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Abstract

promote self-splicing among cultured mammalian cells.

Background: The group | intron, a ribozyme that catalyzes its own splicing reactions in the absence of proteins in
vitro, is a potential target for rational engineering and attracted our interest due to its potential utility in gene
repair using trans-splicing. However, the ribozyme activity of a group | intron appears to be facilitated by RNA
chaperones in vivo; therefore, the efficiency of self-splicing could be dependent on the structure around the insert
site or the length of the sequence to be inserted. To better understand how ribozyme activity could be modulated
in cultured mammalian cells, a group | intron was inserted into a short hairpin RNA (shRNA), and silencing of a
reporter gene by the shRNA was estimated to reflect self-splicing activity in vivo. In addition, we appended a
theophylline-binding aptamer to the ribozyme to investigate any potential effects caused by a trans-effector.

Results: shRNA-expression vectors in which the loop region of the shRNA was interrupted by an intron were
constructed to target firefly luciferase mRNA. There was no remarkable toxicity of the shRNA-expression vectors in
Cos cells, and the decrease in luciferase activity was measured as an index of the ribozyme splicing activity. In
contrast, the expression of the shRNA through intron splicing was completely abolished in 293T cells, although the
silencing induced by the shRNA-expressing vector alone was no different from that in the Cos cells. The splicing
efficiency of the aptamer-appended intron also had implications for the potential of trans-factors to differentially

Conclusions: Silencing by shRNAs interrupted by a group | intron could be used to monitor self-splicing activity in
cultured mammalian cells, and the efficiency of self-splicing appears to be affected by cell-type specific factors,
demonstrating the potential effectiveness of a trans-effector.

Background

The group I intron from Tetrahymena thermophila
catalyzes its own excision and ligation of the 5" and 3’
exons, meaning that it performs self-splicing without
the aid of proteins in vitro [1]. Self-splicing of unusual
sequence alignments has been shown to occur in vitro
and in vivo in other species, including mammalian spe-
cies, but group I introns have not been reported in
mammals [2]. In addition to self-splicing to ligate two
exons that are juxtaposed to a group I intron, several
variations on self-splicing have been identified, includ-
ing trans-splicing, which is used to correct gene
sequences with mutations, a promising technique with
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potential therapeutic application [3,4]. Thus, elucida-
tion of the actions of group I introns in vivo would be
beneficial [5,6].

The proper structure and the efficient catalysis of
group I and group II introns seem to depend on RNA
chaperone proteins in vivo [7]. Without the aid of cha-
perone proteins, misfolding is often triggered from alter-
native base pairings or in the thermodynamically favored
direction. To investigate the splicing activity of the
group I intron in cultured mammalian cells, we con-
structed expression vectors containing a short hairpin
RNA (shRNA) interrupted by an intron. The expressed
shRNA is converted to a small interfering RNA (siRNA)
by the RNase III enzyme DICER, and then it triggers
RNA interference (RNAI) in the cells [8-10]. After spli-
cing with the help of chaperone proteins, the resulting
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ligated transcript is predicted to fold back on itself to
form a stem-loop structure that produces shRNA, lead-
ing to silencing of the targeted reporter gene. The low
production level of protein products due to self-spli-
cing limits the utility of group I introns and self-spli-
cing, but in this context, the self-splicing mechanism
can be used to produce RNA as the final product [2].
Therefore, this method might provide insight into the
mechanism of self-splicing and into the relationship
between the self-splicing mechanism and RNA chaper-
one proteins in vivo.

Two sets of coaxially stacked helices, P4-P6 and P3-
P9, are the conserved core of group I introns, and the
peripheral domains play important roles in stabilizing
the functional structures. It has been suggested that
P5abc stabilizes the folded structure of group I introns,
and the interaction between the tetraloop (L5b) in
P5abc and the tetraloop receptor in the P6 stem func-
tions as a clamp to stabilize the conformation [11]. A
chaperone protein can substantially rescue the catalytic
activity of Tetrahymena introns in which P5abc has
been deleted. This chaperone appears to bind the P4-P6
domain and to form a scaffold for the assembly of the
P3-P9 domain [12]. Group I ribozymes were successfully
activated using an appended aptamer in which the P6
region of the intron from the thymidylate synthase gene
in bacteriophage T4 was substituted with an anti-theo-
phylline aptamer [13]. Here, we also attempted substitu-
tion of the P6 region of the Tetrahymena intron with an
anti-theophylline aptamer so that the specific binding of
theophylline to the the group I intron might lead to a
conformational change, thus modulating catalysis in a
way that is similar to the binding of a chaperone pro-
tein. The application of functional RNAs to gene regula-
tion has intriguing possibilities for conditional gene
expression and knockdown systems, but the develop-
ment of these applications is still in progress [14-17].

