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Abstract

ie. SDA and GLA (18:3n-6, y-linolenic acid).

GLA and SDA fatty acids in appreciable quantities.

Background: The therapeutic and health promoting role of highly unsaturated fatty acids (HUFAs) from fish, ie.
eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3) are well known. These same
benefits may however be shared by some of their precursors, the polyunsaturated fatty acids (PUFAs), such as
stearidonic acid (SDA, 18:4 n-3). In order to obtain alternative sources for the large-scale production of PUFAs, new
searches are being conducted focusing on higher plants oils which can contain these n-3 and n-6 C18 precursors,

Results: The establishment of the novel Echium acanthocarpum hairy root cultures represents a powerful tool in
order to research the accumulation and metabolism of fatty acids (FAs) in a plant particularly rich in GLA and SDA.
Furthermore, this study constitutes the first example of a Boraginaceae species hairy root induction and
establishment for FA studies and production. The dominant PUFAs, 18:2n-6 (LA, linoleic acid) and 18:3n-6 (GLA),
accounted for about 50% of total FAs obtained, while the n-3 PUFAs, 18:3n-3 (ALA, a-linolenic acid) and 18:4n-3
(SDA), represented approximately 5% of the total. Production of FAs did not parallel hairy root growth, and the
optimal productivity was always associated with the highest biomass density during the culture period. Assuming a
compromise between FA production and hairy root biomass, it was determined that sampling times 4 and 5 gave
the most useful FA yields. Total lipid amounts were in general comparable between the different hairy root lines
(29.75 and 60.95 mg/g DW), with the major lipid classes being triacylglycerols. The FAs were chiefly stored in the
hairy roots with very minute amounts being released into the liquid nutrient medium.

Conclusions: The novel results presented here show the utility and high potential of E. acanthocarpum hairy roots.
They are capable of biosynthesizing and accumulating a large range of polyunsaturated FAs, including the target

Background

Stearidonic acid (SDA, 18:4n-3) and gammalinolenic
acid (GLA, 18:3n-6) are scarce polyunsaturated fatty
acids (PUFAs). They act as precursors for a range of
physiologically essential highly unsaturated fatty acids
(HUFAsS), including eicosapentaenoic acid (EPA), doco-
sahexaenoic acid (DHA) and arachidonic acid (ARA,
20:4n-6). EPA and DHA function as major animal nutri-
ents, as well as being part of the cytoplasmatic mem-
brane building elements that regulate membrane
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functions. Furthermore, EPA and ARA together with
elongation products of SDA and GLA, are precursors of
other important molecules including the eicosanoids [1].
In addition, HUFAs are of interest because of their
important roles in human health and nutrition [2-7].

It is known that organisms able to synthesize HUFAs
follow two different pathways; the more common aero-
bic pathway utilizes desaturase and elongase enzymes,
while the anaerobic pathway is catalyzed by polyketide
synthases [8]. The former consists of consecutive elon-
gation and desaturation cycles of the carbon chain.
According to the order in which desaturation and/or
elongation proceed, several pathway variations exist.
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There exists another unusual pathway described in
mammals and fish, i.e. the Sprecher’s pathway. This
route is characterized by a lack of desaturation reaction
at A4-position, but successive A5 and A6-desaturations
of a-linolenic acid (ALA, 18:3n-3), generating a six dou-
ble bond C24 intermediate which is finally shortened by
peroxisomal B-oxidation eventually forming DHA [9].

Mammals, including humans, are poor convertors of
the precursors linoleic acid (LA; 18:2n-6) and ALA into
HUFAs; therefore, HUFAs must be taken up directly as
components of the diet [10]. The current main dietary
source of n-3 HUFAs is fish and other seafood. The FAs
are initially produced by a plethora of marine microor-
ganisms, which proceed through the food chain and end
up in fish [11]. Unfortunately, the increased demand for
fish and fish oils has led to depletion of fish stocks world-
wide [12]. Because of this, fish farming has developed
into a highly productive and efficient industry [13]. Thus,
aquaculture and particularly fish production might be the
future source of n-3 HUFAs, although it also depends on
extractive fishing for producing fish fodder.

In order to obtain a more suitable source for the
large-scale production of PUFAs, searches for new
sources of these compounds have been conducted [14].
One potential solution is to seek alternative sources of
higher plant oils which contain the health promoting
C18 precursors, SDA and GLA. It is known however
that very few plant species, mainly Boraginaceae, Ona-
graceae, Saxifragaceae and Scrophulariaceae families
[15] have the biosynthetic capacity to produce and accu-
mulate A6-desaturated FAs predominantly in the form
of the n-6 GLA, and in the case of the n-3 series, SDA.
The latter in particular is a very rare FA found in few
higher plant oils offering greater interest due to its
known medicinal properties. Interestingly, SDA has not
been qualified as equivalent to EPA and DHA as an
essential FA, unlike EPA and DHA, although it has been
shown to possess similar beneficial health properties as
the longer chain n-3 HUFAs [16-18].

Consequently, we focused our attention on the
Echium genus (Boraginaceae) as a potential source of
higher plant oil. The Echium genus comprises 60 species
distributed in various continents, in the Canary Islands
it has a large biodiversity with 23 endemic species hav-
ing been described [19]. They constitute one of the lar-
gest plant sources of SDA and GLA [20,21], as well as
offering an attractive n-3/n-6 balance.

Other reported benefits of a SDA and/or GLA rich FA
profile include their use to control the production of
proinflammatory eicosanoids derived from ARA
[18,22,23], and to avoid excessive fatty tissue deposition
[24-27].

It is well known that secondary metabolite production
in plants is strongly influenced by meteorological factors
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[28]; therefore, in vitro plant cultures, especially, the
highly differentiated hairy root cultures, obtained after
guided infection with Agrobacterium rhizogenes, offer an
attractive alternative for the stable production and study
of natural products including PUFAs [29-31].

