Vero SFM achieved the highest cell
concentration of 2.6 X 1076 cells/ml, whereas other SFM achieved about 1.2 X 1076 cells/ml. Time points for
infection between the late exponential and stationary phases of cell growth had no significant effect in the final
virus titres. A virus yield of 7.6 Log;q TCIDso/ml was achieved using trypsin concentration of 10 ug/ml and MOI of
0.001. The Influenza vaccine production process was scaled up to a 3 liter controlled stirred tank bioreactor to
achieve a cell density of 2.7 x 1016 cells/ml and virus titre of 8.3 Log,q TCIDse/ml. Finally, the bioreactor system
was tested for the production of the corresponding wild type HINT Influenza virus, which is conventionally used in
the production of inactivated vaccine. High virus titres of up to 10 Logq TCIDso/ml were achieved.

Conclusions: We describe for the first time the production of Influenza viruses using Vero cells in commercially
available animal-component free, serum-free medium. This work can be used as a basis for efficient production of
attenuated as well as wild type Influenza virus for research and vaccine production.

Background

Influenza virus is a major health concern that has huge
impacts on the human society. Historically responsible
for millions of deaths in pandemics, the virus also
causes seasonal outbreaks during colder months in tem-
perate regions which annually result in up to 500,000
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deaths worldwide [1]. Although antiviral drugs for acute
treatment are available in some countries, vaccination
remains as one of the most effective ways to mitigate
this disease.

Both inactivated vaccine and the live attenuated Influ-
enza vaccines are commercially available. Although the
live attenuated virus vaccine has been used in Russia
since the 1960s [2], concerns regarding safety and possi-
ble virus shedding have precluded it from use in the
rest of the world until recently: In 2003, a cold adapted,
egg grown, live attenuated influenza virus vaccine by
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MedImmune was licensed for use in the US [3,4]. Live
attenuated virus vaccines have the added advantage of
being more cross-reactive than traditional inactivated
vaccines [5-7]. This type of vaccine is also easier to
administer, since it is delivered in the form of nasal
sprays, compared to injections for the traditional inacti-
vated influenza vaccines.

One promising live attenuated Influenza that has com-
pleted Phase I clinical trial is deltaFLU, a deletion
mutant lacking the viral Nonstructural Protein 1 (NS1)
gene developed by Avir Green Hills Biotechnology
[8-12]. As NS1 is an interferon antagonist [13], the NS1
deletion virus is replication defective in interferon com-
petent host systems, enabling its use as a live attenuated
vaccine [9-11]. Another consequence of this gene dele-
tion is that this virus vaccine can only propagate effec-
tively in cells with a deficiency in the interferon-
mediated antiviral response [8]. Vero (African Green
Monkey kidney) is one such cell line as the gene locus
encoding the main Type I interferons, Interferon o and
B, are missing from its genomic DNA [14,15]. Conse-
quently, it has been previously demonstrated that the
NS1 deletion Influenza virus grows efficiently in Vero
cells, but not in MDCK or mice [8,16,17]. This NS1
deletion virus is also interesting because it may find
applications in cancer therapy [18,19] and other prophy-
lactics [20].

Regardless of vaccine type (inactivated or live attenu-
ated), virus vaccine production requires the initial step
of propagating the Influenza viruses carrying the haema-
glutinin and neuraminidase antigens of the strains that
the vaccine is providing prophylaxis for. These viruses
are traditionally propagated in embryonated hen eggs.
Two important limitations of this process are the inflex-
ible supply of high quality specific pathogen free (SPF)
eggs and possible low titres of emerging viruses, such as
the highly pathogenic Influenza A (H5N1) strain. To
provide an alternative to egg-based vaccine production,
mammalian cell culture based production has been
developed in recent years [21]. This provides a flexible
and scalable platform that can make use of existing bio-
pharmaceutical infrastructure for Influenza vaccine
production.

Three cell lines commonly used for Influenza virus
production are the PER.C6 cells, MDCK (Madin-Darby
Canine Kidney) and Vero (African Green Monkey Kid-
ney). All three cell lines can be grown in serum-free
media. While PER.C6 and MDCK can be cultured in
suspension [22,23], microcarriers are commonly used
for culturing MDCK [22,24-30] and Vero cells [31-34]
because these cell lines are typically anchorage depen-
dent. The seasonal and pandemic Influenza vaccine pro-
duced in MDCK cells by Novartis has gained various
regulatory approvals in 2007 and 2009 respectively,
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while those produced in Vero cells by Baxter has also
gained approvals in 2010 and 2009 respectively.

