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Abstract 

Background A method combining offline techniques and the just-in-time learning strategy (JITL) is proposed, 
because the biochemical reaction process often encounters changing features and parameters over time.

Methods Firstly, multiple sub-databases in the fermentation process are constructed offline by an improved fuzzy 
C-means algorithm and the sample data are adaptively pruned by a similarity query threshold. Secondly, an improved 
eXtreme Gradient Boosting (XGBoost) method is used on the online modeling stage to build soft sensor models, 
and the multi-similarity-driven just-in-time learning strategy is used to increase the diversity of the model. Finally, 
to improve the generalization of the whole algorithm, the output of the base learner is fused by an improved Stacking 
integration model and then the predictive output is performed.

Results Applying the constructed soft sensor model to the problem of predicting cell concentration and product 
concentration in Pichia pastoris fermentation process. The experimental results show that the root mean square error 
of the cell concentration is 0.0260, the coefficient of determination is 0.9945, the root mean square error of the prod-
uct concentration is 2.6688, and the coefficient of determination is 0.9970. It shows that the proposed method 
has the advantages of timely prediction and high prediction accuracy, which validates the effectiveness and practical-
ity of the method.

Conclusion The JS-ISSA-XGBoost is an extensive and excellent soft measurement model that meets the practical 
needs for real-time monitoring of parameters and prediction of control in biochemical reactions.

Keywords Online soft sensor, Just-in-time learning strategy, eXtreme gradient boosting method, Pichia pastoris

Background
With the development of science and technology, the 
monitoring and control of biochemical reaction param-
eters are more and more demanding. However, the bio-
chemical reaction process is a multivariate, time-varying, 
uncertain, and strongly coupled nonlinear system [1–3]. 

Due to the actual process technology and production 
cost, key biochemical parameters cannot be directly 
measured online and can only be roughly estimated 
by offline sampling and analysis. This process not only 
causes a lag in the acquisition of information, which can 
affect the operator’s ability to make correct judgments 
and decisions about the real-time response status, but it 
also limits the implementation of optimal control strate-
gies. Therefore, there is an urgent need to find a method 
to achieve optimal estimation and prediction of key bio-
chemical parameters in the biochemical reaction process.

*Correspondence:
Bo Wang
wangbo@ujs.edu.cn
1 School of Electrical and Information Engineering, JiangSu University, 
ZhenJiang 212013, JiangSu, China

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12896-023-00816-3&domain=pdf


Page 2 of 19Zhang et al. BMC Biotechnology           (2023) 23:49 

Soft sensor method is an effective way to solve the 
problem of difficult online measurement of key biochem-
ical parameters in reaction processes, e.g., Yu proposed 
a soft sensor modeling framework combining Bayesian 
inference strategies and support vector machines (SVR) 
and applied it to predict the production of biological 
processes [4]. Mei et al. proposed a method based on the 
combination of the Gaussian regression model (GPR) 
and principal component analysis (PCA) to estimate the 
biomass of the erythromycin fermentation process [5].
Wang et  al. proposed a recurrent wavelet neural net-
work (RWNN) and Gaussian process regression (GPR) 
based method to develop a soft sensor model for online 
measurement of fermentation broth parameters and 
total sugar content for online prediction of whether 
aureomycin fermentation broth is contaminated with 
non-target bacteria [6]. However, most of the soft sen-
sor models developed in the above literature use offline 
modeling methods. Although soft sensor models can 
greatly improve the prediction in real-time in practical 
applications, the characteristics of the actual biochemi-
cal reaction process and the relevant parameters change 
over time, and there is a risk that the offline modeling 
methods will fail in different reaction environments. 
Moreover, offline models need to be retrained at regular 
intervals, which is costly in terms of time and not con-
ducive to long-term use in actual biochemical reaction 
production. The Just-in-Time Learning(JITL) strategy has 
attracted much attention from the academic community 
to address the problems of offline modeling methods [7]. 
For example, Ren et al. used locally weighted partial least 
squares (LWPLS) with a Just-in-Time Learning strat-
egy for industrial soft sensor modeling and showed that 
this method has a higher prediction accuracy than other 
methods [8]. Yuan et al. proposed an adaptive soft sensor 
modeling method based on the moving window (MW) 
and JITL techniques [9]. The results show that the pro-
posed soft sensor of non-linear time-varying processes 
has a high prediction accuracy. Although the above 
online local modeling methods take advantage of the 
high accuracy of online modeling predictions from JITL, 
they do not consider the real-time nature of the speed of 
online modeling predictions. When the training samples 
are large, the real-time performance of the model will be 
seriously affected, making it difficult to be widely used in 
biochemical reaction process.

Considering the above problems, this paper proposes 
a soft sensor modeling method combining offline tech-
niques and Just-in-Time Learning (JITL) strategy. First, 
multiple query domains are constructed offline by an 
improved fuzzy C-mean algorithm, and query thresholds 
adaptively prune the sample data. Secondly, an improved 
eXtreme Gradient Boosting (XGBoost) method is used 

to build soft sensor models in the online modeling stage, 
and the multi-similarity-driven JITL scheme is used to 
increase the diversity of the models. Finally, to improve 
the generalization of the whole algorithm, the output of 
the base learner is fused by an improved Stacking inte-
gration model and then the predictive output is per-
formed. Applying the constructed soft sensor model to 
the problem of predicting cell concentration and product 
concentration in Pichia pastoris fermentation process. 
The experimental results show that the proposed method 
has the advantages of timely prediction and high predic-
tion accuracy, which validate the effectiveness and practi-
cality of the method.