In the present study, we used silencing of the firefly
luciferase gene by shRNAs to evaluate the splicing effi-
ciency of the Tetrahymena thermophila group I intron,
which was inserted into the loop region, in a mamma-
lian cultured cell line. In addition, to infer how self-spli-
cing was affected by a trans-effector in mammalian cells,
we assessed the effects of an appended aptamer under
splicing-competent physiologic conditions.

Results

Construction of shRNAs containing a microRNA-derived
loop and validation of target silencing

The production of shRNA via splicing catalyzed by a
Tetrahymena group I intron estimates the splicing effi-
ciency in conjunction with chaperone proteins in mam-
malian cells (Figure 1A). To this end, shRNAs targeting
the firefly luciferase transcript were placed under a
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Figure 1 shRNA directed against firefly luciferase and
interruption of shRNA by an intron. (A) Schematic representation
of the formation of the stem-loop structure through the self-splicing
of a group | intron inserted into the loop site. (B) Expression vectors
were constructed for shRNAs targeting the “155-173" or “851-875"
region of firefly luciferase. The shRNA cassettes were placed under
control of the CMV promoter of the pRNA-CMV3.1-Neo vector. The
loop portion of the shRNA was from the loop region of hsa-mir-371
with a slight modification. The loop sequences are underlined. The
inserted site of the group | intron is illustrated, and the modified
nucleotides are shown in red. (C) Schematic representation of the
interactions involved in self-splicing including the pairing between
the intron and the 5 and 3" exon sequences. These pairings, namely
the P1 helix (5'exon-intron pairing) and P10 helix (intron-3'exon
pairing), are shown in bold, and the modified nucleotides are
shown in red.

cytomegalovirus (CMV) promoter, and a group I intron
was inserted into the loop region (Figure 1B). Then tar-
get silencing by the shRNA was quantitatively analyzed
as a reflection of the inserted ribozyme activity. Of note,
the transcribed RNA was longer than the shRNA and
was expected to be fully expressed under these condi-
tions. Specifically, RNA polymerase II-driven promoters
have a variety of expression patterns and are more suita-
ble for achieving a spatio-temporal expression pattern
than RNA polymerase I1I-driven promoters [18]. The
sequences of the 5’ and 3’ exons of the Tetrahymena
intron were designed to pair with the intron for efficient
and precise splicing, namely the formation of the P1
helix (5’ exon-intron pairing) and the formation of the
P10 helix (intron-3’ exon pairing). To accommodate
these characteristics, we searched for a loop portion that
was similar to the pairing sequences using a microRNA
(miRNA) database, and the hsa-mir-371 sequence with a
one-base modification was selected [19]. The one base
change of the loop region did not significantly decrease
the efficacy of silencing by the shRNA (data not shown).
In addition, 4 bases of the intron sequence were modi-
fied in conjunction with the loop (Figure 1B, C).

We first constructed two vectors in which the shRNA
with the miRNA-derived loop was inserted downstream
of the CMV promoter. The first shRNA (shRNA1)
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contained 25 bases of an antisense strand targeting
bases 851-875 of the firefly luciferase transcript. The
second shRNA (shRNA2) contained 19 bases of the
antisense strand targeting bases 155-173 of the firefly
luciferase transcript, and it was followed by a poly (U)
termination signal based on a report that the poly (U)
termination signal could substitute for the polyadenyla-
tion signal in the expression of sShRNA under the CMV
promoter [20]. The efficiency of target silencing was
then analyzed by transiently transfecting the shRNA
vector in Cos cells with two vectors expressing firefly
luciferase and Renilla luciferase, and luciferase activity
was analyzed 48 h and 60 h after transfection (Figure

Page 3 of 10

2A). In both cases, the reduction of firefly luciferase
activity relative to the control vector indicated the effi-
ciency of the shRNAs. In the case of ShARNA2, the addi-
tion of the poly (U) termination signal appeared to be
effective for target silencing because the construct with-
out the poly (U) termination signal (siRNA2-AU) pro-
duced less efficient target silencing (Figure 2A).