Although bioreactor production of Influenza virus has
been developed, serum-free production processes
described in literature commonly use proprietary in-
house cell culture media [24,25,29,30,32]. To our knowl-
edge, there are a few reports describing Influenza virus
production using MDCK cells in commercially available
serum-free medium [21,26-28], while that using Vero
cells is described in only one recent report [35] although
the medium used contains animal components. Related
literature described serum-free media for Vero cells
[36,37] and microcarrier bioreactor processes for the
production of other viruses using Vero cells [37-46]. It
is important to bridge this gap to provide a scalable ani-
mal-component free, serum-free platform for research-
ers and academics to produce different Influenza viruses
using Vero cells.

In this report, we describe for the first time, a scalable
bioreactor process for the production of Influenza A
virus lacking NS1 in Vero cells using commercially
available animal-component free, serum-free media. We
chose to use Cytodex 1 microcarriers for our bioreactor
cell culture, since this microcarrier has been previously
reported for Vero cells [31,33,34,39-43,45,46]. We evalu-
ated five commercially available animal-component free,
serum-free media for Vero cells by comparing the cell
yield in these media. The medium giving the highest cell
densities was then used to develop the bioreactor pro-
cess for Influenza virus production. This involved stu-
dies of parameters that will affect the virus production
process, namely trypsin concentration, time-point of
infection (TOI), and multiplicity of infection (MOI).
These parameters were validated in classical stirred tank
bioreactor processes. Finally, we also compared the pro-
duction of the NS1 truncated Influenza A virus with
that of the corresponding wild type Influenza A virus.

Results and Discussion

Growth kinetics of Vero cell microcarrier culture in
different SFMs

The growth kinetics of Vero cells in the 5 commercially
available animal-component free, serum-free media
(SFM) were evaluated in 250 ml spinner flasks. The
media evaluated were OptiPro SFM (Invitrogen), VP-
SFM (Invitrogen), EX-CELL Vero SFM (SAFC
Bioscience), Provero-1 (Lonza) and HyQ SFM4MegaVir
(HyClone). The results are presented in Figure 1A. Poor
attachment of cells to microcarriers and poor cell
growth was observed in HyQ SFM4MegaVir, which con-
sequentially yielded a low cell concentration of 4.5 x 10°
cells/ml. OptiPro SFM, VP-SFM and Provero-1 SFM
displayed similar cell growth profiles, yielding cell con-
centrations of 1.2 x 10° cells/ml with viability above
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Figure 1 Vero cell microcarrier cultivation in different commercial serum-free media. (A) Comparison of Vero cell growth on Cytodex 1
microcarriers in five different serum-free media, OptiPro SFM, EX-CELL Vero SFM, VP-SFM, Provero-1 and HyQ SFM4MegaVir. The experiment was
performed in duplicate using 250 ml spinner flasks with 3 g/I Cytodex 1 microcarriers. The viable cell concentrations of one representative run
are shown here. (B) Phase contrast images of cells cultured on Cytodex 1 microcarriers in EX-CELL Vero SFM and OptiPro SFM at day 8. Scale
bars indicate 200 um.

90% on days 4 or 5. Growth of Vero cells in EX-CELL
Vero SEM was the highest achieving 2.6 x 10° cells/ml
(97% viability) on day 7.

Previous studies have reported that serum-free med-
ium enriched with serum were able to achieve such high
cell concentrations in batch cultivation of Vero cells
when compared to serum-free media [47-49]. The

