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Abstract

Background: The number of biotransformations that use nicotinamide recycling systems is exponentially growing.
For this reason one of the current challenges in biocatalysis is to develop and optimize more simple and efficient
cofactor recycling systems. One promising approach to regenerate NAD™ pools is the use of NADH-oxidases that
reduce oxygen to hydrogen peroxide while oxidizing NADH to NAD™. This class of enzymes may be applied to
asymmetric reduction of prochiral substrates in order to obtain enantiopure compounds.

Results: The NADH-oxidase (NOX) presented here is a flavoenzyme which needs exogenous FAD or FMN to reach
its maximum velocity. Interestingly, this enzyme is 6-fold hyperactivated by incubation at high temperatures (80°C)
under limiting concentrations of flavin cofactor, a change that remains stable even at low temperatures (37°C). The

biotransformations.

hyperactivated form presented a high specific activity (37.5 U/mq) at low temperatures despite isolation from a
thermophile source. Immobilization of NOX onto agarose activated with glyoxyl groups yielded the most stable
enzyme preparation (6-fold more stable than the hyperactivated soluble enzyme). The immobilized derivative was
able to be reactivated under physiological conditions after inactivation by high solvent concentrations. The
inactivation/reactivation cycle could be repeated at least three times, recovering full NOX activity in all cases after
the reactivation step. This immobilized catalyst is presented as a recycling partner for a thermophile alcohol
dehydrogenase in order to perform the kinetic resolution secondary alcohols.

Conclusion: We have designed, developed and characterized a heterogeneous and robust biocatalyst which has
been used as recycling partner in the kinetic resolution of rac-1-phenylethanol. The high stability along with its
capability to be reactivated makes this biocatalyst highly re-useable for cofactor recycling in redox
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Background

Dehydrogenases catalyze a great variety of redox reac-
tions in fine chemistry (asymmetric reduction of pro-
chiral acetones, selective oxidations of polyols....) [1-5].
However, since they require nicotinamide cofactors to
catalyze substrate reduction or oxidation, their biotech-
nological implementation must address the issues of
cofactor stability and thermodynamic equilibria that
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otherwise prevent quantitative substrate conversion
[6-9]. Cofactor recycling via electrochemical, photoche-
mical or enzymatic methods is one alternative to over-
come these issues [10]. Enzyme-mediated cofactor
recycling is one of the most promising approaches to
address redox reaction limitations, enabling quantitative
substrate conversions [10,11]. The number of biotrans-
formations that uses nicotinamide recycling systems is
exponentially growing. For this reason one of the cur-
rent challenges in biocatalysis is to develop and optimize
more simple and efficient cofactor recycling systems
[6-9,12].
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One way to recycle NAD" is the enzyme-mediated
oxidation of the corresponding reduced cofactor using
molecular oxygen as an oxidizing agent. In nature, there
are two types of NADH-oxidases (EC 1.6.3.1) depending
on their catalytic mechanism: 1) enzymes that oxidize
NADH through the two-electron reduction of hydrogen
peroxide to two molecules of water [13,14], and 2)
enzymes that catalyze the oxidation of NADH by redu-
cing molecular oxygen to hydrogen peroxide [15-17].
Water-forming NADH-oxidases are more interesting for
biotechnological applications due to the innocuous nat-
ure of water as a byproduct. Conversely, the recent
application of catalases for in-situ elimination of hydro-
gen peroxide [18] would boost the application of H,O,-
forming NADH-oxidases in biocatalysis.

The H,O,-forming NADH-oxidases are flavoenzymes,
where the flavin cofactor acts as electron mediator, car-
rying the electrons from NADH to molecular oxygen
[15,16,19]. In the last two decades, many H,O,-forming
NADH-oxidases have been isolated and characterized
from both mesophilic and thermophilic organisms
[15-17,19]. Enzymes from thermophilic microorganisms
are interesting biocatalysts, because their thermostability
is much higher than those from mesophilic origin
[20,21]. Such resistance to high temperatures facilitates
their purification by thermal shocks when they are over-
produced in mesophilic hosts like E. coli.

The enormous biotechnological potential of these
enzymes have encouraged biotechnologists to approach
different downstream strategies to fulfil the stability and
productivity requirements imposed by the industry to
the enzyme catalysts. Immobilization is presented as a
useful technology for simultaneously overcoming two
primary industrial limitations: re-using and stability
[22-25]. For the last 50 years many immobilization pro-
tocols have been successfully applied to enzymes
[26-29]. Immobilization techniques may promote
enzyme stabilizations that would increase the life-time
of the catalyst and therefore the potential of the
enzymes as industrial catalysts [30-35]. Recently, re-
using of immobilized catalysts has been described
through reactivation of inactivated insoluble prepara-
tions of a survey of enzymes [36-38]. Therefore, merging
of immobilization and reactivation technologies would
be able to multiply the biocatalyst lifetime.