Interruption of shRNA-mediated target suppression by an
intron with cell-type specificity

The loop derived from hsa-mir-371 was sufficient for
shRNA-expressing vectors to induce RNAi; therefore, a
group I intron was inserted into the middle site of the
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Figure 2 Characterization of shRNA and shRNA interrupted by an intron in cultured cells. (A) The efficiency of the shRNA was analyzed by
transiently transfecting Cos cells with vectors expressing firefly luciferase and Renilla luciferase. Firefly and Renilla luciferase activity was analyzed
48 h and 60 h after transfection using the Dual-luciferase Reporter Assay System in which firefly luciferase activity is normalized to Renilla
luciferase activity. The pRNA-CMV3.1-Neo empty vector was used as a control, and the results are expressed as the mean + S.D. of the
percentage of control. (B) Silencing activity of the shRNAT-intron and shRNA2-intron in Cos cells 48 h and 60 h after transfection. (C) Cell viability
was determined microscopically by trypan blue exclusion 48 h and 60 h after transfection with the pRNA-CMV3.1-Neo, shRNAT, shRNAT-intron,
ShRNA2 or shRNA2-intron vector. The total cell number and the viability were normalized by the values for cells transfected with the control
vector and are expressed as the mean + S.D. of the percent of control. (D) The efficiency of the shRNA and shRNA interrupted by the intron was
also analyzed by transiently transfecting 293T cells and using the Dual-luciferase Reporter Assay System.
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loop sequence (Figure 1B). When the constructed vec-
tors were transiently cotransfected in Cos cells, we
observed decreased firefly luciferase activity compared
to control vectors (Figure 2B). No significant changes in
the shape or viability of the transfected cells were
observed (Figure 2C). Furthermore, it is not likely that
the group I intron induced the silencing effect via a
mechanism such as trans-splicing, that is, direct associa-
tion before splicing. The sequence corresponding to the
5" exon has been used as antisense, and relatively long
sequences have been used as the antisense strand for effi-
cient splicing in trans-splicing systems [21]. In the pre-
sent study, the antisense strand corresponds to the 3’
stem of both shRNA1 and shRNA2. Moreover, if it were
transcribed, the antisense strand would be followed by an
unrelated sequence, specifically the poly (A) tail in the
case of the shRNA1-intron and the poly (U) termination
signal in the shRNA2-intron. We also repeated this
experiment using another routinely used cell line, 293T
cells. In stark contrast to the Cos cells, we found no sig-
nificant repression of luciferase activity, but a similar or
even greater silencing effect was observed when the
shRNAs without the groupl intron were expressed (Fig-
ure 2D). In addition, we observed no significant effect on
cell viability (Figure 2C). These findings suggest that the
suppressive potency of the shRNA-intron is not due to
direct activity by the RNase III enzyme DICER and that
the splicing efficiency appears to affect the extent of luci-
ferase gene silencing (Figure 2D).

To elaborate on the difference between cell-types, we
assessed the expression level of the siRNAs from the
shRNA and shRNA-intron vectors. To this end, we
designed a stem-loop primer to detect the predicted
siRNA and determined that the siRNA was processed
from the shRNA precisely as predicted (Figure 3A). We
did not observe a significant difference in siRNA expres-
sion between Cos cells and 293T cells when the same
amount of the shRNA-expressing vector was transfected
(Figure 3B, C). However, the amount of siRNAs produced
from the shRNA-intron vectors was significantly reduced
in 293T cells compared with Cos cells, although the
expression level of the intron was not significantly differ-
ent between the cell types (Figure 3B, C). When we com-
pared the siRNA to intron ratio, as assessed by RT-qPCR,
in 293T cells and Cos cells, we confirmed a significant
reduction in the level of siRNA (Figure 3D). Taken
together, these results suggest that the splicing event and
the resulting RNAi appear to occur in a cell-type specific
manner, independent of the DICER activity of the cell.