difference in the maximum cell concentration reached
was explained by the higher cell death rate in the
serum-free medium, possibly caused by the lack of pro-
tective effect of serum, depletion of essential nutrient
and accumulation of toxic metabolites [50]. To investi-
gate whether this phenomenon can be replicated by pro-
viding nutrients and removing toxic metabolites for cells
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cultivated in OptiPro SFM, cell cultivation with medium
exchanges was carried out (Figure 2). However, the
higher cell density observed in EX-CELL Vero SEM was
not attainable with this strategy. Comparing the cell
morphology in these two media, a more compact cell
monolayer was observed in EX-CELL Vero SFM when
compared to cells cultured in OptiPro SFM (Figure 1B).
Hence, the higher cell concentration in EX-CELL Vero
SEM was not due to multilayer of cells, but a difference
in cell morphology.
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Comparing the maximum cell densities observed in
this report with other studies involving Vero cell cultiva-
tion on Cytodex 1 using serum-free media, Souza et al.
[41] obtained comparable maximum cell density of 1.6
x 10° cells/ml in VP-SFM, while Rourou ef al. and
Tiwari et al. [39,40] reached 2.6 x 10° cells/ml and 2.1
x 10° cells/ml respectively in the same media. The rea-
son for these higher maximum cell densities was not
clear in these reports. However, since the same Cytodex
1 concentration of 3.0 g/l was used, we speculate that
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Figure 2 Vero cell growth on microcarriers in OptiPro SFM with two medium exchanges. The experiment was performed in duplicate
using 250 ml spinner flasks with 3 g/I Cytodex 1 microcarriers. (A) Cell growth profile and (B) Metabolite profiles of glucose, lactate, glutamine
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these may also be due to a more compact cell mono-
layer, similar to our observation in EX-CELL Vero SFM
cultures. The difference in cell morphology may be
greater in the former study [42] because an even higher
maximum cell density of 5 x 10° cells/ml on 3.0 g/l
Cytodex 1 was reported in perfusion mode. In contrast,
Silva et al. [42] reported a maximum cell density of 1 x
10° cells/ml for Vero cells cultivated in EX-CELL Vero
SEM using the same microcarrier concentration. This
may be due to a lack of adaptation from serum contain-
ing medium since the cells were directly seeded into
EX-CELL Vero SFM for infection 24 h later. Other
reports of Vero cultivation in different SEM typically
achieved less than 2 x 10° cells/ml [35,43,44,46], except
one using a proprietary medium [45].

As higher maximum cell densities were observed in
other studies using VP-SFM [39,40], one possible expla-
nation for the observed change in cell morphology may
be differences in cell handling during adaptation to
SFM. As such, relevant characteristics such as tumori-
genicity of the cells should be investigated before these
cells are used to produce clinical materials. Another per-
spective to investigate this phenomenon is to look at the
available information on the components and formula-
tion of these media: We observed higher starting glu-
cose and amino acid contents in EX-CELL Vero SFM
and VP-SFM compared to OptiPro SFM, as well as
undefined plant hydrolysates and recombinant proteins.
We speculate that these differences may also play an
integral role in enabling the higher cell concentrations
in EX-CELL Vero SFM and VP-SEM cultures.

Since viable cell yield in EX-CELL Vero SFM was
highest, it was chosen for our subsequent studies. Vero
cell cultivation in EX-CELL Vero SFM was scaled up in
a 3 L stirred tank bioreactor for validation. The results
are presented in Figure 3. Despite the longer lag phase,
cell yield of 2.7 x 10° cells/ml (93% viability) were com-
parable to those achieved in spinner flask (Figure 1). 3.9
g/l of glucose and 2.9 mM of glutamine were consumed
and 2.9 g/l lactate and 2.2 mM ammonium were pro-
duced by day 6 (Figure 3B) when peak cell density was
reached. The maximal specific growth rate was calcu-
lated to be 0.019 h™', which is similar to that of our
spinner flask culture (0.017 h™") and those from previous
studies with other SFM (0.026 h™! [48,50], 0.023-0.033 h”
' [39)).

Parameters for Influenza infection: trypsin concentration,
multiplicity of infection (MOI) and time-point of infection
(Tol)

Trypsin is essential for the replication of some Influenza
virus strains. To assess the effect of trypsin concentra-
tion on the amplification of ANS1 HIN1, we performed
small scale infections of microcarrier cultures in 6-well
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suspension culture plates. Vero cells were first cultivated
in 250 ml spinner flask in EX-CELL Vero SFM. When
the culture reached 2 x 10° cells/ml, cells were trans-
ferred into 6-well suspension culture plates for infec-
tions. The wells were supplemented with different
trypsin concentrations of 3 pg/ml, 5 pg/ml and 10 pg/
ml in duplicates. To investigate the possibility of using
lower trypsin concentrations by daily feeding, 2 sets of
wells were supplemented with trypsin at 1 pg/ml/day
and 2 pg/ml/day respectively. MOI of 0.01 and 0.001
were used in this experiment to concurrently assess the
effect of this parameter on virus amplification. Samples
were harvested 12 hourly and virus titres were deter-
mined by haemagglutination (HA) and TCIDs, assays
(Figure 4).