To the best of our knowledge, the present study is the
first example of the establishment of hairy roots for the
study and production of PUFAs, and the first account of
a Boraginaceae species hairy root culture. Here, a
detailed study on the establishment of E. acanthocar-
pum hairy root cultures and their ability to synthesize
and accumulate PUFAs is reported, proving to be a sui-
table system for the production of n-3 and n-6 healthy
PUFAs.

Results

Characterization of hairy root cultures and growth

The two well-established transformed root cultures (HR
E1.5 and HR E1.16) were clones showing a medium
growth rate and high stability with regards to their FAs
production. Morphologically the roots of line HR E1.5
were much thicker, shorter and less branched than those
of HR E1.16. Both, slight callus and hyper-hydrated tissue
formation were occasionally observed in the HR E1.5
hairy roots (Additional file 1, Figure S1a, b, c,). Despite
having the insertion of the npt-II gene, which provides
resistance to kanamycin (Kn), as determined by PCR
(Additional file 1, Figure S1d) only HR E1.16 was able to
grow in the presence of the antibiotic; regardless of this,
the two hairy root lines were investigated.

The growth and FA production were monitored for
either 35, 50 or 100 days. Line HR E1.5 grew faster and
reached its maximum fresh weight (FW) after 30 days
(1.51 g), although statistical differences were not
detected from day 20 onwards (Figure 1). On the other
hand, HR E1.16 line grown in the presence or absence
of kanamycin, generated similar biomasses to HR E1.5
(2.14 and 1.47 g FW, respectively), but grew for longer
time periods i.e. 100 and 50 days respectively (Figure 1).

As expected, statistical analysis revealed significant dif-
ferences between FW values obtained at different sam-
pling points in each culture, describing a typical growth
profile i.e. latent phase, exponential phase and stationary
phase (Figure 1). Nonetheless, no significant differences
were observed when comparing the maximum values of
FW of the three cultures.

Fatty acid profiles. Time course of lipid and PUFA
production

Since very little is known about lipid and FA production
by transformed hairy root cultures, a preliminary study
of the whole lipid composition was conducted. Regard-
ing total lipid amounts (TL), no statistical differences
were detected among triplicates of different samplings
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Figure 1 Growth of the two hairy root lines. Growth of hairy
roots along each experimental period. Each value is the mean +
standard deviation of three replicates expressed in grams. Kn =
kanamycin. The different sampling point days are specified in the
Method section.

-

within the same hairy root line. Additionally, TL
extracted from the two hairy root lines (HR E1.5 and
HR E1.16) gave comparable results (Table 1; Additional
file 1, Tables S1, S2, S3, S4, S5), HR E1.5 gave values
between 31.38 and 60.95 mg TL/g DW, while HR E1.16
gave values between 29.75 and 45.29 mg TL/g DW. The
major lipid classes were triacylglycerols, 22.02% and
13.77% for HR E1.5 and HREI.16, respectively, and ster-
ols ester (19.88% in HR E1.5 and 14.70% in HREI.16)
(data not shown [32]).

Concerning FAs production in E. acanthocarpum hairy
roots, these compounds were chiefly stored and present
in the hairy roots, and very minute amounts were
released into the liquid nutrient medium. Furthermore,
hairy roots were able to accumulate important amounts
of FAs, in particular the saturated palmitic acid (16:0)
and stearic acid (18:0), together with lower amounts of
20:0, 22:0 and 24:0 (Figures 2, 3 and 4, Table 1). Unsatu-
rated FAs including oleic acid (18:1n-9), 18:1n-7, 18:2n-6,
18:3n-3, as well as the A6-desaturated target FAs, y-lino-
lenic acid (18:3n-6, GLA) and stearidonic acid (18:4n-3,
SDA), were also observed (Figures 2, 3 and 4, Table 1).

In both hairy root lines, the dominant PUFAs were
18:2n-6 and 18:3n-6 in descending order, which
accounted for about 50% of total FAs (Figures 2, 3 and
4, Table 1). The n-3 PUFAs, 18:3n-3 and 18:4n-3,
appeared in lower amounts, representing approximately
5% of total FAs. Other FAs were also identified and
quantified. The saturated FAs (16:0, 18:0, 20:0 and 24:0)
were extracted in relatively large amounts, i.e. 32-38% of
total FAs; whereas, monoenes only represented about 5-
9% of total FAs (Table 1; Additional file 1, Tables S1,
S2, S3, S4, S5).
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Effect of hairy root cell line and culture time on fatty acid
production - HR E1.5

The final FA profiles obtained from HR E1.5 hairy roots,
after 35 days of culture, were very similar (Figure 2,
Table 1; Additional file 1, Tables S1, S2, S3, S4, S5). Sta-
tistical analyses over the time-course of the experiment
showed temporal changes in the amounts of individual
FA present in HR E1.5. The percentage of 18:0 for exam-
ple was slightly higher in sampling point 1 (5 d. of cul-
ture) compared to other time points while 18:1n-9 was
slightly larger in sampling point 5 (25 d. of culture) (Fig-
ure 2, Table 1; Additional file 1, Tables S1, S2, S3, S4,
S5). The percentage of 18:2n-6 was found to be signifi-
cantly higher in sampling points 6 and 7 (38.13 and
38.75% of total FAs) (Additional file 1, Tables S3, S4, S5).
On the other hand, several saturated FAs such as, 14:0,
20:0, 22:0 and 24:0, reached different percentages at each
sampling, between 0.15 to 0.83% for 14:0; 0.19 to 0.41%
for 20:0; 2.06 to 2.81% for 22:0, and 1.40 to 2.08% for
24:0. (Table 1; Additional file 1, Tables S1, S2, S3, S4, S5).