Characterization of sequence-dependent target silencing
induced by the shRNA-intron

To more precisely evaluate whether the observed sup-
pressive effects were specific for the target sequences,
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we used the psiCHECK-2 vector, which is typically used
to check the knockdown efficiency of a target sequence
by siRNA or miRNA [22]. Although the psiCHECK-2
vector expresses firefly luciferase in addition to Renilla
luciferase, the firefly luciferase gene in this vector has a
different sequence from the “155-173” and “851-875”
target sequences of the pGL3-Control vector (Figure
4A). Even under this circumstance, it is plausible that
these corresponding sites of psiCHECK-2 vector are also
repressed by miRNA interference because unlike siRNA,
miRNA does not require perfect complementarity of
sequences. Based on the premise that miRNA com-
monly targets the 3’ untranslated region of mRNA and
that the silencing effect of siRNA is usually stronger
than that of miRNA, the experimental readout would
largely reflect the silencing induced by the siRNA [23].
Therefore, we constructed vectors in which the target
sequence for each of shRNA1 and shRNA2 was inserted
into the 3’ UTR of the Renilla luciferase gene of the psi-
CHECK-2 vector. The constructed vectors, “GL851,”
which would be targeted by shRNA1, and “GL1557,
which would be targeted by shRNA2, were transfected,
and we assessed the effect of each shRNA-intron on
luciferase activity in the transfected cells. As expected,
we observed a specific knockdown that corresponded to
the inserted target sequences (Figure 4B). Based on
these findings, it is plausible that the siRNA was pro-
duced from the shRNA-intron and silenced the target in
a sequence specific manner.

The modulation of splicing efficiency by an aptamer-
ligand interaction

We assumed that the expression of shRNA from the
shRNA-intron is modulated by a cell specific factor at
the step at which the inserted intron in the loop region
of the shRNA is spliced. Considering that the regional
binding of a chaperone protein could promote self-spli-
cing in vivo, we set out to elucidate the effect of a
potential trans-effector that binds the regional site in
the group I intron in cultured mammalian cells. Intrigu-
ingly, the splicing of an aptamer-appended T4 phage
group I intron was shown to be modulated in E. coli
[13]. To accomplish aptamer-mediated targeting, the P6
region of the Tetrahymena group I intron was replaced
with a theophylline-binding aptamer (Figure 5A). The
activity of the shRNA-intron-aptamer vector was vali-
dated in Cos cells. The substitution of the theophylline-
binding aptamer for the P6 region of the shRNAI-intron
led to less efficient silencing, prompting us to investigate
the activity of the shRNA1-intron-aptamer when the
ligand for the aptamer was present in the culture med-
ium (Figure 5B). Consistent with previous reports of the
use of an anti-theophylline aptamer in mammalian cells,
the shRNA1-intron-aptamer showed a prominent effect
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with 8-10 mM theophylline [24,25]. This concentration
of theophylline, however, was highly toxic to the cul-
tured cells. Therefore, we decreased the exposure period
and observed a repressive effect similar to that of the
shRNA1-intron. The presence of theophylline in the
culture medium had no effect on the silencing activity
induced by the shRNA1 intron vector (Figure 5B). Add-
ing caffeine (10 mM), which is structurally similar to
theophylline but does not bind to the aptamer, did not
affect the silencing efficiency (Figure 5C) [26]. Hence,
the aptamer-appended group I intron became functional
by adding theophylline in a manner analogous to that
of the T4 phage group I intron in E. coli [13]. The simi-
lar effect, although slightly less robust relative to that of
the T4 phage group I intron in E. coli, might be due to

the differences in the physiologic conditions between
mammalian cells and E. coli and in their structure.
Nevertheless, we obtained evidence that the intracellular
milieu affects the splicing efficiency of different cell
lines (Figure 2).