Virus production with 1 pug/ml/day of trypsin yielded
lower HA titres for both MOI tested, although peak
TCIDs, titres were similar albeit at a later time-point
for MOI of 0.001. This suggests that ANS1 HIN1 virus
production was limited by trypsin at a concentration of
1 pg/ml. On the other hand, virus production using 3
pg/ml, 5 pg/ml and 10 pg/ml trypsin, as well as daily
trypsin feed at 2 pg/ml/day, yielded high peak virus
titres between 7.5 and 8.0 Log;oy TCID5¢/ml for both
MOI tested. Since the assay has a standard deviation of
0.4 Log;o TCIDso/ml, the peak virus titres with the
above conditions were not significantly different. How-
ever, infection using 10 pg/ml trypsin resulted in higher
virus titres at the 24 h time point for both MOI, imply-
ing a faster virus amplification process. Similar observa-
tions were also described in literature [27,35]. As live
(TCIDsg) virus titres were reported to decrease with
time [27,35], a faster virus amplification process with 10
pg/ml trypsin is beneficial for the production of live
attenuated virus vaccines such as ANS1 HIN1. Hence
10 pg/ml trypsin and MOI of 0.001 (for lower amounts
of virus inoculums during vaccine production) were
used in the subsequent experiments.

For cell-based Influenza virus production, culture
infection is typically performed at a time-point close to
when the peak cell density is reached without time-
point of infection (TOI) studies [26-28,32,35]. However,
varying TOI has been shown to increase titres of other
viruses [38,41]. In addition to a difference in cell densi-
ties at the different TOI, the state of the cells at the dif-
ferent phases of cell culture may also affect virus
production. To determine the effect of TOI for ANS1
HINT1 infection, 3 time-points at the late exponential to
stationary phase were tested. Vero cells were first culti-
vated on microcarriers in spinner flask using the same
condition as previously described. Figure 5A shows the
average cell concentration measured from two spinner
flasks. At days 5, 6, and 7, cells were transferred to 6-
well suspension culture plates and infected at MOI
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Figure 3 Cultivation of Vero cells on microcarriers in a 3 L stirred tank bioreactor using EX-CELL Vero SFM with 3 g/l Cytodex 1. The
experiment was performed in triplicate. (A) Cell growth profile and (B) Metabolite profiles of glucose, lactate, glutamine and ammonium.

0.001 with 10 pg/ml of trypsin. The peak virus titres,
obtained 48 h post-infection in all the 6-well plates, are
shown in Figure 5B.

The peak virus titres from the day 7 samples were
slightly higher than those from other time-points. Day 7
is also when the peak cell density of 2.8 x 10° cells/ml
was reached. However, statistical analysis shows that the
virus titres obtained in these three time points are not

significantly different (p-value > 0.5). This suggests that
time-point of infection between the late exponential to
stationary phases of cell growth, with the different cell
densities from 2.1 to 2.8 x 10° cells/ml, does not signifi-
cantly affect virus yield. The lack of increase in virus
titres with infections at higher cell densities is also
known as the “cell density effect”. This was first
observed study by Wood et al. [51] and later reported
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Figure 4 Establishing trypsin concentration and MOI for ANS1 H1N1 Influenza virus production in Vero cells cultured on microcarriers
with EX-CELL Vero SFM. Vero cells were first cultivated using 250 ml spinner flasks with 3 g/I Cytodex 1 microcarriers. Upon confluency, 80%
of culture medium was replaced with fresh medium. 5 ml of this culture was transferred to each well on suspension 6-well plates to test the
different trypsin concentrations and MOI for infection. Trypsin concentrations used were 10 pug/ml, 5 ug/ml, 3 pg/ml, 2 pg/ml/day and 1 pg/ml/
day. Virus titres obtained using TCIDso (Top) and haemagglutination assays (Bottom) at (A) MOI of 0.001 and (B) MOI of 0.01. Virus titres shown
represent mean values obtained from two replicate wells. Error bars indicate the standard deviation of the experiment.

in other virus production system [39,52-55]. While
nutrient limitation and unknown inhibitory factors gen-
erated during the process can account for most cases
(adenovirus [52,53], Influenza [54], Retrovirus [55],
Rabies virus [39]), this is not applicable here since cul-
ture medium was replaced with fresh medium during
infection. As with other reports [56-59], more under-
standing on the virus replication mechanism is needed
here to identify critical parameters.