We report the isolation, purification and characteriza-
tion of a NADH-oxidase from Thermus thermophilus
HB27 and its preliminary optimization for biotechnolo-
gical purposes. This enzyme albeit 99% identical to that
found in Thermus thermophilus HBS8, presented relevant
biochemical differences that encouraged us to study
some of its biochemical and biotechnological features
for its application in cofactor regeneration.
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Results

Isolation and expression of recombinant NOX

The gene TTC0057 was amplified from genomic DNA of
Thermus thermophilus HB27 as described in Materials
and Methods. The sequence of the cloned gene revealed
a tyrosine at position 194 as opposed to a histidine found
at the same position in the published genome of T. ther-
mophilus HB27 [39]. This difference was corroborated
through a second amplification, cloning and sequencing
of the gene from the genomic DNA, suggesting that
either the published sequence contained an error or that
our strain had acquired a mutation during its growth and
maintenance in the laboratory over the years. It is worth
to note that such His was also found at position 194 in
the well-studied and 99% identical enzyme from 7. ther-
mophilus HB8 [40] for which the 3D structure is available
(PDB code 1NOX). To characterize this variant and shed
light on the effect of this single mutation on its activity,
the amplified TTC0057 gene was cloned into a pET22b
expression vector to overexpress the protein in E. coli
BL21. The vast majority of the recombinant protein was
obtained in the soluble fraction facilitating its purification
(Additional file 1 Figure S1).

Temperature-based purification

Since this enzyme is from a thermophilic microorganism
but cloned in a mesophilic one, purification through
thermal shock was approached as the simplest way to
achieve high purification factors [41]. Crude extract from
E.coli containing NOX was incubated at 80°C, achieving
a purification factor of 7.5 with a yield of 100% (Table 1
and Additional file 1 Figure S1 (SDS-PAGE)).

In order to completely purify NOX, ionic chromato-
graphic steps were further carried out using two differ-
ent matrixes (polyethylenimine agarose beads (PEI-ag)
and sulfate-dextran agarose beads (SD-ag)). These two
polymeric coated ionic exchangers are able to absorb
the majority of proteins from an E. coli extract [33,35].
Notably, neither PEI-ag nor SD-ag bound NOX, while
other proteins form the crude extract were bound to
both resin. Consequently, NOX was ever purer at the
supernatant fraction after such ionic step. The designed
purification protocol was: a thermal treatment at 80°C
for 45 minutes, followed by incubation of the superna-
tant with PEI-ag (purification factor improved two fold)
and then with SD-ag. The final purification protocol
gave a yield of 70% with a purification factor higher
than 16 (Table 1 and Additional file 1 Figure S1).

Biochemical characterization of purified NOX

NOX is flavin-dependent and H,0,-forming oxidase

The pure enzyme is a monomer with an electrophore-
tic mobility corresponding to the size =27 KDa, as
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Table 1 Purification of NADH oxidase from E.coli.
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Entry® Protein (mg/ml) Specific Activity (U/mg)b Purification factor Purification yield (%)
1 26.29 0.25 1 100
2 648 1.88 7.5 100
3 3.3 3.69 14.7 80
4 293 4.15 16.6 70

“Entry 1: Crude extract. Entry 2: Heat treatment (80°C) for 45 min. Entry 3: Heat treatment (80°C 45 minutes) and further incubation with PEl-ag for 30 min. Entry
4: Heat treatment (80°C 45 minutes) and sequential b activity at 65°C, pH 7 without exogenous FAD/FMN.

expected from its sequence. It is able to oxidize NADH
to NAD" reducing equimolar amounts of oxygen
[15,17,19]. (Additional file 2 Table S1). The crude
extract was incubated with different flavin nucleotides.
The NOX activity was rather low in the absence of
externally-added flavin nucleotide. However, when the
cofactor was exogenously added, the activity increased
at higher flavin cofactor concentrations up to a maxi-
mum activity at 100 pM of flavin mono- or di-nucleo-
tide (Figure 1). This dependence on flavin cofactor
addition confirms that the flavin cofactor is not cova-
lently bound to the native enzyme, as opposed to other
oxidases [19,42].

Kinetic parameters

NOX is quite active at low temperatures (25-37°C) rela-
tive to other enzymes from thermophilic sources. For
this reason, steady-state kinetic parameters of this
enzyme were calculated at 25°C for the flavin mono-
and di-nucleotide cofactors and for the NADH (Table
2). Interestingly, the NOX (HB27) in presence of exo-
genous flavin cofactor (150 pM) showed 6-fold higher
catalytic efficiency towards NADH compared to its
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Figure 1 Effect of exogenous flavin cofactor on the activities of
recombinant NOX in soluble form. Before purification, crude
extracts were incubated with different flavin nucleotides at different
concentrations (from 0 to 150 uM of either FMN or FAD). Activity
was determined in 50 mM sodium phosphate at pH 7 and 37°C.
Soluble enzyme with FAD (triangles), soluble enzyme with FMN
(circles). The relative activity was calculated taking as fraction 1 the
initial observed activity without flavin cofactor.

counterpart NOX (HB8) under the same conditions.
This significant difference was due to the lower Km and
higher kcat values in favour of the enzyme from our
HB27 strain and it may be explained by three amino
acids found in the primary sequence of the HB27 strain
(K166, H174 and Y194) that differ from those found in
the HB8 strain (R166, R174 and H194)