Methods
Local query domain creation method in offline phase
Improved FUZZY C‑mean (IFCM) algorithm
Traditional soft sensor modeling methods based on just-
in-time learning usually involve a cumbersome process 
of selecting similar sample points across the entire sam-
ple dataset. When the historical data set is too large, it 
will lead to long search times for the algorithm, making 
it impossible for the soft sensor model to predict the out-
put on time.

In particular, the distribution of sample data in the 
time-varying continuous non-linear process of biochemi-
cal reactions is not concentrated, and the predictive per-
formance of the model is limited by using all relevant 
samples to build a single overall model. Therefore, this 
paper uses the Improved Fuzzy C-mean (IFCM) algo-
rithm to divide the queried domain to address the above 
issues.

Firstly, considering that the traditional fuzzy C-mean 
algorithm (FCM) [10–13] suffers from sensitivity to the 
initial centroid of clustering and a high number of itera-
tions, this paper proposes an enhanced algorithm to 
improve the FCM (IFCM). The initial values of the FCM 
algorithm are usually set artificially, and the model is 
prone to fall into local optimality. This paper determines 
the number of classifications by the "elbow method" [14] 
to avoid human intervention. In addition, the distance 
between all data sample points and the origin is calcu-
lated using the Mahalanobis distance, as shown in Eq. (1).

where: 
∑

 denotes the covariance matrix of the covari-
ance matrix of the multidimensional random variables of 
x and y.

The core metric of the elbow method is the sum of 
squared errors (SSE), which is used to represent the clus-
tering error. As the number of clusters k increases, the 

(1)DM x, y = x − y
T −1

x − y
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sample division will become finer, the degree of aggrega-
tion of each cluster will gradually increase, and the SSE will 
naturally become progressively smaller. Moreover, when k 
is less than the actual number of clusters, the decrease in 
SSE will be significant because an increase in k will sub-
stantially increase the degree of aggregation of each cluster. 
However, when k reaches the actual number of clusters, the 
return on the degree of aggregation obtained by increasing 
k will decrease rapidly, so the decline in SSE will decrease 
sharply and then level off as the value of k continues to 
increase. This means that the graph of the relationship 
between SSE and k is the shape of an elbow, and the value 
of k corresponding to this elbow is the actual number of 
clusters of the data.

Secondly, the sample points are ranked according to 
the Mahalanobis distance, and the clustering subsets are 
divided equally. In each clustering subset, the middle sam-
ple point is selected as the initial clustering center of the 
FCM algorithm, and the local query domain is constructed.

Finally, the FCM algorithm’s affiliation matrix divides the 
historical sample dataset into a reasonable number of sub-
databases, as shown in Fig. 1. Each of these sub-databases 
is a local query domain for JITL. By creating a local query 
domain, the search range of the algorithm is made smaller, 
and the objective function of the FCM is shown in Eq. (2).

where: �xi − vj� is the Euclidean distance from the sample 
point xi to the centroid vj , uij is the affiliation function. 
m(m > 1) is the fuzzy index, and generally taken as m = 2. 
n denotes the number of populations and c denotes the 
number of samples.

(2)Jm =
n∑

i=1

c∑

j=1

umij �xi − vj�2, 2 ≤ m < ∞

As the data samples of actual biochemical reaction pro-
cess present a high-dimensional non-linear distribution, 
the Euclidean distance in the traditional FCM algorithm 
has some advantages for spherical structure cluster-
ing. However, some computational disadvantages exist 
in solving a high-dimensional data problem like to the 
biochemical reaction process. Therefore, the IFCM algo-
rithm can cluster the sample data more accurately and 
consistently than the direct use of the FCM algorithm.

Adaptive pruning database
In the actual biological biochemical reaction process, the 
accumulation of sample data in the sub-database over 
time can seriously affect the response rate of the JITL 
model. Aiming at this problem, this paper proposes an 
adaptive pruning data mechanism to update the sample 
data in the database automatically to address such prob-
lems. The specific mechanism is as follows:

A similarity query label γi is created in each sub-data-
base and a minimum threshold ηmin and a maximum 
threshold ηmax for the number of similarity queries is 
set, which increases when the output samples xi in the 
sub-database are involved in immediate learning. When 
γi = ηmax exists in the sub-database, the current data-
base automatically deletes all samples of γi ≤ ηmin and 
re-updates all previous predicted data results and corre-
sponding auxiliary variables to the current database, and 
then initializes the value of γi , as shown in Fig. 2.

The adaptive data pruning mechanism prunes the data 
in the database well and dynamically maintains the quan-
tities in the biochemical reaction process sub-database so 
that the data in the sub-database can meet the require-
ments of the JITL strategy.

Fig. 1 Partitioning of local query domains based on the IFCM algorithm
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Dynamic filtering of query domain auxiliary variables
Considering many auxiliary variables measured online 
during the biochemical reaction process, some of the 
auxiliary variables do not correlate well with the domi-
nant variables, and too many input variables increase the 
complexity of the model and reduce its response speed. 
In addition, as the process characteristics and various 
parameters change in different stages of biochemical 
reaction process, the auxiliary variables representing the 
dynamic characteristics of the biochemical reaction pro-
cess will change accordingly. This paper uses the K-near-
est neighbor mutual information estimation (K-MI) 
method for dynamic real-time screening of auxiliary vari-
ables to improve the predictive performance of the soft 
sensor model.