The n-6 A6-Desaturation Index [GLA/(LA+GLA)]
which provides information on the proportions of n-6
FAs within the samples, was also determined for each
hairy root line. For HR E1.5, the ratio was slightly lower,
0.24 for sampling point 1 than for the rest of sampling
points (0.25-0.27) but no statistical difference was
found. Likewise, the ratios n-3 A6-Desaturation Index
[SDA/(ALA+SDA)], which provide information on the
proportions of unsaturated n-3 FAs within the samples,
and the DBI (Double Bond Index), which establishes the
richness of unsaturated FAs within the samples, were
also determined for each hairy root line. Again, no sta-
tistical differences were observed. (Table 1, Additional
file 1, Tables S4-S5).

In this report, FA production studies were carried out
taking into consideration both the percentage of each
FA, as well as the absolute amounts of these. In relation
to absolute values, 18:2n-6 (LA) was the most abundant
FA, with over 3 mg/g DW at sampling points 1 and 2,
followed by 16:0 with 2.57 mg/g DW at the same sam-
pling points, and 18:3n-6 with 1.06 mg/g DW at sam-
pling point 5 (Figure 2). The n-3 FAs were generally
detected in lower amounts 18:3n-3 with 0.38 mg/g DW,
and 18:4 n-3 with 0.08 mg/g DW at sampling point 5
(Figure 2).

Effect of hairy root cell line and culture time on fatty acid
production - HR E1.16
Similar results were observed for the HR E1.16 hairy
root cultures, the FA profiles at the end of the experi-
mental period (50 or 100 days of culture), being only
marginally different from those observed from HR E1.5.
Again some temporal changes were noted. For exam-
ple, in cultures without added Kn, 18:3n-6 (GLA) gave
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Table 1 Sampling points 4 and 5

Sampling point 4 HR E1.5 (20 days) HR E1.16 (28 days) HR E1.16 with Kn (56 days)
Total Lipid content (mg/g DW) 3341 + 3.66 41.55 + 4.64 27.13 + 341
14:0 022 + 002 043 + 0.05 043 + 0.04
16:0 2653 + 1.73 2391 + 1.49 22.56 + 067
18:0 2.92 £ 030 4.10 £ 028 4.02 £ 027
18:1n-9 456 £ 092 553 £ 1.00 561 £072
18:1 n-7 1.53 £ 0.05 1.19 £ 0.09 1.03 £ 0.17
18:2n-6 (LA) 36.82 + 0.99 4139 £ 0.95 40.16 £ 1.55
18:3n-6 (GLA) 13.88 + 0.78 1048 + 0.27 10.55 + 0.53
18:3n-3 (ALA) 424 £ 020 354 £ 025 461 £ 1.75
18:4n-3 (SDA) 1.26 £ 045 0.68 + 0.00 084 + 030
20:0 029 + 0.06 040 + 0.08 037 £ 0.05
22:0 245 £ 031 258 £ 036 250 = 032
24:.0 1.94 + 049 249 + 028 2.72 +0.77
Unknown 236 + 035 2.64 + 0.08 265+ 0.15
Fatty acids (% of total lipid content) 22.17 £ 423 23.96 + 4.02 1812 + 243
GLA and SDA 15.14 + 1.23 11.16 £ 027 11.39 + 0.83
Saturated fatty acids 34.36 £ 1.67 3390 £ 1.92 32.61 £ 0.99
Monoene fatty acids 7.07 £ 0.73 737 £ 082 717 £ 087
n-9 533 + 066 6.04 + 1.1 6.14 +0.79
n-6 50.70 + 1.66 51.87 £ 097 50.72 + 1.06
n-3 550 £ 053 422 + 025 545 £ 2.05
n-3/n-6 0.17 £ 001 0.08 £ 0.00 011 £ 0.04
n-6 A6-Desaturation Index 027 + 001 020 + 001 021 + 001
n-3 A6-Desaturation Index 023 + 0.06 0.16 £ 0.01 0.15 £ 0.00
DBI 1.40 £ 0.06 1.35 + 0.03 1.36 + 0.04
Sampling point 5 HR E15 HR E1.16 HR E1.16 with Kn
(25 days) (35 days) (70 days)
Total Lipid content (mg/g DW) 35.00 + 5.40 29.75 + 1.63 3434 + 525
14:0 023 + 002 027 + 0.06 038 + 0.08
16:0 2504 + 1.14 23.63 + 045 2523 + 027
18:0 2.55 £ 021 4.06 + 021 393 £0.18
18:1n-9 6.77 + 1.10 6.12 £ 044 401 £ 024
18:1 n-7 1.55 £ 0.16 086 + 023 0.99 + 005
18:2n-6 (LA) 34.55 £ 1.97 42.89 £ 1.31 38.05 £ 0.55
18:3n-6 (GLA) 11.77 + 1.63 10.05 + 0.40 11.95 £ 0.31
18:3n-3 (ALA) 422 £ 034 3.69 + 023 512 £026
18:4n-3 (SDA) 088 + 021 0.58 £ 0.03 1.09 = 0.22
20:0 027 + 0.04 042 £ 002 046 + 0.02
22:0 251 £035 259 £0.19 2.76 £ 0.09
24:0 2.08 + 0.60 225 + 045 269 + 0.24
Unknown 6.08 £ 2.68 2.03 + 044 287 +0.17
Fatty acids (% of total lipid content) 2453 + 4.16 2686 + 3.29 2727 £ 9.10
GLA and SDA 12.65 + 1.84 10.63 + 043 13.04 £ 0.53
Saturated fatty acids 3268 £ 2.21 3322 £ 1.21 3545 £ 007
Monoene fatty acids 954 + 1,29 753 + 0.55 548 + 0.15
n-9 759 £ 1.15 6.66 + 0.50 4.38 + 0.08
n-6 46.32 + 3.60 52.94 £ 1.67 50.00 + 047
n-3 509 £ 053 428 £ 023 6.21 + 041
n-3/n-6 0.17 £ 001 0.08 £ 0.00 0.12 £ 0.01
n-6 A6-Desaturation Index 025 + 002 0.19 + 0.00 024 + 001
n-3 A6-Desaturation Index 0.17 £ 0.02 0.14 + 0.01 0.17 £ 0.03
DBI 1.30 + 0.08 1.37 + 0.04 1.37 + 0.00