Temperature and pH profiles

Other important parameters used to evaluate the bio-
technological potential of an enzyme are its response to
broad range of pH and temperature, as operational con-
ditions often vary from physiological ones. Moreover,
incubation of enzymes at extreme conditions may trig-
ger enzyme aggregation or precipitation. We have
immobilized NOX on agarose activated with cyanogen
bromide (CNBr-ag) to softly attach the protein to the
support through a covalent bond, in an attempt to avoid
protein aggregation but without pursuing the protein
stabilization by immobilization. Under mild conditions
(see methods) NOX was quantitatively immobilized
onto CNBr-ag, recovering 80% of the immobilized activ-
ity. Both soluble and insoluble enzyme preparations
behaved quite similarly under a broad range of pH and
temperatures, indicating that no aggregative effects were
taking place (Figure 2). We were unable to measure
enzyme activity at temperatures above 90°C due to tech-
nical problems as cofactor stability (Figure 2A). There-
fore, 90°C was the temperature where the highest
activity was measured, confirming that this enzyme was
extremely active under high temperatures. On the other
hand, this enzyme as well as its counterpart from HB8
strain presented an acidic optimal pH (pH 5) (Figure

Table 2 Kinetics parameters of NOX towards different
cofactors.

Km kcat kcat/Km
(mM) (s-1) x 10°(M-1%s-1)
NADH? 21 + 04 156 + 0.7 74
FADP 341 + 60 - -
FMNP 428 + 5.1 - -

The steady-state kinetics parameters were calculated at pH 7 and 25°C (See
methods). Activities were adjusted to a non-linear regression.? Kinetics
parameters for NADH were calculated using 50 uM FAD.P Kinetics parameters
for flavin cofactors were calculated using 10 uM NADH.
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Figure 2 Influence of temperature (A) and pH (B) on the enzymatic activity of soluble and immobilized NOX forms. In the case of the
temperature, activity assays were performed in 50 mM sodium phosphate at pH 7, FAD 150 uM and temperatures ranging 25-90°C. On the
contrary, pH effect on activity was analyzed keeping constant the temperature at 65°C at different pH values, ranging between 5-9, in presence
of FAD 150 uM. In both experiments, soluble (empty rhombus) and immobilized (on CNBr-agarose) NOX (full squares) preparations were analyzed.
For both graphs, relative activity was calculated assigning 100% of activity to the highest measured activity at one particular temperature and
pH.

2B)[19], pH values lower than 5 could not be measured  high temperatures. Incubated enzymes were up to 6-fold

because NADH was unstable under those conditions. more active than those which remained at 37°C. In fact,
Temperature induces NOX hyperactivation at low flavin the higher the temperature of incubation, the higher the
cofactor concentrations hyperactivation achieved (Figure 3A). This result was

As it has been mentioned previously, exogenous flavin  confirmed by analysis of the Arrhenius’ plots (Figure
cofactor was needed to achieve high enzymatic activities. ~ 3B). It is evident that the enzyme incubated at high tem-
However, when no flavin cofactor was added, an unex-  perature presented lower activation energy than those
pected effect was observed when NOX was incubated at ~ which did not (36 + 1 versus 48 + 0.8 KJ/mol). The
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Figure 3 NOX hyperactivation induced by thermal incubation. (A) NOX was incubated at different temperatures (37, 70 and 80°C) for 1 h
and then measured at 65°C, in 50 mM sodium phosphate at pH 7 under either limited (white bars) or saturated (black bars) flavin cofactor
conditions (150 uM). The relative activity was calculated for each condition (limited or saturated flavin cofactor), taking as fraction 1 the initial
activity observed without thermal incubation. (B) Arrhenius’ plot of the reaction catalyzed by soluble NOX which was thermal incubated at 80°C
for 45 minutes (squares) and by soluble NOX which did not undergo to thermal incubation (rhombus). The negative linear regressions were
calculated for each sample, resulting the following equations: for thermally incubated NOX (y = -4339,9 X + 16,52. R’ = 0,987) and for non
thermally incubated NOX (y = -582838 x + 20,571. R’ = 0,995).
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thermal-dependent hyperactivation drove the enzyme to
a relatively high specific activity (4.5 U/mg) in limited
flavin cofactor conditions (no exogeneous cofactor was
added) at 37°C, which was 8 times lower than the activ-
ity in presence of that flavin cofactor (37.5 U/mg) under
the same conditions.