Mutual information was first proposed by Shan-
non [15]. Intuitively, mutual information can measure 
the interrelationship between two random variables. 
However, the probability distribution of each variable 
is unknown in the actual soft sensor implementation, 
making the calculation of mutual information difficult. 
However, the probability distribution of each variable is 
unknown in the actual soft sensor implementation, mak-
ing the calculation of mutual information difficult. There-
fore, the mutual information between variables can be 
estimated directly using the K-nearest neighbor estima-
tion of mutual information (K-MI) method [16–18]. The 
estimate of the mutual information I

(
x, y

)
 is:

where: �(k) is the digamma function, 
�(x) = Ŵ−1(x)dŴ(x)/dx ; k is generally considered 
to be 2 to 6, and k is set to be 4 in this circle. N  is the 
number of samples. �· · · � means that the values of the 
digamma function are averaged over all variables, i.e., 
�· · · � = N−1

∑N
i=1 E[· · · (i)].

K-MI algorithm is used to filter auxiliary variables, 
which not only reduces the model’s complexity and 
improves the model’s response time, but also contributes 
to the predictive performance of the model.

JITL strategy in online modeling phase
JITL principles
JITL is an online local modeling method. which builds a 
historical database by collecting a large sample of data 
offline. When a prediction sample arrives, the predic-
tion model first looks for samples similar it in the histori-
cal database, then uses these similar data to build a local 
model, and finally predicts the output. As soon as the pre-
diction results are output, the model will be immediately 
abandoned while waiting for the following measurement 
sample to arrive. The JITL strategy is more suitable for 
the biochemical reaction process than using a traditional 
offline global model. The comparison between traditional 

(3)
I
(
x, y

)
= �(k)− 1/k − ��(nx)+�

(
ny
)
� +�(N )

Fig. 2 The offline system dynamically updates the database
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modeling methods and JITL modeling framework is 
shown in Fig. 3.

JITL method based on multiple similarity metrics
In JITL, A single similarity metric cannot accurately 
portray the relationship between input and output, 
resulting in poor model generalization performance. 
Several weighting functions are available for assessing 
similarities, such as truncation and Gaussian functions. 
However, it is pointed out that the selection of weight 
functions may not influence the modeling performance 
as the selection of similarity [19]. Hence, the definition of 
similarity plays a significant role in the success of the JITL 
modeling framework. Based on this, this paper uses mul-
tiple similarity metrics to assess the similarity between 
samples, allowing for increased model diversity and 
enhancing model robustness performance. This paper 
uses Euclidean Distance (ED), Covariance Weighted Dis-
tance (CWD), and similarity metrics based on distance 
and angle to select suitable sample sets.

(1) ED Similarity. This metric is defined based on the dis-
tance of the data from two points in Euclidean space.

where: di is the Euclidean distance between the query 
sample and the historical sample in Eq. (4). in Eq. (5), σd 

(4)ωi = e
(
−d2i /ϕ1σd

)

(5)di =
√(

xi − xq
)T (

xi − xq
)

is the standard deviation of the distance vector di and ϕ1 
is the local adjustment parameter.

(2) CWD Similarity. This metric considers the relation-
ship between input variables and between input and 
output variables.

where:H is the weighting matrix,X and y are the input 
and output matrices, respectively.

(3) A similarity metric based on distance and angle. The 
metric uses the angle between two vectors in the 
space of a sample to measure the degree of similarity 
between samples.

where: d2,i and cos(θxi) denote the distance and angu-
lar similarity between the query and historical samples, 
respectively.

(6)di =
√(

xi − xq
)T

H
(
xi − xq

)

(7)H =
(
XTy

)T(
XTy

)
/�XTy�2

(8)cos(θi) = �xi, xq�/
(
�xi�2�xq�2

)

(9)
ωi = �

√
e
(
−d2i /ϕ2σd

)
+ (1− �)cos(θi), cos(θi) ≥ 0

Fig. 3 Comparison between traditional modeling methods and JITL
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In this paper, three local models are constructed using 
three similarity metrics to filter the queried domain and 
generate diverse local state identification results.

Local XGBoost model construction
In the online modeling stage, the XGBoost algorithm is 
chosen as the base learner for soft sensors, considering 
the stability and rapidty of XGBoost. The XGBoost algo-
rithm is implemented in a gradient boosting framework, 
where base learners are built during boosting, with each 
base learner learning from the previous base learner and 
updating the residuals. A strong learner is eventually 
formed by analyzing the base learners’ learning residuals 
and updating the sample weights during each iteration, as 
shown in Fig. 4.

First define a decision tree whose output function is 
shown in Eq. (10).

where: x is the input vector, q is the structure of the tree, 
ω is the corresponding leaf fraction, T  is the number of 
nodes in the tree with leaves, and d is the dimensionality 
of the data features. Then, assuming that the fraction of 
leaf nodes of sample i in the jth decision tree is ωij , the 
output function of this sample after t decision tree itera-
tions is given by Eq.  (11). The objective function of the 
XGBoost algorithm is shown in Eq. (12).

where: 
∑

N
i=1L

(
yi,

⌢
y
(t)

l

)
 is the loss function, which repre-

sents the sum of the error values between the true value 
yi and the predicted value ŷ(t)l .