Total lipid content and general fatty acid profiles (%) of two cell lines of Echium acanthocarpum hairy roots at sampling points 4 and 5 cultured in B5 nutrient
liquid medium at 25°C. n-6 and n-3 A6-Desaturation Indexes were calculated as 18:3n-6/(18:3n-6+18:2n-6) and 18:4n-3/(18:4n-3+18:3n-3), respectively. Double
Bond Index was calculated as [(% 18:1) +2%(% 18:2) +3*(% 18:3) +4%(18:4)1/100. Values are presented as the average of three replicates (data of samplings 4&5
are presented here, all remaining data sets are given in the Additional file 1. (The different sampling point days are also specified in the Method section).
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Figure 2 Fatty acid profiles of line HR E1.5. Amounts of different fatty acids obtained from HR E1.5 Echium acanthocarpum hairy roots cultures
during a 35-day period. Each value is the mean + standard deviation of three replicates expressed as micrograms per gram of DW. The different
sampling point days are specified in the Method section.
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Figure 4 Fatty acid profiles of line HR E1.16 with kanamycin. Amounts of different fatty acids obtained from HR E1.16 Echium
acanthocarpum hairy roots cultured in kanamycin presence during a 100-day period. Each value is the mean + standard deviation of three
replicates expressed as micrograms per gram of DW. The different sampling point days are specified in the Method section.
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peak percentages at sampling points 1-3 and 7 with sig-
nificantly lower percentages being observed at points 4
and 5. This was also reflected in a statistically lower n-6
A6-Desaturation Index (p < 0.05) at these same time
points (values of 0.19-0.20).
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Figure 5 Double Bond Index. Double Bond Indexes (DBI) of each
culture were calculated as [(% 18:1) +2%(% 18:2) +3*(% 18:3) +4*
(18:4)1/100. Each value is the mean + standard deviation of three
replicates. The different sampling point days are specified in the
Method section.

Apart from this, n-3 PUFAs including ALA (18:3n-3)
and SDA (18:4n-3) levels were clearly lower than n-6
PUFAs, with the highest ALA percentages occurring at
sampling point 4 (3.69% of total FAs), although no sta-
tistical differences were detected throughout the experi-
ment. In a similar fashion, SDA (18:4n-3) levels were
slightly elevated at sampling point 4 (0.58% of total
FAs), but no significant differences were detected, the
mean values being 0.45% of total FAs throughout the
experiment.

The n-3 A6-Desaturation Index or [SDA/(ALA+SDA)]
ratio, was lower at sampling 6, with its maximum values
being achieved at sampling 4 (0.16). Only a few statisti-
cal differences were detected in saturated FAs. FAs 22:0
and 24:0 were statistically lower at sampling point 7
(Additional file 1, Table S5) while the monoenes 18:1n-
7 and 18:1 n-9, and the saturated FAs 16:0, 18:0, 20:0
were statistically similar at all sampling points. Similarly,
no statistical differences were detected in the DBI Index
throughout samplings 2-6 (values 1.35-1.37). In refer-
ence to absolute FA amounts, 18:2n-6 was again the
most abundant, yielding a maximum of 5.40 mg/g DW
(sampling point 2) and a minimum of 3.52 mg/g DW at
sampling point 1. This was followed by 16:0 (3.91 mg/g
DW at sampling 2 and 1.91 mg/g DW, at sampling
point 5); and 18:3n-6, which displayed a range between
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0.82 mg/g DW (sampling point 5) and 1.50 mg/g DW
(sampling points 2). As expected, the values for n-3 FAs
were lower, with maximum quantities achieved at sam-
pling point 2 for 18:3n-3 (0.47 mg/g DW), and sampling
point 4 for 18:4n-3 (0.07 mg/g DW) (Figure 3).

When the same hairy root line was cultured in the
presence of kanamycin, the FA profile was characterized
by a particular abundance of 18:2n-6 (38-40% of total
FAs), and 16:0 (20-25% of total FAs) showing statistical
differences at samplings points 5-7 (p < 0.05). GLA was
also abundant in the pool, and accounted for up to
12.02% of total FAs (sampling point 7). Similarly to the
other two hairy root cultures, the percentages of 18:3n-3
and 18:4n-3 were lower than their n-6 cousins (5.12%,
and 1.09% of total FAs respectively, sampling 5) (Table
1). The maximum value for the monoene 18:1n-9 was
observed at sampling 1 and 2 (8.26 and 7.2%, respec-
tively) while the level of the other monoene 18:1n-7, as
well as the saturated FAs 14:0, 18:0, 20:0 and 22:0 were
constant throughout the experiments (Additional file 1,
Tables S1, S2, S3, S4, S5).

According to the preceding data, the ratios [GLA/(LA
+GLA)] and [SDA/(ALA+SDA)] reached their maximum
values at sampling point 5 (0.24 and 0.17, respectively)
(p < 0.05), indicating a maximum A6-desaturation activ-
ity. In reference to DBI (1.37), no statistical differences
were detected throughout the course of the experiments
(Figure 5).
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The absolute amounts of FAs generated from the HR
E1.16 line with kanamycin maintained the same order as
the previous experiments with 18:2n-6 (LA) being the
most abundant, reaching 3.55 mg/g DW at sampling
point 5, followed by 16:0 (2.35 mg/g DW at sampling
7), and 18:3n-6 (1.11 mg/g DW at sampling point 5)
(Figure 4). As expected the n-3 FAs were observed in
lower amounts than the n-6 FAs, reaching maximum
values of 0.47 mg/g DW for 18:3n-3 and 0.10 mg/g DW
for 18:4n-3 at sampling point 5 (Figure 4).