Stabilization of NOX via immobilization

Protein immobilization has been shown as an interesting
alternative to overcome two important hurdles that
enzymes are faced with in order to be used on an indus-
trial scale: Re-using and stability. To this end, we have
immobilized NOX onto agarose through three different
chemistries. Firstly, NOX was covalently attached to
CNBr-ag via its N-terminal [43]. This immobilization
was performed under very mild conditions to have an
enzyme preparation with properties very similar to those
of the soluble enzyme [44,45], but where enzyme-
enzyme interactions were diminished. Secondly, NOX
was reversibly immobilized via IMAC chemistry onto
agarose activated with metal chelates (Cu**) (IDA-Cu?
"-ag) [46,47]. In the resulting enzyme-agarose complex
(IDA-Cu**-NOX), the enzyme was immobilized and
properly oriented using native histidine rich regions
[47]. Finally, NOX was immobilized at alkaline pH
values onto agarose activated with glyoxyl groups (Gx-
ag) where the enzyme was immobilized through its
lysine rich regions, resulting in very intense covalent
attachments [43]. Immobilization yields and recovered
activities depended on the respective immobilization
protocol (Table 3). Gentle covalent immobilization on
CNBr-ag and reversible immobilization on IDA-Cu**-ag,
resulted in 100% of immobilization yield and 80% of
expressed activity. Conversely, NOX was not quantita-
tively immobilized on on Gx-ag, and around 40% of the
enzymatic activity was lost during the immobilization
process (Table 3). When thermal stability was analyzed
for each insoluble derivative, the immobilized enzyme
always showed an increase in enzyme stability relative to
soluble preparations. Immobilization on Gx-ag matrixes

Table 3 Parameters of NOX immobilization onto agarose
via different chemistries.

Activated agarose® Immobilization yield Expressed activity

¥ (%)° Ae (%)°
Gx-ag® 85 60
CNBr-ag® 100 80
IDA-Cu**-ag® 100 80

? 6BCL agarose was activated with different functional groups as methods
described in order to immobilized NOX through different chemistries, giving
each one different properties to the final insoluble preparation. ®
Immobilization yield was calculated as follows; ¥ (%) = (Supernatant activity
after incubation with the support/Supernantant activity before incubation
with the support)*100.€ Expressed activity was calculated; Ae (%) = (Activity/g
of support)/(Immobilized activity/g of support)*100.
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yielded the most stable NOX preparation. Contrarily,
the non-covalent immobilization via metal-chelate bind-
ing in IMAC-material led to low stabilization factors,
even lower than the gentle covalent immobilization on
CNBr-ag (Figure 4).

Solid-phase biocatalyst re-activation

Recently, our group has developed new strategies for the
reactivation of industrially relevant enzymes immobi-
lized by covalent attachment [36,37]. The ability to reac-
tivate biocatalysts for use in additional operation cycles
has provided a new avenue of research focused on bio-
catalyst reuse on an industrial scale. Since Gx-NOX was
the most stable derivative, that preparation was subject
to different inactivation/reactivation cycles. Inactivation
was carried out under high dioxane concentration (60
vol%), weak acidic pH (pH 5) and 37°C, mimicking a
harsh set of conditions where all enzyme activity was
lost, even in the case of the stabilized derivative. The
inactivated Gx-NOX was incubated in sodium phos-
phate buffer at pH 7 for several hours in order to
recover the biocatalyst’s initial activity. This insoluble
derivative fully recovered its initial activity in less than 8
h, and reactivation was found to be quantitatively effec-
tive for at least three cycles (Figure 5). The reactivation
of NOX was more efficient when the enzyme was

Relatlve actlvity (%)
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Figure 4 Thermal stability of different preparation of NOX
immobilized onto differently activated agarose surfaces. The
preparation of different NOX insoluble derivatives was carried out
according to that described in Methods. 8 U (at 65°C) of each NOX
insoluble preparations were incubated in 50 mM sodium phosphate
at pH 7 and 83°C. At such conditions, half-life time of soluble NOX
can be quantified in less than 24 h, allowing thus to calculate the
stabilization factors achieved by each immobilization protocol.
Stabilization factor was defined as the ration between the half-life
times of each immobilized derivative and the soluble preparation.
NOX preparations studied here were; soluble (empty rhombus),
immobilized onto IDA—Cu2+—ag (crosses), immobilized onto CNBr-ag
(full triangles) or immobilized onto Gx-ag (full squares). In all cases
the crosslinking percentage of agarose was 6% (agarose-6BCL).

Results represents the mean (+ SD) of three different experiments.
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Figure 5 Reactivation of Gx-NOX catalyst after inactivation
induced by organic solvents. Gx-NOX (rhombus) was incubated
with 60 vol% of dioxane in 10 mM sodium acetate buffer at pH 5
and 37°C for 18 h. The inactivated preparation was vacuum filtered
and then reactivated by incubation in 10 mM sodium phosphate
buffer at pH 7 and 65°C. The same protocol was repeated up to
three times, the inactivation step was depicted on the plot as an
arrow. Different samples of both inactivation and reactivation steps
were withdrawn in order to analyze enzyme activity as described in
Methods. The activity of different inactivation/reactivation cycles was
normalized assigning 100% of relative activity to the initial activity
of biocatalyst right before being inactivated for the first time.

immobilized on Gx-ag, due in large part to the rigidity
and robustness provided by the immobilization
chemistry.