Production of ANS1 and wild type H1N1 Influenza virus in
bioreactor

The propagation of ANS1 HIN1 virus in bioreactor with
EX-CELL Vero SEM containing Cytodex 1 is shown in
Figure 6. Cells were infected with the virus when the cell
concentration reached 2.3 x 10° cells/ml on day 6 with
MOI of 0.001 and trypsin concentration of 10 pug/ml. The
virus titres were monitored for 3 days. As shown in Figure
6A, upon infection viable cell concentration decreased
rapidly which coincided with the increase in the virus
titres. It reached the maximum of 8.3 Log;y TCID5o/ml
and 5 Log, haemagglutination unit (HAU) 30 h after

infection. The TCIDs, titre then steadily decreased from
48 h post-infection onwards, suggesting that there was
degradation of live virus particles in the bioreactor. As
shown in Figure 6B, the virus production trends also cor-
relate with the trends observed in the consumptions of
glucose and glutamine and the productions of lactate and
ammonia. Infection using a MOI of 0.01 showed compar-
able peak virus titres (Figure 6C), in agreement with our
previous observations in small scale infections.

To compare ANS1 HINI virus production to the wild
type Influenza virus, we performed bioreactor runs
using the same media, identical bioreactor and infection
parameters with the wild type Influenza A virus IVR-
116, NIBSC code 06/108 corresponding to our model
ANS1 H1NT1 virus. The cell growth and the subsequent
infection in EX-CELL Vero SFM are shown in Figure
7A. In metabolite profiles shown in Figure 7B, more glu-
cose and glutamine were consumed and consequently
more lactate was produced when compared to the pro-
files of ANS1 HIN1 in Figure 6B. The wild type virus
titre of 10 Log;o TCID5¢/ml and 9 Log, HAU was
achieved in 24 hours.
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ammonium, before and after infection.

The bioreactor processes for the production of ANS1
HIN1 and wild type HIN1 viruses were repeated at
least twice to obtain average virus titres of 8.1 + 0.30
Logio TCIDs¢/ml and 6.4 + 0.40 Log, HAU, and 9.6 +
0.56 Log;o TCIDsp/ml and 8.5 + 0.50 Log, HAU respec-
tively. The virus titres achieved in the wild type strain is
1.5 Logio TCIDs5¢/ml higher and 2.1 Log, HAU signifi-
cantly higher (P < 0.05) than ANS1 H1IN1 using EX-
CELL Vero SEM. We speculate that this may be largely
due to differences in the viruses, especially the NS1
deletion, since it was known that the NS1 protein in
infected cells interacts with host cell gene expression

and cellular protein regulation including interferon
mediated antiviral responses [11,60,61]. Although the
use of interferon deficient Vero cells allows us to cir-
cumvent the cellular antiviral responses [8,16], recent
reports suggest that the Influenza A NS1 protein is also
involved in anti-apoptotic signaling through Phosphati-
dylinositol-3-kinase (PI3K) pathway [62-64]. In agree-
ment with literature, we observed that the viable cell
concentration remained relatively unchanged during the
first 24 h of the wild type virus infection and only
started to decline when peak virus titre was reached
(Figure 7A). In contrast, a more rapid decrease in viable
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cell concentrations upon infection with ANS1 strain was
observed (Figure 6A). ANS1 H1NI1 virus infected cells
also showed more prominent cell death with earlier
complete cell detachment from the microcarriers (Figure
8). We therefore believe that virus titre improvements
may be possible via preventing apoptosis. A recent study
by Seitz et al. [65] demonstrated the possibility of this
approach with transient expressed NS1 gene in MDCK
cells to enhance replication of an influenza virus lacking
NS1.
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Comparing our observed titres of the wild type HIN1
virus with literature, haemagglutination titre obtained in
this study was 0.5 to 1 Log, higher than other Vero
bioreactor processes producing Influenza virus using
serum-free or serum-containing media [33,35]. However
this may not be significant considering haemagglutina-
tion activity varied between strains. In addition, these
reports used avian erythrocytes for HA assay while we
have used human erythrocytes. Our observed titres are
also comparable to those reported in MDCK bioreactor

Wild type HIN1in

EX-CE

15 hours

24 hours

33 hours

B, %

viruses in EX-CELL Vero SFM. Scale bars indicate 200 um.

-
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Figure 8 Phase contrast images of cells cultured on Cytodex 1 microcarriers after infection with wild type and ANS1 H1N1 Influenza
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processes producing Influenza viruses (2.4 to 3.3 Logiq
HA/100 pl [26,27,35], 7.7 Log;o TCIDs5¢/ml [27], and 8.5
to 10 LOglO EID50/ml [28]).

Comparison of ANS1 and wild type H1N1 Influenza virus
production using EX-CELL Vero SFM and OptiPro SFM

As the ANSI and wild type HIN1 Influenza virus titres
were significantly different in EX-CELL Vero SFM, we
wanted to find out whether this is also true in other
SFM. In addition, we wanted to investigate whether the
“cell density effect” can be observed when we compare
EX-CELL Vero SFM with another serum-free medium
that gives a lower maximum cell density. We thus per-
formed the bioreactor virus production using OptiPro
SFM for this comparison.