Principal component analysis (PCA) was also con-
ducted in order to reduce the dimensionality of the FA
variables, and to visualize this problem from a two-
dimensional point of view. The percentage of each FA
variable was considered generating two principal compo-
nents, PC1 and PC2, with a cumulative explained var-
iance of 54.44%. PC1 component (cumulative explained
variance = 36.29%) was positively correlated with certain
saturated FAs (14:0, 18:0, 20:0, 22:0, 24:0) and strongly
negatively correlated with 16:0, 18:1n-7 and 18:3n-6 (Fig-
ure 6). Accordingly, the PC1 component correlated with
the level of saturation, indicating that a higher value
would correspond to more saturated FA profile. Further-
more, PC2 (cumulative explained variance = 18.14%),
was positively correlated with 18:3n-3 and 18:4n-3, and
negatively related with 18:2n-6 (Figure 6). As a result, the
new variable PC2 was clearly associated with FAs of the
n-3 series, and in general, with polyunsaturated FAs.

1,0
0,5
o™~
€ K_18_1_n_9
a K_16_0
S o0 & K_22 0
2w K_18__3.n6 (o] de_u
£ K_18_1_n_7 o
o o K_24_o
o
-0.5-
1,04
Ll | 1 1
1,0 -05 0,0 0,5 10

Component 1

Figure 6 Factor loading plots. Factor loadings plots for the percentages of fatty acids.
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PCA analysis of absolute amounts of FAs showed simi-
lar results, i.e. the same correlations than in the first ana-
lysis. This is probably due to the fact that no significant
differences were detected for TL (p = 0.05), fresh weight
(p = 0.05) (Figure 1) or for lipid classes (data not shown).

A two-way ANOVA analysis for both components,
PC1 and PC2 was also conducted. This study showed
that the effects of the culture, sampling point, and the
interaction of the culture and sampling point, were sig-
nificant on each component (Figures 7 and 8, Additional
file 1, Table S6), with a particular emphasis on PC2,
which represents an enrichment of n-3 FAs in the
extracted oil. According to the statistical data, the aver-
age of the second component PC2 categorized by sam-
pling points was found to be strongly intensified
between sampling points 1-5 for the three cultures
(Additional file 2, Figure S1). These data were correlated
with the [SDA/(ALA+SDA)] ratio at these days (0.17-
0.21 for HR E1.5, 0.10-0.14 for HR E1.16 without kana-
mycin and 0.15-0.17 for HR E1.16 with kanamycin).
Furthermore, the averages of the PC2 component cate-
gorized by the combination of the kind of culture and
by the sampling points, appeared to be higher in HR
E1.5 and HR EI1.16 with added kanamycin (Additional
file 2, Figure S2), and correlated with the ratios [SDA/
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(ALA+SDA)] and [GLA/(LA+GLA)] recorded at these
points and in these cultures (i.e. Table 1). In general,
hairy root line HR E1.5 accumulated more n-3 desatu-
rated FAs, and less saturated ones, reflected by the PC1
component (Additional file 2, Figure S3). In addition,
HR E.16 showed similar levels of n-3 desaturated FAs
when these hairy roots were cultured in the presence of
kanamycin. Nonetheless, the levels of saturated FAs
were always higher compared to HR E1.5 line (Addi-
tional file 2, Figure S3). Therefore, the n-6 and n-3 A6-
Desaturation index were significantly higher in HR E1.5
and in HR E.16 cultured with kanamycin (p = 0.511 and
p = 0.788, respectively) (Table 1; Additional file 1,
Tables S1, S2, S3, S4, S5).

Discussion

It has been shown that the establishment of the novel E.
acanthocarpum hairy root cultures represents a power-
ful tool to aid research regarding the accumulation and
metabolism of FAs. Moreover, this is of particular inter-
est given that these plants are an unusual rich source of
GLA and SDA. The attractiveness of using transgenic
plants or cultures as green-factories for the synthesis of
high value product has been documented [33-37]. The
main objective of this work was to assess the utility of
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this new system with regards to the study of FA meta-
bolism and production. We focused on the production
of PUFAs due to their known health benefits with a par-
ticular emphasis on omega-3 stearidonic acid (SDA), a
precursor of valued HUFAs, such as EPA and DHA, and
n-6 GLA, a known modulator of eicosanoids derived
from ARA. Furthermore, SDA and GLA are particularly
valuable in view of the fact that the initial A6-desatura-
tion of their precursors ALA and LA, respectively
appears to be the rate-limiting step of the entire path-
way [38], and that very few plant species are able to
further metabolise ALA into SDA.

Although roots are generally considered structural
organs providing physical support to maintain the stabi-
lity of the plant, and appear rich in phospholipids and
sterol esters [39], they are also potent biochemical fac-
tories, able to biosynthesize and often accumulate a
myriad of bioactive secondary metabolites [33-35],
including FAs as first reported here.

Hairy roots induced by Agrobacterium rhizogenes
transformation are widely used for the study of meta-
bolic regulation and large-scale metabolic production
because, biosynthesis in hairy roots mimics or even

improves that of intact roots in the original plants, or
intact plants [35,37]. This study constitutes the first
report on the induction and establishment of a Boragi-
naceae species hairy root culture for the study of FA
production. Echium acanthocarpum, together with the
other twenty-two Canary Islands endemic Echium spe-
cies are known as FAs containing plants, the majority of
which are located in its seeds and leaves [20,21]. Never-
theless, the FAs content has never been investigated in
intact E. acanthocarpum plant roots. In this study, our
E. acanthocarpum hairy root system was found capable
of growing in an stable and amenable manner, and
more importantly, it was able to produce and accumu-
late a consistent profile of FAs including the PUFAs
18:2n-6 (LA) and 18:3n-6 (GLA).