Kinetic resolution of rac-1-phenylethanol

NOX was used as re-cycling partner of a secondary
alcohol dehydrogenase from Thermus thermophilus
(TtADH), for the kinetic resolution of rac-1-phenyletha-
nol at 55°C and pH 7. TtADH enantioselectively oxi-
dizes 1-(S)-phenylethanol to acetophenone [41],
reducing NAD" to NADH. In Figure 6 is shown how
the bi-enzymatic system was able to oxidize the sub-
strate reaching 99% of enantiomeric excess of 1-(R)-phe-
nylethanol at 50% of conversion. The cofactor re-cycling
system has allowed the addition of only 6.5% mol of
NADH relative to substrate. The total turnover number
of NADH was 10 in each reaction cycle, however it is
worth noting that this value could be increased either
by decreasing the cofactor concentration or by increas-
ing the substrate concentration. In terms of productivity,
1 mg of immobilized NOX on Gx-Ag was able to
recycle 40 pmol of NAD™ per hour under the conditions
described here. The same result was observed when the
reaction was carried out with the reactivated NOX

6 E ee (%)= =99 % (S)
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Figure 6 Reaction course of the kinetic resolution of rac-1-
phenyl ethanol. Reaction was performed using a NAD+
regeneration system consisting of 0.2 mg of NOX immobilized on
Gx-ag as method described and 4 mg of alcohol dehydrogenase
from Thermus thermophilus HB27 immobilized as described
elsewhere [41]. The reaction mixture contained 0.5 mM NADH, 7.5
mM rac-1-phenylethanol in 10 mM sodium phosphate at pH 7 and
45 C. Substrate conversion was determined by HPLC as previously
described [41]. In the same way, enantiomeric excess (ee) at 50% of
conversion was determined by chiral HPLC as previously described
[41]. Symbols: acetophenone (empty circles) and 1-(S)-phenylethanol
(full squares).

derivative. Herein we have validated a multi-enzyme sys-
tem which may be used for kinetic resolutions of a wide
variety of secondary alcohols.

4. Discussion

We have purified and characterized a variant NADH-
oxidase from Thermus thermophilus HB27. This enzyme
oxidizes NADH to NAD", utilising oxygen as an elec-
tron acceptor and a flavin cofactor as an electron media-
tor, to yield hydrogen peroxide as a product. The amino
acid sequence of this NOX enzyme presents 98.5% iden-
tity to a similar enzyme isolated from 7. thermophilus
HB8. However, the new NOX variant presented 5.9-fold
higher catalytic efficiency than its counterpart from the
strain HBS, a difference that is likely related to the three
divergent residues found at positions 166, 174 and 194
(Additional file 3 Figure S2). Noteworthy, the reported
sequence for NOX also differs from the sequence pub-
lished for the HB27 strain by a single amino acid change
at position 194 (H194Y), suggesting either an annotation
error at the original sequence [39] or an adaptation of
the strain to the laboratory conditions. Because samples
of the HB27 strain obtained from other laboratories did
not contain such mutation, it is tempting to speculate
that higher NADH-oxidase activity might enhance bac-
terial fitness in the very rich TB medium routinely used
in the laboratory, where an excess of reducing power
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(increased NADH/NAD? ratio) is likely to occur. In any
case, we have found a potential target on NOX primary
sequence to further optimize its catalytic performance
by protein engineering.

Steady-state kinetic parameters were calculated for
purified NOX with three different cofactors, NADH,
FMN and FAD. Analyses of the results, revealed one
main difference between this NOX and that from the
HB8 strain, the catalytic efficiency of NOX towards
NADH was higher than what it was reported for that
one from the HB8 strain. Currently, mutagenesis experi-
ments are being undertaken in order to shed light on
the specific role of the three residues that differ between
both proteins on the catalytic activity.

We also described practical thermal hyperactivation
of this enzyme under limited conditions of flavin
cofactor. This insight suggests a more active NOX
conformation at high temperatures, resulting in higher
affinity for the flavin cofactor. This beneficial confor-
mation and associated good specific activity can be
fixed and retained in further downstream enzyme
applications even at low temperature. The nature of
this thermally induced conformational change is not
clear at present. We suggest that it could be due to
enhanced binding of the flavin cofactor, since it was
only observed under conditions in which the flavin
cofactor is limiting. Similar hyperactivation effects after
high temperature incubation have been described for
other thermophilic proteins also likely due to confor-
mational reordering of particular regions of the protein
missfolded during expression at low temperatures
[48-50]. Whatever the reason, this feature gives the
NOX described here a high potential for industrial use
in NADH recycling in redox reactions. In this sense,
we have shown its use coupled to a dehydrogenase for
alcohol oxidations at mild temperatures without a
requirement for exogenous addition of flavin cofactor,
making the process much more cost-effective.