(10)f (x) = ωq(x),ωǫR
T , q : Rd → {1, 2, . . . ,T }

(11)ŷ
(t)
l =

t∑

j=1

fj(xi) =
t∑

j=1

ωij

(12)Obj(t) =
N∑

j=1

L
(
yi, ŷ

(t)
l

)
+

t∑

j=1

�
(
fj
)

Assuming that the XGBoost algorithm does not con-
strain the number of nodes, the tree’s structure splits 
maximally, in which case the XGBoost model will be 
overfitted. Therefore, a regular term �

(
fj
)
 is added to the 

objective function to prevent over-fitting. A penalty term 
ζ is introduced into the objective function of a single 
decision tree, as shown in Eq. (13).

where: T  is the number of leaf nodes. ωj is the fraction of 
the jth leaf node. γ and � are hyperparameters to control 
the generalization error and prevent overfitting.

It should be noted that the XGBoost algorithm uses 
a second-order Taylor expansion for the loss function, 
which not only improves the accuracy of the model but 
also allows the gradient to converge faster, just as New-
ton’s method converges faster than SGD. After simplifica-
tion and t iterations, the objective function is as follows:

where: Gj is 
∑

i∈Ij gi , Hj is 
∑

i∈Ij hi.
 To find the optimal solution of the objective func-

tion, the minimum value of Obj(t) is required, i.e., the 
minimum value of ωj is found in ω∗

j  . The optimal solu-
tion of the objective function is equivalent to Eq.  (15), 
and the final optimal solution of the objective function is 
obtained as shown in Eq. (16).

(13)�
(
ft
)
= γT +

1

2
�

T∑

j=1

ω2
j

(14)obj(t) = γT +
T∑

j=1

(
ωjGj +

1

2
ω2
j

(
�+Hj

))

(15)ω∗
j = arg min

(
ωjGj +

1

2
ω2
j

(
�+Hj

))

(16)Obj(t)
∗ = γT −

1

2

T∑

j=1

G2
j

�+Hj

Fig. 4 Learning method of XGBoost model
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In addition, XGBoost models are engineered to sup-
port parallelized model training, and the problem of not 
being able to load all the feature values into local memory 
for distributed datasets can be solved by XGBoost mod-
els using an approximate histogram algorithm. At the 
same time, the XGBoost algorithm’s cache-aware access 
technology and Block out-of-core compute optimization 
technology can efficiently increase the system’s resource 
usage. These engineering optimizations specific to 
XGBoost models can all significantly improve the speed 
of XGBoost modeling. The use of the XGBoost model as 
a base learner is very suitable for the JITL strategy com-
pared to other models.

Improved sparrow algorithm
In the modeling process, the accuracy and robustness of 
the free-growing XGBoost model are easily affected by 
the parameters, and allowing the XGBoost model to grow 
freely will result in an over-fitting model. In addition, 
although the free-growing XGBoost model will improve 
the model prediction accuracy, it will significantly reduce 
the model’s computational efficiency, increase the sys-
tem’s lag, and is unsuitable for online modeling strat-
egy. Therefore, parameters such as the learning rate, the 
maximum number of iterations, and the maximum depth 
of the tree of XGBoost need to be optimized as a way of 
balancing all aspects of the performance of the XGBoost 
model, i.e., to improve the convergence speed of the 
model without losing prediction accuracy. The Sparrow 
Search Algorithm (SSA) has been widely used among the 
various algorithms for optimizing parameters. It is a new 
intelligent optimization algorithm that mainly simulates 
the foraging and predation prevention process of a spar-
row flock [20], and consists of a sparrow flock foraging 
model with a discoverer, a follower, and an early warning. 
The specific search process is as follows:

(1) The mathematical expression for the iterative 
update of the discoverer position is shown in 
Eq. (17).

(2) The mathematical expression for iterative follower 
position update is shown in Eq. (18).

(17)xt+1
i,d =

{
−i

α·gmax
, r < β

xt+1
i,d + q · l, r ≤ β

(18)

xt+1
i,d =






q · exp
�

xtworst−xti,d
t2

�
, i ≥ n

2

xt+1
p +

���xti,d − xt+1
p

��� · a+ · l, i ≤ n
2

(3) The mathematical expression for the anti-preda-
tory behavior of an early warning when it becomes 
aware of danger is shown in Eq. (19).

It is worth noting that sparrow populations require 
extensive optimization searching in the early iterations. 
At the same time, diversity decreases in late iterations, 
leading to premature algorithm convergence and a ten-
dency to fall into local extremes. To address this problem, 
this paper proposes a hybrid variational optimization 
strategy (ISSA), i.e., using the standard Cauchy distribu-
tion function and standard Gaussian distribution func-
tion to enhance the diversity of the sparrow population 
so that the joiners have a more vital ability to jump out of 
the optimal local solution.