In order to better characterize the PUFAs production
efficiency of the E. acanthocarpum hairy roots, two cell
lines (HR E1.5 and HR E1.16) were cultured under simi-
lar conditions. Independently of the hairy root line, the
most abundant FA was 18:2n-6 (LA), whose values were
between 33.57-43.54%. These values are in agreement
with previous reports using intact roots of E. asperri-
mum (30.05% of LA), and other Boraginaceae roots with
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26.1% [40]. The presence of 18:2n-6 in the seeds and
leaves of E. acanthocarpum has also been reported but
in lower amounts (Table 2)[20,21].

Furthermore, attractive amounts of n-3 unsaturated
PUFAs, i.e. ALA and SDA, have also been reported in this
study, the levels of SDA being specially interesting as it
can serve as a dietary precursor of the valued eicosapen-
taenoic acid (20:5n-3) [18]. It was noted that the increase
in total amount of PUFAs did not parallel to hairy root
growth. Maximum production appeared at the early stages
or active growth phase of each of the three cultures stu-
died. This might be explained by the increasing amount of
actively dividing meristematic root cells and, subsequently
by membrane cytoplasmatic formation [30]. However, the
optimal PUFA productivity in this hairy root system was
always associated with the highest biomass density during
the culture period; therefore, assuming a compromise
between FA production and hairy root biomass, it was
determined that sampling times 4-5 gave the most benefi-
cial FA yields (Figures 2, 3 and 4).

Furthermore, it is known that seeds are, by nature,
specialized storage organs. For example it has been

Table 2 Comparison between different fatty acids profiles
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reported that E. acanthocarpum seeds are characterized
by 15.07% of FAs (Table 2) [20], 70-80% of which are
triacylglycerol (TAG), the fraction were the FA pool is
mostly present. In addition, it has also been reported
that the chloroplast membrane is also able to accumu-
late a high percentage of lipids, known to accumulate
up to 75% of total FAs indicating the importance of the
aerial chlorophyllic organs in FA production [21,41].
Taking this into account, species of plants subjected to
a higher solar irradiation would have smaller chloroplast
membranes in their leaf cells and subsequently a lower
percentage of FA in their leaf oil. Accordingly, leaf oil
content was higher in European Echium species (mean
value 2.72% FA/weight) than in Macaronesian Echium
plants (mean value 1.52%). For the case of E. acantho-
carpum, its leaf oil value was 1.84%, and our hairy root
system yielded 0.84% (Table 2). Here the E. acanthocar-
pum hairy roots were able to accumulate FAs although
cultured in the dark which would also hinder the forma-
tion of chlorophyllic cells, thus not having a full FA pro-
duction potential of abundant chloroplast membranes.
The data of E. acanthocarpum hairy roots FAs appear

Fatty acids (%) HR E 1.5 (sampling E. asperrimum

E. acanthocarpum

E. acanthocarpum Transgenic Arabidopsis

point 4) roots [40] seeds [20] leaves[21] seeds[45]
16:0 and 16:1-7 2653 2133 6.13 12.81 87
18:0 2.92 2.99 3.90 323 2.9
18:1n-9 4.56 578 11.49 7.62 14.4
18:1n-7 1.53 0.46 - - -
18:2n-6 (LA) 36.82 30.05 19.26 14.30 273
18:3n-6 (GLA) 13.88 822 2451 1.88 85
18:3n-3 (ALA) 4.24 9.98 24.23 932 13.7
18:4n-3 (SDA) 1.26 340 745 1.45 2.6
20 0.29 1.49 0.82 221 14.1
2 245 2.40 021 1.34 -
24 2.08 032 0.15 1.84 -
Fatty acids (% of 0.84 053 15.07 1.68 1.40
weight)
GLA and SDA 15.14 11.62 31.96 333 11.1
Saturated fatty 3436 28.73 9.93 2143 133
acids
Monoene fatty 7.07 6.36 12.76 7.62 26.8
acids
n-9 533 59 12.40 7.62 14.4
n-6 50.70 3827 43.77 16.18 358
n-3 550 13.38 31.68 10.77 16.3
n-3/n-6 0.11 035 0.72 0.66 045
n-6 A6-Desaturation 027 021 0.55 0.11 023
Index
n-3 A6-Desaturation 023 0.25 0.76 0.13 0.15

Index

Comparison of fatty acids profiles (%) of HR E1.5 hairy roots with Echium asperrimum roots, E. acanthocarpum seeds and leaves, and transgenic Arabidopsis seeds
expressing the E. plantagineum A6-desaturase gene. n-6 and n-3 A6-Desaturation Indexes were calculated as 18:3n-6/(18:3n-6+18:2n-6) and 18:4n-3/(18:4n-3
+18:3n-3) respectively. Double Bond Indexes (DBI) were calculated as [(% 18:1) +2*(% 18:2) +3%*(% 18:3) +4%(18:4)1/100. Numbers within brackets indicate

reference number.
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to be in agreement with the FAs content reported in E.
asperrimum plant roots although showing lower values
in the intact roots of this species (0.54%, Table 2) [40].