Thinking on these applications, we immobilized the
NOX in a broad number of surfaces. In the literature,
different immobilization protocols have been used for
the immobilization of NADH oxidases especially in the
biosensors field [51-53]. From our experiments, covalent
attachment of NOX to an agarose support activated
with glyoxyl groups resulted, to the best of our knowl-
edge, in the most thermostable NADH-oxidase prepara-
tion reported so far. This Gx-NOX derivative shows at
the same time irreversible binding of the enzyme and a
likely homogeneous protein orientation because prefer-
ential covalent binding occurs through the lysine richest
regions [31]. These properties related to the immobiliza-
tion chemistry are the basis for the successfully applica-
tion to a large number of enzymes, all of which
achieved a high stabilization factors [31].
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In addition to the high stability of the insoluble bioca-
talyst, NOX can also be successfully reactivated once it
has been fully or partially inactivated. Here, we have
presented the first report of protein reactivation for
immobilized NOX on highly stabilized derivatives.
Moreover, these derivatives can be efficiently reactivated
several times by incubation on phosphate buffer after
inactivation cycles in 60 vol % dioxane. An explanation
for this could be based on the fact that organic solvents
drive enzyme to local distortion rather than a global
unfolding [54]. These local distortions may be located
on the surface of the enzyme because organic solvents
may strip the external water layer essential for enzyme
activity [55-57] (easier to recover when organic solvent
is removed) or might occur at a higher scale by unfold-
ing internal domains of the proteins because penetration
of the solvent to the hydrophobic core (more difficult to
revert). As multipoint covalent immobilization limits
severe unfolding [58], the enzyme can be easily reacti-
vated simply by elimination of the organic solvent. The
same behavior was found for other enzymes like lipases
[37] and even for other thermophilic oxidoreductases
such as glutamate dehydrogenase from Thermus thermo-
philus HB7 [36]. In this last example, recovery of active
quaternary structure was achieved, making a break-
through in solid-phase enzyme reactivation protocols for
multimeric enzymes.

Finally, this highly stable and heterogeneous biocata-
lyst was applied as cofactor recycling partner of a main
alcohol dehydrogenase from the same thermophilic
source, to kinetically resolve pharmaceutically relevant
compounds such as 1-phenylethanol. Expectedly, the
selectivity of the main alcohol dehydrogenase was extre-
mely high [59] and cofactor recycling by NOX allowed
reaching the maximum yield using only 6.5% mol of
cofactor, which means that one mol of cofactor was
recycled up to 10 times per reaction cycle under the
conditions studied here. Moreover, since this heteroge-
neous biocatalyst is highly stable and can be re-used for
many cycles, the total turnover of such catalyst can be
increased. In addition, and still to be tested, coupling of
a catalase to the system should improve the global stabi-
lity of the enzymes involved in the process. The catalase
would be able to, in-situ, eliminate the hydrogen perox-
ide formed as byproduct by NOX. As a result there
would be decreased accumulation of such compound
capable of inactivating the protein biocatalysts, which
would lead to further optimization of both conversion
rate and final yields.

Conclusion

The high re-usability of immobilized NOX encouraged
us to develop new bi-enzymatic systems where NAD"
recycling is needed. The thermophilic nature of NOX
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and its ability to be reactivated make feasible the use of
this catalyst in redox biotransformation coupled to
H,0O, removal systems, p.e catalase. This catalyst has
been successfully applied as re-cycling system to the
kinetic resolution of secondary alcohols at high tem-
peratures. Further, protein engineering studies need to
be done to improve NADH-oxidase performance at
lower temperatures, in order to couple it to mesophilic
alcohol dehydrogenases.

Methods

Materials

Nicotinamide adenine dinucleotide (NADH) was pur-
chased from Jilich Fine Chemicals (Codexis, Redwood
city, CA). Flavin adenine dinucleotide (FAD), flavin
mononucleotide (FMN), polyethyleneimenine (PEI)
(MW: 600-1000 kDa) and sulfate-dextran (MW: 100
kDa) were supplied by Sigma-Aldrich Co (St. Louis, IL).
Iminodiacetic acid disodium salt monohydrate (IDA)
and copper sulphate (II) 5-hydrate were purchased from
Fluka (Buchs, Switzerland). Cyanogen bromide 4B
Sepharose and crosslinked agarose beads (4%) were
from GE Healthcare (Uppsala, Sweden). Polyethylenei-
mine agarose beads (PEI-ag) supports were prepared as
previously described elsewhere [33]. IMAC supports
Glyoxyl agarose beads (Gx-ag) and Sulfate-dextran agar-
ose beads (SD-ag) were prepared as previously described
[46,60,35]. Protein concentration was determined using
the method of Bradford [61]. All other used reagents
were of analytical grade.

Cloning and expression of the NOX

Bacterial strain, plasmids and growth conditions

Thermus thermophilus HB27 used as DNA source for
NOX cloning was a laboratory-adapted strain derived
from the original strain donated by Prof Koyama [62]. E.
coli strains DH5a [supE44, AlacU169 (A80 lacZAM15),
hsdR17, recA, endAl, gyrA96, thi-1, relAl] and BL21
DE3 [hsdS, gal (Aclts857, indl, Sam?7, nins, lacUV5-T7
gene 1)] were used for cloning and expression purposes,
respectively. The thermophile was grown at 70°C in TB
(Thermus Broth) [63] under stirring (150 r.p.m.) and E.
coli was grown at 37°C in modified Luria-Bertani (LB)
medium [64]. Ampicillin (100 mg/L) or kanamycin (30
mg/L) were added to the cultures when required for
selection.