The hybrid variation strategy introduces dynamic varia-
tion parameters �1 , �2 according to the number of iterations.

where: t is the current number of iterations; T  is the max-
imum number of iterations; and the standard Gaussian 
distribution function and standard Cauchy distribution 
function are shown below:

The hybrid variation strategy is to generate a new loca-
tion after each iteration based on the joiner location in 
the current iteration and to compare the fitness values of 
the two locations. During the iterative process, param-
eter �1 is gradually reduced, and parameter �2 is gradually 
increased, thus enhancing the ability of the algorithm to 
jump out of local extremes and global search. This paper 
uses the ISSA algorithm to optimize the XGBoost model, 
resulting in superior robustness and predictive power.

(19)xt+1
i,d =






xt+1
best + ρ ·

���xti,d − xtbest

���, fi > fg

xti,d + k ·

����xti,d−xtbest

���
(fi−fω)+ε

�
, fi = fg

(20)
xt+1′
i,d = xt+1

best [1+ �1Cauchy(0, 1)+ �2Gauss(0, 1)]

(21)�1 = 1−
t2

T 2

(22)�2 =
t2

T 2

(23)f (x) =
1

√
2π

exp

(
−
x2

2

)
−∞ < x < +∞

(24)f (x) =
1

π
(
1+ x2

) −∞ < x < +∞
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The structure of the ISSA algorithm for optimizing the 
XGBoost model is shown in Fig. 5.

Model stacking strategy based on multilayer perceptron
Considering the multiple XGBoost primary learning 
models established in JITL modeling of similar metrics, it 
is necessary to further integrate multiple XGBoost mod-
els. Currently, most multi-model fusions use the weight-
ing approach in the integration strategy to determine 
the models’ weights by cross-validation. However, cross-
validation does not guarantee the best model selection 
in terms of the actual generalization performance of the 
test set [21]. In order to enhance the generalization per-
formance of the whole soft sensor model, this paper uses 
model stacking strategy to improve the prediction per-
formance of the soft sensor model. At the same time, to 
prevent the model from overfitting, using a weakly fitted 

multilayer perceptron (MLP) as the second layer of the 
meta-learner, the structure of the MLP is shown in Fig. 6.

As shown in Fig. 6, a multilayer perceptron model with 
a forward structure is constructed, and the complexity 
of the model is balanced by adjusting the number of hid-
den layers and the number of neurons. When the model 
is overfitting, the model’s generalization ability can be 
increased by reducing the number of hidden layers and 
the number of neurons in the MLP model. Conversely, 
when the model appears to be under-fitted, the model 
complexity can be increased by increasing the number of 
hidden layers and neurons in the MLP model.

In addition, the training set for the secondary learn-
ers in most Stacking model research strategies will also 
be obtained using k-fold cross-validation. However, 
for the free-growing XGBoost model, the k-fold cross-
validation approach does not substantially improve the 

Fig. 5 Structure of the ISSA algorithm for optimizing the XGBoost model

Fig. 6 Structure diagram of multilayer perceptron
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generalization of the metamodel, and there is a risk of 
data leakage. It takes several experimental simulations  
to find the exact number of k-folds, which greatly wastes 
time for model construction. Therefore, this paper 
adopts a new strategy to optimize the Stacking model, 
replacing the K-fold cross-validation scheme by pre-
separating the data set. Firstly, the data set is obtained 
through multiple similarity measures, and the similar 
data sets of each model are arranged according to the 
similarity; Then, a portion of the data set is extracted 
using uniform sampling, which allows a greater degree 
of information about the characteristics of the data to 
be obtained; Finally, the separated data set is used as the 
training set of the meta-learner, as shown in Fig. 7. This 
paper uses an optimized solution that is more adapted 
to the JITL strategy than the original cross-validation 
(CV) solution in Stacking, which not only dramatically 
prevents the reuse of data and reduces the risk of infor-
mation leakage but also allows the system to be more 
responsive.

Modeling process
The flow of the modeling method proposed in this 
paper is shown in Fig. 8.

To better illustrate the process of online soft sensor 
modeling in this paper, the modeling process is described 
as follows:

Step 1: In the offline stage, multiple query domains 
are divided using the IFCM algorithm, and the main 
auxiliary variables in each query domain are deter-
mined separately using the K-MI algorithm.
Step 2: In the online prediction stage, the KL scat-
ter is used to determine the sub-database in which 
the queried domain is located when the query data 
arrives.

Step 3: The multi-similarity measure is used to 
extract the data in the queried domain, and the 
extracted data is sorted and segmented. Finally, the 
remaining data after segmentation are fed into the 
ISSA-XGBoost local algorithm for model training, 
respectively.
Step 4: The separated dataset is also fed into the 
ISSA-XGBoost model, and the matrix results pre-
dicted by the first layer of the model are then fed into 
the MLP algorithm for MLP model training.
Step 5: Send the query data to the JS-ISSA-XGBoost 
model for prediction output, and store the output 
results in the storage database to wait for the sub-
database update.
Step 6: When the query data obtains the current pre-
diction result through the JS-ISSA-XGBoost model, 
the query data and the JS-ISSA-XGBoost model will 
be released, and the system waits for the arrival of the 
following query data.