Using OptiPro SFM, the average virus titres of ANS1
HINI1 and wild type HINI viruses were 8.0 £ 0.05
Logio TCIDsp/ml and 6.0 + 0.41 Log, HAU, and 8.7 +
0.11 Log;g TCIDs¢/ml and 5.5 + 0.50 Log, HAU respec-
tively. Similar to the virus production process using EX-
CELL Vero SEM, a higher TCIDsq virus titre was
obtained with the wild type virus compared to the
ANS1 HIN1 virus, although the difference was less dis-
tinct than the results with EX-CELL Vero SFM and the
haemagglutination titres were not significantly different
(Figure 9). This confirms our previous observation in
EX-CELL Vero SEM, that the inherent differences in the
viruses, such as the deletion of the NS1 gene, may be
the primary factor resulting in the different virus titres.
We speculate that the difference is less distinct in Opti-
Pro SFM due to the lower maximum cell density and
peak virus titres, as discussed below.
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Comparing the peak virus titres of the wild type virus
in EX-CELL Vero SFM and OptiPro SFM, EX-CELL
Vero SFM gave a 1 Log;q TCID5o/ml higher titre, while
that of the ANS1 HINI1 virus were similar (Figure 9).
As cell concentration in EX-CELL Vero SFM was almost
twice that of OptiPro SFM, this suggests that the higher
cell density may be beneficial to increasing virus titre of
the wild type HIN1 Influenza virus, contrary to the “cell
density effect”. On the other hand, the higher cell den-
sity achieved using EX-CELL Vero SFM did not contri-
bute to a higher virus titre for the ANS1 HIN1 virus,
validating our previous observation in TOI studies with
the same virus (Figure 5). This suggests that the “cell
density effect” observed for the ANS1 HINI virus may
be due to differences between this virus and the wild
type virus, and one obvious difference between these
two viruses is the NS1 deletion. The absence of this
gene may have allowed the virus to trigger apoptotic
pathways in the Vero cells to limit virus yield, as dis-
cussed previously in this report.

To validate that the observed “cell density effect” is not
due to changes in culture medium during virus produc-
tion, we analyzed the metabolite profiles of these cultures.
The analyses of glucose, glutamine and amino acids (data
not shown) have not revealed any shortage during the
virus production in the two SFM and two viruses tested.
Ammonium concentrations were below 20 mM, while lac-
tate concentrations were above 0.8 g/l prior to virus infec-
tion with both EX-CELL Vero SFM and OptiPro SFM. As
it has been reported in MDCK cells that lactate concentra-
tion of 8 mM (or 0.7 g/l) at the time point for infection
can reduce haemagglutination unit by a factor of two [66]

Wildtype HIN1
in EXCELL SFM

+

ANS1HIN1 +
in EXCELL SFM

Wild type HIN1 +
in OptiPro SFM

ANS1HIN1 +
in OptiPro SFM
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b sk %

+
+
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Virus titre (Log TCIDso/ml)
* p-value =0.011 < 0.05

** p-value = 0.003 < 0.05
*** p-value =0.045 < 0.05

bars and non-filled bar indicates virus titre in Log;o TCIDso/ml.
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Figure 9 Comparison of virus titres between ANS1 and the wild type H1N1 Influenza virus in EX-CELL Vero SFM and OptiPro SFM
from 3 L stirred tank bioreactors. Error bars indicate the standard deviation from at least two separate runs. Log, HAU is represented as filled

Virus titre (Log, HAU)
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and the addition of ammonium chloride to 20 mM was
reported to block infection [67-69], the high lactate level
we observed may have some influences to limit the maxi-
mum virus titres achieved with these medium. On the
other hand, a higher lactate level was observed in the wild
type virus production with 3.9 g/l generated 24 h post-
infection. Hence it is unclear to what extent the virus pro-
duction using Vero cells can be affected by lactate accu-
mulation without further experiments.

Conclusions

We have compared five commercially available SEM for
the microcarrier based cultivation of Vero cells. In addi-
tion, we described for the first time the production of
Influenza viruses using Vero cells in commercially avail-
able animal component-free, serum-free medium, and a
potentially scalable stirred tank bioreactor process for
the production of ANS1 HINI virus. Comparing the
production of the ANS1 H1IN1 virus to that of the cor-
responding wild-type strain, we showed that titres of
ANS1 HINI1 virus were lower than that of the wild-
type, and postulated that this may be a result of earlier
Vero host cell death due to the NS1 deletion.