Plasmid construction

DNA isolation, plasmid purification, restriction analysis,
plasmid construction and DNA sequencing were carried
out by standard methods[65]. The Polymerase Chain
Reaction (PCR) was performed using a mixture of Tth
and Pfu DNA polymerases as described by the manufac-
turer (BIOTOOLS B & M, Madrid, Spain). For the con-
struction of the expression vector, the gene TTC0057
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coding for the NOX enzyme was amplified using the
primers TTCO0057 - Ndel Forward: (5-TTCCATAT-
GATGGAGGCGACCCTTCC-3’) and TTC0057 - EcoRI
Reverse: (5-TTCGAATTCCTAGCGCCAGAGGAC-
CAC-3’), which included restrictions sites for Ndel and
EcoRI (underlined). The PCR product was subsequently
cloned using the same sites into the expression vector
pET22b+, (pET22b-TTC0057). The cloned gene was
sequenced by standard methods.

Expression of the recombinant protein in E. coli

Plasmid pET22b-TTCO0057 was transformed into the
expression strain E. coli BL21(DE3), which carries the
RNA polymerase gene from the T7 phage under the
control of an inducible promoter. The transformed cells
were grown at 37°C in of LB with ampicillin until the
culture reached an optical density of 0.6 at 600 nm.
Then, the expression of the T7 RNA polymerase was
induced by addition of iso-propyl-1-thio-f-D-galactopyr-
anoside (IPTG) to a concentration of 1 mM. The bacter-
ial culture was incubated at 37°C for further 2 h, and
cells were harvested and washed in sodium phosphate
buffer by centrifugation (10000 x g, 10 min) before
being stored as wet pellets at -20°C until use.

Determination of enzyme activity and kinetics parameters
The activities of the different NOX preparations were
analyzed by following the decrease in absorbance at 340
nm corresponding to the oxidation of NADH. A sample
of the enzyme preparation (10-100 pL) was added to a
spectrophotometer cuvette containing 2 mL of 50 mM
sodium phosphate buffer at pH 7 and 37°C and 50 pL
of 10 mM NADH was added. When indicated, different
temperatures and pH values were used. One activity
unit (U) was defined as the amount of enzyme required
to oxidize 1 micromol of NADH per minute at pH 7 at
the indicated temperature (standard activity is given at
25°C, 37°C or 65°C). In all cases, the pH value was
adjusted at the indicated temperature using a pH-meter
with temperature sensor.

Kinetic parameters were calculated from the initial
velocity of NADH consumption assays. The reaction
was initiated by adding NOX to the reaction mixture.
Measurements were performed at 37°C in 50 mM
sodium phosphate at pH 7, at different NADH concen-
trations. Assays were performed in triplicates at each
concentration. Results were fitted using the Michaelis-
Menten equation based non-linear regression analysis of
the data at each fixed concentration [66].

Purification of the NOX

Cells were lysed by sonication, and the cell debris was
eliminated by centrifugation (10,000 x g for 10 min).
Crude protein extracts were diluted 10 fold in 10 mM
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sodium phosphate at pH 7 and incubated at 80°C and
pH 7 for 45 min. Protein aggregates were discarded
after centrifugation (10,000 x g for 10 min), and the
clarified supernatant containing the NOX activity was
offered to different chromatographic supports (PEI-ag
and SD-ag) at pH 7 and 25°C (1 g of support per 10 mL
of protein extracts). Periodically, the activity of NOX
and the concentration of proteins were analyzed in both
the supernatant and the suspension fractions to monitor
the purification process.

Enzyme immobilization on CNBr-activated sepharose 4
BCL

The immobilization was carried out by adding 2 g of the
CNBr-activated support to 20 mL of 10 mM sodium
phosphate at pH 7 containing 8 U (at 65°C) of NOX.
The suspension was kept under mild stirring for 15
minutes at 4°C. Afterward, the support was filtered and
washed with 10 mM sodium phosphate buffer at pH 7
and incubated for 2 hours in 1 M ethanolamine at pH 8
to block the remaining reactive groups. Finally, the
immobilized preparation was washed with 10 mM
sodium phosphate at pH 7.

Enzyme immobilization on agarose activated with metal
chelates

A volume of 20 mL of 10 mM sodium phosphate at pH
7 containing 8 U (at 65°C) of NOX was mixed with 2 g
of metal-IDA support. The suspension was gently stirred
at 25°C. Samples of both supernatant and suspension
were withdrawn at different times to analyze enzyme
activity as described above. Finally, the immobilized pre-
paration was washed with 10 mM sodium phosphate at
pH 7.

Enzyme immobilization on agarose activated with glyoxyl
groups

2 g of activated agarose were incubated with 20 ml of
100 mM sodium bicarbonate pH 10.05 containing 8 U
(at 65°C) of soluble NOX. The suspension was gently
stirred at 25°C. Samples of both supernatant and sus-
pension were withdrawn at different times to analyze
enzyme activity as described above. Finally, the immobi-
lized preparations were reduced for 30 minutes at 25°C
with 20 mg sodium borohydride as described elsewhere
[31]. After this period the preparation was washed with
an excess of 10 mM sodium phosphate at pH 7 and
assayed.