Discussion

The efficient splicing of group I introns in vivo has been
attributed mainly to chaperone proteins, contrasting
with splicing in vitro, which occurs in the absence of
any proteins [12,27]. In fact, compared to Cos cells, very
little target silencing by shRNA-intron vectors was
observed in 293T cells, despite the fact that the corre-
sponding shRNA expression vectors had the same or
even better effects on target silencing. Given these
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Figure 4 Sequence-specific silencing effect of the shRNA-
intron. (A) The firefly luciferase sequences in the pGL3-Control
vector that correspond to the targeting regions of 155-173 and 851-
875 have a slightly different sequence composition than those in
the psiCHECK-2 vector. The sequences from the pGL3-Control
plasmid were synthesized and cloned downstream from the stop
codon of the Renilla luciferase gene in the psiCHECK-2 vector. (B)
The sequence-specific repression by shRNA interrupted by an intron
was analyzed by transient cotransfection into Cos cells with the
GL155 or GL851 vector. The empty pRNA-CMV3.1-Neo vector was
used as a control. Luciferase activity was assessed using the Dual-
luciferase Reporter Assay System, in which Renilla luciferase activity
was normalized to firefly luciferase activity, and the data are shown
as the mean + S.D. of the percentage of the value for the empty

psiCHECK-2 vector.

results, target silencing by shRNA-intron vectors might
be dependent on the endogenous distribution or the
amount of chaperone proteins in different cell types.
Alternatively, some substrate-specific chaperone proteins
or some inhibitory factors might be involved in the spli-
cing reaction [28-30]. From a therapeutic point of view,
it is intriguing that a particular chaperone protein is
overexpressed in cancer cells and that could be consid-
ered a target for cancer therapy [31]. There is evidence
that considerable splicing occurs in 293 cells when
group I introns are inserted into a luciferase gene [2].
Therefore, there might be a preferential length,
sequence, and structure for in vivo splicing [32]. Thus,
several features and obstacles of intron self-splicing are
evident when producing shRNA via splicing to analyze
RNA chaperone activity in mammalian cells, similar to
an “RNA folding trap” [6,33].

The Neurospora crassa mitochondrial tyrosyl-tRNA
synthetase (CYT-18 protein) binds the P4-P6 domain of
the Tetrahymena group I intron to promote splicing
[34]. However this effect has been confirmed only for
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the synthetases of Neurospora crassa and the closely
related fungus Podospora anserina, despite the fact that
these proteins share the same basic structure with all
bacterial tyrosyl-tRNA synthetases and the Saccharo-
myces cerevisiae mitochondrial tyrosyl-tRNA synthetase.
Theophylline, a small organic molecule, modulates
group I intron activity in E. coli and in mammalian
cells, and there is a possibility that such a protein could
bind and trigger a change in the enzymatic activity of
the intron in these species. However, replacement of the
P6 region with a theophylline-binding aptamer was not
sufficient to completely inactivate self-splicing in Cos
cells. Therefore, further replacement or modification
could be rationally engineered for finely tuned control.
Alternatively, antibiotics, which specifically bind to
group I introns in vitro, might also modulate self-spli-
cing; however, many of these compounds remain to be
validated in vivo, and others are not as efficient as initi-
ally expected [35-39]. Altogether, further understanding
of the splicing efficiency of group I introns in physiolo-
gical conditions might pave the way for applications
using modified group I introns and functional RNAs
in vivo [40].

Conclusions

Our results revealed that a miRNA-derived loop could
be used to efficiently express shRNAs under a CMV
promoter and that the expression of the shRNAs could
be mediated by a group I intron inserted into the loop
region. The shRNAs expressed via self-splicing of a
group I intron affected target silencing in a cell-type
specific manner under physiological conditions. In addi-
tion, the effect of theophylline when a theophylline-
binding aptamer was embedded in a group I intron sup-
ported the feasibility of regulation by a trans-effector as
well as the physiological importance of the connection
between splicing efficiency and cellular factors.