Although it is generally accepted that seed represents
the best source of GLA [42,43], attractive amounts of
FAs have been reported in other plant organs such as
leaves [20,40,44]. The A6-desaturated 18:3n-6 was parti-
cularly abundant in the hairy roots, especially in HR
E1.5, with 13.88%, after only 20 days of culture (sam-
pling point 4). This is a significant percentage, especially
when compared to other natural sources of this FA,
such as the Ribes sp. seeds (19%) [43] or the Echium sp.
seeds (i.e. 26.31% of total FA in E. callithyrsum) [20].
The amount of GLA, as a percentage of the total FA
content in E. acanthocarpum seeds, was higher than in
our hairy roots, correlating with the n-6 A6-Desatura-
tion Index (Table 2). Nonetheless, the high relative per-
centage of GLA accumulated by HR E1.5 is comparable
to the values reported for E. acanthocarpum leaves [21],
E. asperrimum roots [40], and even Arabidopsis seeds
overexpressing a E. plantagineum A6-desaturase gene
[45] (Table 2).

Although the n-3 PUFAs were clearly in lower propor-
tions than the n-6 series FAs, ALA and SDA constituted
a significant proportion of the total percentage of FA
present in both the HRE1.5 and HR E1.16 in kanamycin
presence (4-6% and 0.76-1.33% of total FA, respectively).
Metabolically, the presence of low levels of ALA in
these hairy roots should lead to the reduced production
of SDA, compared to the larger production of GLA,
since the levels of the n-3 precursor of the same A6-
desaturase enzyme was not as abundant as the n-6 pre-
cursor. This could be supported by the n-3 A6-Desa-
turation Index, which was comparable to the examples
reviewed in Table 2, except for seeds.

In order to reduce the dimensionality of this multi-
variate problem and investigate a possible correlation
between FA profiles, the kind of hairy root line and the
different sampling points, a PCA analysis with the
obtained FA data was conducted. Two components
were extracted with a cumulative explained variance of
54.44%. The PC2 was positively correlated with the n-3
FA variables (Figure 6).

Regarding the FA profiles, the majority of the results
were similar, showing no statistical differences. The HR
E1.16 cultured without added kanamycin did however
show lower n-3 FA amounts and lower A6-desaturation
activity (Figure 7 and Additional file 2, Figure S2). This
could be attributed to the different phenotypes of the
roots and the selection pressured ejected by the antibio-
tic presence, although all hairy roots showed the pre-
sence of the npt-II gene as determined by PCR
(Additional file 1, Figure S1d). Furthermore, it has pre-
viously been shown that in soybean roots cultured at
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22°C, DBI values of lipids increased with time and that
other ratios (mol% 18:2/18:3 and RI = [%(18:2+18:3)]/%
16:0) significantly declined between 7 and 26 days [46],
in agreement with the PC2 component data (Figure 7).
Similar trends were observed in the middle stages of the
same soybean roots but not at the older stages.

Conclusions

We have demonstrated that hairy roots of E. acantho-
carpum are able to biosynthesize and accumulate a large
and consistent range of polyunsaturated FAs, including
the target GLA and SDA fatty acids, although the
amounts of GLA, for example, were less than those
described from seeds of the intact plant they are of
significance.

Current studies are being undertaken to further opti-
mize and establish a more productive n-3 PUFA E.
acanthocarpum hairy root system, by varying other cul-
ture conditions i.e. increasing the osmotic pressure of
the liquid nutrient medium and lowering the culture
temperature (in an attempt to mimic the conditions of
the deep sea environment), and changing the carbon
source from sucrose to glucose. Furthermore, transgenic
E. acanthocarpum hairy roots over-expressing a A6-
desaturase gene are also being established in order to
further manipulate the biosynthetic route aiming to
boost SDA vyields.

Methods

Plant Material

Seeds of E. acanthocarpum, donated by Jardin Botdnico
Viera y Clavijo (Gran Canaria, Spain), were surface steri-
lized by a brief immersion in 70% EtOH, followed by
submersion in an aqueous solution of 5% (v/v) of com-
mercial bleach for 25 min with gentle hand agitation.
Finally, they were washed 5 times with sterile distilled
water.

Surface sterilized seeds were then allowed to germi-
nate in vitro on a solid B5 [47] medium, supplemented
with 3% sucrose, 3-4 mg/L GA3 (gibberelic acid), and
solidified with 0.7% agar, with the pH adjusted to 6.0
prior to autoclaving, contained in Petri dishes (90 mm
diameter), and cultured in the dark until beginning of
germination. Following germination, the plants were
transferred to the same solid nutrient medium without
the addition of GA3, contained in translucent glass jars
covered with a lid (175 mL capacity, Sigma-Aldrich,
MO, US), which were placed under light conditions (16
h photoperiod and irradiance of 35 mmol m?s™* supplied
by cool-white fluorescent tubes) and a temperature of
25 + 2°C to allow further plant growth.

In vitro germinated 50-60 day old plants were
employed for guided infection with Agrobacterium rhi-
zogenes strain LBA1334 harbouring a pBIN19-gus intron
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plasmid by repeatedly stabbing the internodal stem areas
with a fine needle containing bacteria [48]. Infected
plants were returned to the same culture vessel until
hairy roots emerged. Hairy roots of 3-4 mm in length
that developed after 25-30 days were aseptically excised
from the infected stems, and transferred to a liquid
medium as above but without agar, containing the anti-
biotic cefotaxime (100 mg/L), as well as 1% of the anti-
oxidant polyvinylpyrrolidone (PVP) for several
subcultures. Finally, actively growing bacterium-free
hairy roots were cut into small segments and routinely
cultured and refreshed in Erlenmeyer flasks (250 mL),
containing 30 mL of sterile liquid B5 medium supple-
mented with 3% sucrose and 1% of PVP, sealed with a
double layer of aluminium foil, and placed on an orbital
shaker at 95 rpm in the dark at 25 + 2°C.