Effects of temperature and pH on the activity of soluble
enzyme and immobilized NOX

The activities of soluble and CNBr-NOX preparations
were assayed at different temperatures (from 25 to 90°

Page 9 of 11

C) in 50 mM sodium phosphate and at different pH
values (pH 5-10). The following buffer systems were
used (50 mM): sodium acetate (pH 5.0), sodium citrate
(pH 6.0), sodium phosphate (pH 7.0 and pH 8.0) and
sodium carbonate (pH 9.0 and pH 10.0). All pH values
were adjusted at 65°C using a pH-meter with tempera-
ture sensor.

Thermal inactivation assays

Different NOX preparations (soluble and immobilized)
were incubated in 50 mM sodium phosphate at pH 7
and 83°C. Samples were withdrawn at different times
and their activity was measured as previously described.

Chemical Inactivation/Reactivation cycles (Reactivation
experiments)

Gx-NOX was incubated with 60 vol % of dioxane in 50
mM sodium acetate buffer at 37°C and pH 5 for 18 h.
The inactivated preparation was vacuum filtered and
then reactivated by incubation in 50 mM sodium phos-
phate buffer at pH 7 and 65°C. For all inactivation/reac-
tivation steps a relation of 1/10 immobilized enzyme/
solution (W/V) was used. The residual activity was
always measured at pH 7 and 37°C, as previously
described. When a constant value of residual activity
was achieved, this was considered the maximum recov-
ered activity. Three consecutive cycles of inactivation/
reactivation of immobilized Gx-NOX were performed.

Kinetic resolution of rac-1-phenylethanol

The oxidation of acetophenone was performed by the
addition of an alcohol dehydrogenase from Thermus
thermophilus HB27 (TtADH) immobilized on agarose
activated with cyanogen bromide [41], and by an NAD"
re-cycling system formed by NOX immobilized on Gx-
ag. The reaction mixture contained 0.5 mM NAD", 10
mM 1-phenylethanol and 200 uM FAD in 50 mM
sodium phosphate at pH 7. The reaction was triggered
at 55°C by adding 4 mg and 0.2 mg of immobilized
TtADH and NOX respcetively. The reaction course was
followed via reverse-phase HPLC (Spectra Physic SP
100 coupled with an UV detector Spectra Physic SP
8450) using a Kromasil C18 column (15 cm x 0.4 c¢m)
supplied by Andlisis Vinicos (Spain). The enantiomeric
excess (e.e.) was determined by chiral reverse-phase
HPLC, using pure commercial enantiomers as standards.
The column was chiracel OD-R and the mobile phase
was an isocratic mixture of 35% acetonitrile and 65% 10
mM sodium phosphate buffer at pH 7. The analyses
were performed at fixed flow of 0.45 ml/min by record-
ing the absorbance at 225 nm. 1-(R)-phenylethanol was
eluted after 15.9 min while 1-(S)-phenylethanol was
eluted at 17.4 min.
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Additional material

Additional file 1: Figure S1. Analysis SDS-PAGE of NOX purfication.
SDS-PAGE (12%) gels obtained during the sequential purification of NOX.
Lanes: 1) Molecular weight markers; 3) Crude extract; 5) Supernatant after
heat treatment at 80°C for 45 minutes; 6) Supernatant after incubation in
presence of PEI agarose for 30 minutes; 8) Supernatant after incubation
in the presence of sulfate-dextran agarose for 1 h.

Additional file 2: Table S1. H,0, formation during NAD+ reduction
by NOX. The enzyme produces exclusively H,O, as previously described
Park et al. The fact that the recovery of H,O, was sometimes less than
100% (70-80%), could be explained by the observation that the amount
of H,0, measured, was influenced by the time period between the
NADH conversion and the actual measurement of H,O,. Apparently, the
amount of H,O, in the assay mixture slowly decreased, despite the
absence of NADH, which was already completely converted at that
moment.

Additional file 3: Figure S2. Alignment of NADH oxidase isolated
from Thermus thermophilus HB27 and its counterpart isolated form
Thermus thermophilus HB8. Sequence HB27* resulted from cloning and
sequencing of PCR product amplified from genomic DNA of Thermus
thermophilus HB27 that we have at our laboratory. The sequence HB8
was corresponding to gene bank accession number: CAA42707.1. Both
sequences were aligned using ClustalW algorithm. (*) identical residues.
() different residues, highlighted in grey.

Abbreviations

NOX: NADH-oxidase; PEl-ag: agarose 6BCL coated with polyethyleneimine;
SD-ag: agarose 6BCL coated with dextran sulphate; Gx-ag: agarose 6BCL
activate with glyoxyl groups; IDA-Cu*-ag: agarose 6BCL activated with Cu®*
coordinated with imidodiacetic acid; CNBr-ag: Agarose 6BCL activated with
cyanogens bromide groups.
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