Results
Simulation example
In order to validate the effectiveness of the proposed 
online soft sensor modeling method, this paper simu-
lates the data from Pichia pastoris fermentation process. 
Pichia pastoris fermentation process is a highly coupled 
multi-input and multi-output system, which has the 
characteristics of high nonlinearity, time-varying and 
hysteresis. Due to the difficulty of measuring some key 
biochemical parameters online, the Pichia pastoris fer-
mentation process cannot be effectively controlled and 
optimized [22, 23]. Therefore, it is of great significance 
to establish an effective soft sensor model for Pichia 
pastoris fermentation process. Taking Pichia pastoris 
fermentation as the object, the Pichia pastoris GS115, 
 MutSHis + was selected as the strain in this experiment. 
The fermentation process was completed on the pilot 

Fig. 7 The construction of the Stacking model and the training method of the model
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platform provided by Yangzhong Jiaocheng Biotechnol-
ogy Research Co., Ltd, and the adopted fermentation 
tank was the A103-500L model. Figure 9 shows the struc-
ture of Pichia pastoris fermentation process.

The fermentation period is approximately 90  h, and 
the sampling period of auxiliary variables is 15 min. This 
paper builds a database by uploading the collected data 
to a computer through a distributed control system. In 
addition, the cell concentration X and product concen-
tration P were measured by a spectrophotometer, and the 
sampling period was determined according to the situa-
tion. During the exponential growth phase, offline sam-
pling and measurement were performed every 1  h, and 
sampling was performed every two hours during other 
periods. The cell concentration was measured by the dry 

cell weight method: 10 ml of the fermentation broth was 
centrifuged at 10000r/min for 10 min in a TGL20M high-
speed centrifuge. After removing the supernatant, the 
pellet was washed twice with deionized water, dried at 
80 °C to constant weight, and then weighed.

The environmental variables measured by the sens-
ing instruments were taken much more frequently than 
those sampled offline during building the initial database. 
In order to align critical parameters such as cell concen-
tration with the sampling time of the environmental vari-
ables, this paper uses interpolation to supplement them. 
The fermentation data of 10 batches of Pichia pastoris 
were collected through experiments. 3600 samples were 
obtained by interpolation method, 90% of which were 
used as the training set and 10% as the test set.

Fig. 8 Overall structure diagram of modeling algorithm



Page 11 of 19Zhang et al. BMC Biotechnology           (2023) 23:49  

Query domain split creation
The "elbow method" was used to determine the number 
of divisions. After several tests, when k > 4 , the down-
ward trend tends to level off, so the optimal number of 
clustering centers is 4, i.e., the offline state of the queried 
domain to be divided into four sub-databases, as shown 
in Fig. 10.

Local variable selection
By analyzing the mechanism of Pichia pastoris fer-
mentation process, it can be known that the cell con-
centration and the product concentration can reflect 
the internal state of the fermentation to the greatest 
extent, so these two variables are selected as dominant 
variables that need to be predicted. The environmental 
variables that can be measured directly by the instru-
ment during fermentation are Dissolved oxygen con-
centration (DO) , Exhaust CO2 concentration 

(
ηCO2

)
 , 

pH  of fermentation broth (pH) , Flow acceleration rate 
of inorganic salts fb , Pressure in the fermenter (P) , 
Flow of air (l) , Fermentation time (t) , Flow rate of con-
densate fw , Flow acceleration rate of ammonia fa , Flow 
acceleration rate of methanol ff  , Flow acceleration rate 
of glucose fc , Fermentation temperature (T ) , Motor 
stirring speed (r) , Flow acceleration rate of glycerine (
fe
)
 , Flow acceleration rate of peptones fd , Volume of 

fermentation broth (V ) . These measurable variables 
are used as auxiliary variables, and the mutual infor-
mation between the auxiliary and dominant variables 
in different query domains is calculated as shown in 
Table 1.

The mutual information in Table  1 of this paper was 
arranged in order, and the top 6 environmental vari-
ables were selected as auxiliary variables for each query 
domain. Each query domain constructs its soft sensor 
model, as shown in Eq. (25).

Fig. 9 Structure of Pichia pastoris fermentation process
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(25)






�1(X) = f
�
t,DO, ηCO2 , fw , fa, ff

�

�2(X) = f
�
t,DO, ff , ηCO2 , fw , fc

�

�3(X) = f
�
t, ηCO2 ,DO, f w , ff , fe

�

�4(X) = f
�
t,DO, ηCO2 , f w , fc, ff

�

Prediction result analysis
To verify the superiority of the online soft sensor method, 
we established five models for predicting cell concentra-
tion and product concentration in the Pichia pastoris fer-
mentation process: the XGBoost model, SSA-XGBoost 
model, ISSA-XGBoost model, J-ISSA-XGBoost model, 
and JS-SSA-XGBoost model. We applied these models to 
predict the cell concentration, and the results are shown 
in Fig. 11.

It can be seen from Fig. 11(a) that the cell concentration 
prediction results of the XGBoost model have a signifi-
cant degree of dispersion, indicating that the prediction 
results are very different from the actual values, and the 
changes in cell concentration cannot be tracked well. In 
contrast, the improved SSA-XGBoost model using the 
sparrow optimization algorithm is less discrete because 
the sparrow algorithm, while limiting the ability of 
XGBoost to grow freely, improves the ability of XGBoost 
to generalize partially. As can be seen from Fig.  11(b), 
the prediction results of the ISSA-XGBoost model are 
closer to the actual values than the SSA-XGBoost model 
at some stages after the improvement of the sparrow 
algorithm. This is because the ISSA optimization algo-
rithm increases the diversity of the model at the later 
stages of the iteration, which gives the model the ability 
to jump out of the local optimum. Therefore, the predic-
tion results are improved compared to those before the 
improvement. Compared with the offline global model 