For culture growth, fatty acid production and analysis,
three hairy root cultures of the established two cell lines
were investigated, i.e. hairy root line HR E1.5 grown in
the quoted B5 liquid medium and conditions cultured
for 35 days (sampled every 5 days); hairy root line HR
E1.16 cultured for 50 days (sampled every 7 days), and
hairy root line HR E1.16 cultured in the presence of
kanamycin (30 mg/L) for 100 days (sampled every 14
days). In order to cover the entire growth period for
each cell line, sampling times were different since the
kinetic of growth differed due mainly to the cell line
and the addition of kanamycin into the nutrient
medium.

Lipid extraction

Hairy roots cultures were separated from the liquid
nutrient medium by vacuum filtration, after its pH was
measured. The roots were then weighed and lyophilised
at -80°C for 24 h using a freeze-dryer (Christ Alpha 2-4,
Osterode, Germany). Freeze-dried samples were sepa-
rately powdered using a mortar and pestle with liquid
nitrogen. After homogenisation, total lipid of the sam-
ples was extracted following the method previously
described [49,32].

Transesterification of lipids
Total lipid aliquots (2 mg) were subjected to acid cata-
lyzed transesterification by dissolving the sample in 1
mL toluene, employed to ensure that the neutral lipids
got properly dissolved, plus 2 mL of a mixture of
MeOH/1% H,SO,, and incubated in a capped glass test
tube at 50°C for 16 h [50]. Prior to transmethylation,
heneicosaenoic acid (21:0) was added to the lipid
extracts as internal standard (2.5% of the total lipid ana-
lysed, 50 pg).

Transesterification was followed by the addition of 2
mL of an aqueous solution of K,CO3 (2% w/v) and 5
mL of hexane/ethyl ether (1:1, v/v), plus 0.01% butylated
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hydroxytoluene (BHT, w/v) followed by strong agitation.
The mixture was centrifuged at 1500 rpm (239 g) at 4°C
for 5 min. The upper phase was kept and the lower
phase washed again with 5 mL of hexane/ethyl ether
(1:1, v/v), the two upper phases were pooled together
and evaporated under a stream of N,. Finally, the result-
ing fatty acid methyl esters (FAMEs) samples were dis-
solved in 100 mL hexane contained in sealed glass GC
vials, kept at -20°C until required for analysis.

Isolation and purification of the FAMEs was con-
ducted by preparative thin layer chromatography
employing silica gel G-25 glass sheets (Macherey-Nagel,
Germany), developed with a solvent system composed
of hexane/diethyl ether/acetic acid 97.7% (90:10:1, by
vol), and visualized after sublimation of iodine slightly
heated. The FAMEs, which ran close to the solvent
front, were scrapped off the glass sheet and extracted
with 10 mL hexane/ethyl ether (1:1, v/v). Finally, the
samples were dissolved in 0.5-1.0 mL hexane and kept
under nitrogen in sealed glass vials at -20°C until
analysis.

Gas chromatography of FAMEs

Analysis and quantification of FAMEs was conducted by
GC, employing a Shimadzu GC-14A apparatus (Shi-
madzu, Japan) equipped with a flame ionization detector
(250°C), a Supelcowax™ 10 fused silica capillary column
(30 m x 0.32 mm ID), and helium employed as carrier
gas. Samples (0.6 mL) were injected into the system by
an on-column auto-injector (Shimadzu AOC-17) at 50°
C. For separation of compounds a temperature program
of 180°C first 10 min, followed by an increase of 2.5°C/
min to reach the final temperature of 215°C was
employed.

FAMEs were identified according to their RT com-
pared with standards of commercial FAMEs (linoleic
acid methyl ester, methyl gamma-linolenate, methyl ole-
ate, stearidonic acid methyl ester, and heneicosanoid
acid), and a well-characterized fish oil mix. They were
quantified according to the amount of 21:0 used as
internal standard prior to transmethylation, and com-
parison with a calibration curve employing these
standards.

Statistical analysis

Results are presented as means + SD (n = 3 for each
sampling time, n = 21 for each kind of hairy root cul-
ture). The data were checked for normal distribution by
the one-sample Kolmogorov-Smirnoff test, as well as for
homogeneity of the variance with the Levene test, and
when necessary, Bartlett test was also applied. When
variance was not homogeneous, a Kruskal-Wallis and
Games-Howel tests were conducted to assess statistical
differences. The effects of culture conditions and
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sampling time of the studied parameters were firstly
determined using one-way ANOVA-test (p < 0.05). The
percentages and total amounts of FAs in the three dif-
ferent cultures were included as variables in a principal
component analysis (PCA). Principal components were
subsequently analysed by two-way ANOVA to study the
combined effects of both, hairy root line and age of cul-
ture, as well as their interconnections. Statistical ana-
lyses were performed employing the SPSS software
(versions 15.0 and 17.0, SPSS Inc, IL, USA).

Additional material

Additional file 1: Tables (S1-S6) and Images S1a-f. Tables S1-55 show
the different sampling points not included in the main text. In each table
the total lipid content and general fatty acid profiles (%) of the two cell
lines of Echium acanthocarpum hairy roots at different sampling points
are presented. n-6 and n-3 A6-Desaturation Indexes were calculated as
18:3n-6/(18:3n-6+18:2n-6) and 18:4n-3/(18:4n-3+18:3n-3), respectively. DBI
was calculated as [(% 18:1) +2%(% 18:2) +3*(% 18:3) +4*(18:4)]/100. Values
are presented as the average of three replicates. Table S6 shows the
results of two-way ANOVA analyses of the two principal components,
PC1 and PC2, of the percentages of FAs. Images S1a-f illustrate images of
the hairy root induction, the physical appearance of two hairy root lines,
an agarose gel showing a PCR amplified kanamycin resistant gene (npt-
Il), as well as a gus assay photographs.

Additional file 2: Figures S1-S3. Figures S1-S3 show plots of PCT and
PC2 factor scores categorized by type of culture and by sampling points.
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