Methods

Plasmid construction

pRNA-CMV3.1-Neo (GenScript Corporation) was used
to construct the vectors expressing shRNA and shRNA
interrupted by an intron. For the shRNA vectors, a
PRNA-CMV3.1-Neo vector was digested with BamHI
and HindIII and was ligated to the annealed oligonu-
cleotide. The oligonucleotides used were as follows:
shRNAIL: 5-GATCCGTGCGCTGCTGGTGCCAA
CCCTATTTTTCTGCCCTCTTGTGAAAAATAGGG
TTGGCACCAGCAGCGCACA-3 and 5-AGCTTGTG
CGCTGCTGGTGCCAACCCTATTTTTCACAAGAG
GGCAGAAAAATAGGGTTGGCACCAGCAGCGCA
CG-3’; and shRNA2: 5-GATCCTTACGCTGAGTA
CTTCGAT TTCTGCTCTCTTGTGAAATCGAAG-
TACTCAGCGTAAGTTTTTTGGAA-3" and 5-AGCT
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TTCCAAAAAACTTACGCTGAGTACTTCGATTTCA
CAAGAGAGCAGAAATCGAAGTACTCAGCGTAAG-
3’. These vectors were digested with BamHI, treated
with mung bean nuclease to remove 5’ extensions, and
self-ligated. To construct the shRNA2 vector, a one base
modification of its loop region was performed using the
KOD-Plus-Mutagenesis Kit (TOYOBO) according to the
manufacturer’s instructions. The following primers were
used: forward primer: 5-CCCTCTTGTGAAATC-
GAAGTACTC-3’ and reverse primer: 5- CAGAAATC-
GAAGTA CTCAGC-3'. The pTZISVU vector, which
contains the group I intron from Tetrahymena thermo-
phila, was digested with EcoRI and HindIII, and its
intron-containing fragment was subcloned into the
EcoRI-HindIII restriction site of pVAX1 (Invitrogen) to
generate pVAXl1-intron vector. To construct the
shRNA1-intron vector, a vector containing the following
sequence at the BamHI-HindIII site of the pRNA-
CMV3.1-Neo vector was first constructed: 5’GATC
CGTGCGCTGCTGGTGCCAACCCTATTTT TCTG
CCCTCTAAATAGCA AGTATTTTTCACGTG TGAA
AAATAGGGTTGGCACCAGCAGCGCACA-3'. This
vector (preshRNA1-intron) was then digested with PmlI,
and the PCR-amplified intron was ligated. The following
primers were used: forward primer: 5-TGGAGG-
GAAAAGTTATCAGGC-3" and reverse primer: 5'-
GAGTACTCCAAAACTAATCAATATACT-3. To con-
struct the vector expressing the shRNA2-intron, the vec-
tor containing the following sequence at the BamHI-
HindIII site of the pRNA-CMV3.1-Neo vector was first
constructed: 5-GATCCTTACGCTGAGTACTTCGA
TTTCTGCCCTCTAAATAGCAATATTTTTCACGT
GTGAAATCGAAGTACTCAGCGTAAGTTTTTTG-
GAA-3. This vector (preshRNA2-intron) was digested
with Pmll, and the PCR-amplified intron was ligated as
well in the shRNA1-intron. To construct the shRNA1-
intron-Apt vector, the following oligonucleotides were
annealed and ligated into the pVAX1-intron digested
with AhdIl and EcoNIL: 5-TAGTCTGTGAACTGCATC
CATATCCTGCCAAGGGCATCAAGACGATGCTGG-
TATGACTTGGCTGCGTGGTTAGGACCATGTCCGT
CAGCTTATTACCATACCCTTT-3" and 5’-CAAAGG
GTATGGTAATAAGCTGACGGACATGGTCCTAAC-
CACGCAGCCAA GTCATACCAGCATCGTCTTGAT
GCCCTTGGCAGGATATGGATGCAGTTCACAGAC-
TAA-3'. The resulting vector was PCR-amplified with
the following primers then ligated with the preshRNA1-
intron digested with Pmll: forward primer: 5-TGGA
GGGAAAAGTTATCAGG C-3 and reverse primer: 5'-
GAGTACTCCAAAACTAATCAATATACT-3". The
GL851 and GL155 vectors were constructed by inserting
the annealed oligonucleotide into the Pmel site of the
psiCHECK-2 Vector (Promega). All subcloned
sequences were verified by DNA sequencing.
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Cell culture and transfections