Fig. 10 SSE values for different numbers of clusters

Table 1 Mutual information between environmental and dominant 
variables

Environmental variables Query Domain

QD1 QD2 QD3 QD4

Dissolved oxygen concentration (DO) 1.16 1.23 1.11 1.09

Exhaust CO2 concentration ηCO2
1.05 1.10 1.13 1.07

pH of fermentation broth (pH) 0.65 0.62 0.61 0.59

Flow acceleration rate of inorganic salts (fb) 0.73 0.72 0.69 0.71

Pressure in the fermenter (P) 0.12 0.21 0.10 0.32

Flow of air (l) 0.21 0.36 0.35 0.32

Fermentation time (t) 1.39 1.45 1.30 1.35

Flow rate of condensate fw 0.90 0.96 1.05 0.97

Flow acceleration rate of ammonia (fa) 0.85 0.79 0.72 0.71

Flow acceleration rate of methanol (ff ) 0.83 1.21 1.04 0.80

Flow acceleration rate of glucose fc 0.44 0.82 0.77 0.81

Fermentation temperature (T ) 0.31 0.35 0.29 0.32

Motor stirring speed (r) 0.19 0.23 0.2 0.17

Flow acceleration rate of glycerine (fe) 0.46 0.81 0.86 0.73

Flow acceleration rate of peptones (fd) 0.28 0.35 0.41 0.39

Volume of fermentation broth (V) 0.76 0.71 0.76 0.75
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in Fig. 11(a) and (b), the prediction ability of the offline 
global model and the JITL local model can be expressed 
in Fig.  11(c). In Fig.  11(c), the discreteness of the pre-
diction results of the JITL local model is significantly 
reduced, which shows that the online modeling scheme 
is better than the offline modeling. Finally, in Fig. 11(d), 
it can be seen that the Stacking model built using MLP 
has improved the prediction accuracy of the model again, 
which also shows that the MLP model has improved the 
generalization ability of J-ISSA-XGBoost.

To further validate the feasibility of the algorithm, dif-
ferent prediction models were used to predict the prod-
uct concentration of Pichia pastoris, as shown in Fig. 12.

As shown in Fig.  12, the ISSA-XGBoost model opti-
mized in Fig.  12(b) has reduced dispersion in the 

prediction results compared to the original model in 
Fig.  12(a). The JITL strategy cited by J-ISSA-XGBoost 
in Fig.  12(c) predicts significantly lower errors com-
pared to the results predicted by the offline models in 
Fig. 12(a) and (b). This directly reflects the correctness 
of the model optimization using the ISSA algorithm 
and the JITL strategy. Furthermore, as can be seen in 
Fig. 12(d), the improved JS-ISSA-XGBoost model using 
the MLP algorithm has higher prediction accuracy 
compared to the other models throughout the fermen-
tation process of Pichia pastoris. In order to better 
reflect the prediction accuracy of different models, four 
models were selected for error analysis in this paper, as 
shown in Fig. 13, and detailed error analysis tables are 
established, as shown in Table 2.

Fig. 11 Comparison of cell concentrations predicted by different models for Pichia pastoris
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As shown in Table 2, this paper uses root mean square 
error (RMSE)、coefficient of determination 

(
R2

)
 , mean 

relative error (MRE)and maximum absolute error 
(MAE) as the evaluation index of the model. It can be 
seen intuitively that the R2 of the improved model has 
been improved and the RMSE has been reduced signifi-
cantly. This shows that the JS-ISSA-XGBoost soft sen-
sor model proposed in this paper is superior to other 
models in terms of prediction accuracy and system 
robustness.

Discussion
The biochemical reaction process is nonlinear, time-
varying, and coupled. To address this issue, most bio-
chemical reaction processes employ an offline soft 
sensor modeling approach. Offline models determine 
parameters by training a historical dataset and fix this 

portion of parameters. Over time, changes in operating 
conditions or the environment may render the original 
parameters unsuitable for the current biochemical reac-
tion process, resulting in the failure of the offline model. 
The developed JS-ISSA-XGBoost model, on one hand, 
utilizes the latest data from the current phase and data 
that significantly contribute to the model from previous 
phases as the training set, which is then updated in the 
database. On the other hand, through an online learning 
approach, the model iterates continuously, constantly 
updating itself. By implementing the aforementioned 
improvement approach, the JS-ISSA-XGBoost model 
resolves the issue of model failure and provides a 
theoretical foundation for the control of biochemi-
cal reactions. In the reaction process, the proposed 
JS-ISSA-XGBoost model exhibits less variation in pre-
diction accuracy compared to the offline model, making 

Fig. 12 Product concentration prediction curves for different prediction models for Pichia pastoris
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it more suitable for long-term control of biochemical 
reaction processes.