Methods

Preparation of cell line, virus strain, trypsin stock and
microcarriers

Vero cells (ATCC CCL-81) from a master cell bank at
passage 126 was thawed into DMEM (Invitrogen, Grand
Island, NY) + 10% (v/v) fetal bovine serum (FBS) (Invi-
trogen) and passaged three times before stepwise adap-
tation to different serum-free media (SFM) to form
working cell banks. The SFM used were OptiPro SFM
(Invitrogen, Grand Island, NY, Cat. No. 12309-019), VP-
SEM (Invitrogen, Cat. No. 11681-020), EX-CELL Vero
SFM (SAFC Biosciences, Lenexa, KS, Cat. No. 14585),
Provero-1 (Lonza, Belgium, Cat. No. BE-02-030Q) and
HyQ SFM4MegaVir (HyClone, Logan, UT, Cat. No. SH-
30522.01), supplemented according to manufacturers’
instructions. Cells were subsequently thawed from these
working cell banks and passaged in tissue culture flasks
(T-flasks) in their respective media for 2 or more pas-
sages prior to use. Passage numbers of cells used for
experiments were less than 150. Cells cultures were
incubated in 37°C/5% CO, humidified incubators
(Sanyo, Japan).

Influenza A/New Caledonia/20/99(H1N1)-like virus,
with NS1 deletion (ANS1) was provided by Avir Green
Hills Biotechnology. The corresponding wild type Influ-
enza A virus was obtained from NIBSC (Influenza IVR-
116, NIBSC code 06/108). Working banks of the viruses
were created by amplifying the virus using Vero cells
cultivated in OptiPro SFM (Invitrogen) in T-flasks or
Cell Factories (Nunc, Denmark). While the ANS1 HIN1
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virus was already adapted to Vero cells, the wild type
virus was propagated using Vero cells for 6 passages
prior to the creation of the working bank. Virus titres of
the ANS1 and wild type HIN1 working banks were 7.1
to 7.3 Log;o TCID50/ml and 4 to 5 Log, HAU, and 9.0
Log;o TCID50/ml and 6.5 Log, HAU respectively, quan-
tified as described below.

Porcine trypsin used for Influenza virus activation
(Sigma-Aldrich, St. Louis, MO, Cat. No. T5266, 1500
BAEE unit/mg) was dissolved in deionized water and
sterile filtered to make a 5 mg/ml stock solution. This
stock solution was aliquoted and stored in -20°C freezer.
Trypsin aliquots were thawed once for experiments.

Cytodex 1 microcarriers (GE Healthcare, Sweden, Cat.
No. 17-0448-01) were hydrated and sterilized in a glass
bottle pre-coated with Sigmacote®™ (Sigma-Aldrich, Cat.
No. SL2) according to manufacturers’ instructions.

Quantification of virus titres and monitoring of cell
cultivation process

Virus titres were quantified using the haemagglutination
assay [70] and tissue culture infectious dose (TCIDs()
assay [53]. For the haemagglutination assay, 4% human
erythrocytes (Siemens Healthcare Diagnostics, Germany)
were diluted 8-fold in Dulbecco’s phosphate buffer solu-
tion (PBS, Invitrogen, Cat. No. 14190-250) to obtain a
0.5% cell suspension. 50 pl of this 0.5% cell suspension
was then added to an equal volume of virus and control
samples in 2-fold serial dilutions. Haemagglutination
unit (HAU) of a virus sample was read as the highest
dilution in which haemagglutination was observed.

TCIDso assay was performed by adding 50 pl of 10-
fold serially diluted virus samples to Vero cells culti-
vated on 96 well plates using OptiPro SFM (Invitrogen)
supplemented with 5 pg/ml porcine trypsin (Sigma-
Aldrich). The assay was carried out in triplicate sets,
each consisting of 6 wells per diluted virus sample.
TCIDs, titres were calculated according to the formula
of Reed and Muench [71]. As the dose for attenuated
influenza virus vaccine in clinical studies is measured
based on TCIDs, assay [72,73], the comparisons of virus
titres in our report were predominantly based on
TCIDsy instead of haemagglutination assay.