Cos cells and 293T cells were maintained in Dulbecco’s
modified Eagle’s medium (DMEM) supplemented with
10% fetal bovine serum, 100 U/ml penicillin, and 100
pg/ml streptomycin in a 5% CO2-humidified incubator
at 37°C. One day before transfection, the cells were tryp-
sinized and seeded into 24-well plates at a density of 2-3
x 10* cells/well. Cotransfection was performed using
FuGENEG6 (Roche Diagnostics) according to the manu-
facturer’s instructions. Specifically, 1 ng of pGL3-Con-
trol vector (Promega) and 5 ng of phRG-TK vector
(Promega) for Cos cells or 5 ng of pGL3-Control vector
and 1 ng of phRG-TK vector for 293T cells were
cotransfected with 400 ng of the shRNA vector, shRNA-
intron vector, or shRNA-intron-Apt vector using 1 pl of
the FuGENEG reagent per well. For the theophylline or
caffeine treatment, the cells were incubated in a 5%
CO2-humidified incubator at 37°C in DMEM supple-
mented with 10 mM theophylline or caffeine beginning
24 h after transfection. After 6 h, the medium contain-
ing theophylline or caffeine was again exchanged to nor-
mal DMEM. After incubation with cell culture medium
for the indicated times, the cells were lysed in a passive
lysis buffer (Promega). Firefly and Renilla luciferase sig-
nals were measured using the Dual-Luciferase® Reporter
Assay System (Promega).

Determination of cell number and viability

A total of 2 x 10* cells/well of Cos cells and 3 x 10*
cells/well of 293T cells were seeded into 24-well plates.
After incubation for 24 h, 400 ng of the vector,
shRNA1, shRNAI-intron, sShRNA2 or shRNA2-intron
was transfected. At the same time, the cells were also
transfected with the pRNA-CMV3.1-Neo empty vector
as a control. After incubation for 48 h and 60 h, the
total cell number and viability were determined using a
standard trypan blue membrane permeability assay. Live
and dead cells were stained with trypan blue, the total
cell numbers were counted on a conventional hemocyt-
ometer, and the percent viability was calculated as the
number of live cells/total number of cells x 100. The
total cell number and the viability of the cells trans-
fected with the control vector were set at 100%. The
number and viability of each type of transfected cell are
expressed as the mean + S.D. of the percent of control.

RNA extraction, reverse transcription (RT), and real-time
qPCR

Total RNA samples from Cos cells and 293T cells were
obtained 48 h after transfection using the mirVana
miRNA Isolation Kit (Ambion) according to the manu-
facturer’s protocol. For detection of siRNAs, stem-loop
RT primers were designed, and pulsed reverse transcrip-
tion was performed [41,42]. The stem-loop RT primer
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for the shRNA1 and shRNA1-intron had the following
sequence: 5-GTCGTATCCAGTGCAGGGTCCGAG
GTATTCGCACTGGATACG ACGCTGCT-3". The
sequence for the shRNA2 and shRNA2-intron stem-
loop RT primer was as follows: 5-GTCGTATCCAGTG-
CAGGGTCCGAGGTATTCGCACTGGATACGA-
CAACTT A-3. For detection of the intron and G3PDH
mRNA, cDNAs were synthesized with the ReverTra Ace
qPCR RT Kit (TOYOBO). qPCR analysis was performed
using specific primer pairs and the THUNDERBIRD
qPCR Mix (TOYOBO). The results were evaluated by
the comparative threshold cycle method [43]. The fol-
lowing primers were used: for the siRNAs produced
from the shRNA1 and shRNA1l-intron vectors, forward
primer: 5-TCGCGAATAGG GTTGGCACC-3’ and
reverse primer: 5-GTGCAGGGTCCGAGGT-3’; for the
siRNAs produced from the shRNA2 and shRNA2-intron
vectors, forward primer: 5-TCGCGTCGAAG TACT-
CAGCG-3’ and reverse primer: 5-GTGCAGGGTCC-
GAGGT-3’; for the intron, forward primer: 5-GCCTT
GCAAAGGGTATGGTAAT-3 and reverse primer: 5'-
TAGGACTTGGCTG CGTGGTT-3’; and for G3PDH,
forward primer: 5~ AACAGCGACACCCACTCCTC-3’
and reverse primer: 5-TCCACCACCCTGTTGCTGTA-
3’. The end-point PCR products were electrophoresed
on a 15% polyacrylamide gel and were stained in ethi-
dium bromide.
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