Additionally, to further enhance the credibility of the 
model, this study compares the JS-ISSA-XGBoost model 
with other algorithmic models, as shown in Fig.  14. As 
depicted in Fig.  14(a), the LSSVM algorithm, derived 
from SVM, is suitable for small sample learning. How-
ever, there are still large prediction errors in the simu-
lation results, which can have a significant impact on 
subsequent biochemical process control. As shown in 
Fig. 14(b), the GPR model exhibits good prediction per-
formance for the reaction process after 80  h of Saccha-
romyces cerevisiae fermentation, but performs poorly 
in predicting the reaction process prior to 80 h, indicat-
ing its limited stability. As shown in Fig.  14(c) and (d), 
the PSO-ELM and PCA-LSTM models demonstrate 
good prediction results with low dispersion, highlight-
ing the feasibility of algorithm-optimized models. Fig-
ure  14(e) reveals that the proposed JS-ISSA-XGBoost 
model outperforms other algorithmic models in terms 
of superior predictive performance. In this study, vari-
ous performance metrics were employed to evaluate the 
performance of the models, as illustrated in Fig. 15. From 

Fig.  15, it is evident that the JS-ISSA-XGBoost model 
exhibits smaller values of RMSE, MAE, and MRE com-
pared to other models. Moreover, its R2 value is closer 
to 1 relative to the other models, indicating that the 
JS-ISSA-XGBoost model demonstrates superior perfor-
mance when compared to the other models.

Certainly, the JS-ISSA-XGBoost model also has certain 
limitations. Compared to offline models, the JS-ISSA-
XGBoost model exhibits a certain degree of response 
lag, which is unavoidable. The JS-ISSA-XGBoost model 
employs an online learning scheme, which incurs a cer-
tain amount of time for searching sample data during 
real-time learning and iterative model updates. Conse-
quently, the online model exhibits a relative lag compared 
to the offline model. Furthermore, when applying the 
JS-ISSA-XGBoost model to different biochemical reac-
tion processes, the number of primary and auxiliary vari-
ables needs to be manually determined, which is highly 
subjective. The variation of auxiliary variables differs 
significantly across different biochemical reaction pro-
cesses, and the number of primary and auxiliary variables 
directly impacts the model’s response speed. If the num-
ber of auxiliary variables is manually determined to be 

Fig. 13 Predicted residual curves of cell concentration versus product concentration under different models

Table 2 Comparison of prediction errors under different models

Model Cell concentration Product concentration

RMSE R
2 RMSE R

2 MRE MAE

XGBoost 0.1627 0.7836 9.1977 0.9642 0.4132 30.4069

ISSA-XGBoost 0.1074 0.9058 7.6863 0.9750 0.2898 26.4064

J-ISSA-XGBoost 0.0622 0.9684 4.8525 0.9900 0.2117 17.8598

JS-ISSA-XGBoost 0.0260 0.9945 2.6688 0.9970 0.0889 8.3481
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Fig. 14 Product concentration curves predicted by different models



Page 17 of 19Zhang et al. BMC Biotechnology           (2023) 23:49  

too high, it increases the complexity of the model, making 
the solution more challenging and subsequently affect-
ing the response speed of the online model. Conversely, 
if the number of auxiliary variables is too low, it reduces 
the model’s complexity but results in decreased predic-
tion accuracy. Therefore, the identification of a reason-
able number of primary and auxiliary variables through 
adaptive selection to improve the model’s response speed 
without compromising prediction accuracy poses a sig-
nificant challenge in optimizing the prediction and con-
trol process of biochemical reactions.

In conclusion, in future research, efforts should focus 
on improving the response speed of online learning mod-
els and investigating the adaptive selection of primary 
and auxiliary variables. It is crucial to strike a balance 
between the speed and accuracy of online models, thus 

providing a foundation for further model optimization 
and systematic prediction control.

Conclusion
This paper proposes an innovative online soft sensor 
modeling method based on JS-ISSA-XGBoost, aim-
ing to address the challenges of tracking the dynamic 
characteristics and parameters of biochemical reaction 
processes over extended periods. This method con-
structs multiple sub-databases using offline modeling 
techniques and adaptively prunes sample data based on 
similarity labels. In the online modeling stage, the query 
domain for sampling data is determined using KL diver-
gence, and multiple improved XGBoost soft sensor mod-
els are generated using several similarity-driven online 
learning strategies. Finally, a multilayer perceptron 

Fig. 15 Comparison of performance metrics among different models
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(MLP) is employed to build a stacked ensemble model to 
enhance the overall algorithm’s generalization capabil-
ity. The proposed method is validated in an actual Pichia 
pastoris fermentation process, and the experimental 
results demonstrate high prediction performance with 
a root mean square error of 0.0260 and a coefficient of 
determination of 0.9945 for cell concentration, as well 
as a root mean square error of 2.6688 and a coefficient 
of determination of 0.9970 for product concentration. 
These results indicate the model’s superior predictive 
performance.

The JS-ISSA-XGBoost model successfully predicts 
nonlinear and strongly coupled fermentation processes, 
demonstrating its high potential in addressing various 
biochemical reaction problems and can be applied to a 
wider range of biochemical reaction processes. Further-
more, this online model exhibits advantages in terms of 
real-time capability, flexibility, and efficiency in biochem-
ical reaction control, which are crucial for optimizing the 
performance and stability of controllers. This makes it 
highly suitable for industrial purposes and showcases its 
immense application prospects.

In the field of process control, in order to enhance 
the response efficiency of a system, it is imperative to 
analyze the algorithm’s time complexity, memory algo-
rithm complexity, and computational complexity. While 
the basic XGBoost model has addressed these issues to 
some extent, we have refrained from providing a detailed 
explanation in order to prevent the general readers from 
deviating from the main focus of this paper. However, in 
the design and application of industrial biochemical reac-
tion control systems, these aforementioned issues merit 
further in-depth research and exploration.
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