Cell cultivation process was monitored by measuring
total cell density, viable cell density and key metabolite
concentrations. Total cell density was determined with
crystal violet nuclei staining. Briefly, a 500 ul aliquot of
cell culture sample was treated with an equal volume of
0.01% (w/v) crystal violet (Sigma-Aldrich) in 0.1M citric
acid solution and incubated for 30-45 minutes at 37°C.
The released nuclei from the cells were then counted
using a hemacytometer. To determine viable cell den-
sity, we first observed that cells attached to the micro-
carriers were mostly viable with cell viability greater
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than 90% regardless of the stage of cell cultivation (data
not shown). Based on this observation, Trypan blue cell
exclusion method was used to obtain the density of
non-viable cells that were not attached to microcarriers.
Viable cell density was then estimated by deducting this
from the total cell density measured with crystal violet
nuclei staining.

Concentrations of key metabolites (glutamine, glucose,
lactate and ammonium) in cell culture supernatants
were analyzed using BioProfile 100 Plus (Nova Biomedi-
cal, Waltham, MA) as per manufacturer’s instructions.
Virus-containing samples were deactivated by heating in
a 60°C water bath for 30 minutes prior to analysis.

Cell cultivation and virus infection in spinner flasks

250 ml spinner flasks (Bellco, Vineland, NJ) were coated
with Sigmacote (Sigma-Aldrich) according to manufac-
turer’s instructions. Vero cells were seeded into the
spinner flasks at 6 x 10° cells/ml in 125 ml medium
containing 6 mg/ml of hydrated Cytodex 1 microcar-
riers. Mixing in the spinner flasks was performed using
a magnetic stirrer platform (Cellgro Type 45600, Ther-
molyne, Dubuque, IA) which rotates the magnetic
microcarrier paddle impeller (Bellco, Cat No. 1965-
30100) inside the flasks. The spinner flasks were stirred
at 40 rpm inside a 37°C/5% CO, humidified incubator.
Surface aeration was allowed by loosening the cap on
one arm of the spinner flask. After 24 h, the stirring
speed was increased to 60 rpm, and the culture volume
was increased to 250 ml by addition of fresh medium.
This results in cell and microcarrier concentrations of 3
x 10° cells/ml and 3 mg/ml respectively.

Prior to influenza virus infection, approximate 80% of
the culture medium was exchanged. Influenza virus at
predetermined MOI and trypsin were added to the spin-
ner flask together with fresh medium. Stirring speed was
then maintained at 60 rpm.

To determine the conditions for infection, cells were
first cultivated on microcarriers in the spinner flasks as
described above. At various stages of cultivation, the
cells were transferred to suspension 6-well plates (Grei-
ner Bio-One, Cat no. 657102) with 5 ml culture volume
per well. The well was incubated in 37 C/5% CO, humi-
dified incubators (Sanyo, Japan) on orbital shaker agi-
tated at speed of 100 rpm. Different virus infection
conditions, namely time of infection, trypsin concentra-
tion, and MOI, were tested in this format.

Cell cultivation and virus infection in 3 L bioreactor

3 L bioreactor (Applikon, Netherlands) was coated
with Sigmacote® (Sigma-Aldrich) and sterilized accord-
ing to manufacturer’s instructions. The bioreactor set-
tings for experiments were as follows: culture
temperature was set at 37°C; maximum flow rate for
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O, and CO, were set at 10 ml/min; dissolved oxygen
(DO) was set at 40% saturated air concentration; initial
stirring speed was 60 rpm; initial pH were 7.1 and 7.3
for EX-CELL Vero SFM and OptiPro SFM respectively.
Vero cells were seeded at 6 x 10> cells/ml in 750 ml
medium with a microcarrier density of 6 mg/ml. At 6
h post-seeding, the pH and stirring speed were chan-
ged to 7.2 and 100 rpm respectively, as most cells were
attached to the microcarriers. At 24 h post-seeding,
the culture volume was increased to 1.5 L by adding
fresh medium, to result in cell and microcarrier con-
centrations of 3 x 10° cells/ml and 3 mg/ml
respectively.

Influenza virus infection in bioreactor is similar to that
in spinner flasks. 80% of the culture medium was first
exchanged with fresh medium. Influenza virus at prede-
termined MOI and trypsin were then added to the bior-
eactor together with fresh medium. For infection in
OptiPro SFM, 5 pg/ml trypsin was used, and the cells
were infected at MOI 0.001 and 0.01 at cell concentra-
tions of 1.2-1.4 x 10° cells/ml. The bioreactor settings
remained unchanged.

Statistical analysis

Statistical analysis was carried out using two-tailed stu-
dent’s t-tests assuming equal variance with replications.
P values less than 0.05 were considered significant.
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