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Abstract
Background  Optimization of indirect shoot regeneration protocols is one of the key prerequisites for the 
development of Agrobacterium-mediated genetic transformation and/or genome editing in Passiflora caerulea. 
Comprehensive knowledge of indirect shoot regeneration and optimized protocol can be obtained by the 
application of a combination of machine learning (ML) and optimization algorithms.

Materials and methods  In the present investigation, the indirect shoot regeneration responses (i.e., de novo shoot 
regeneration rate, the number of de novo shoots, and length of de novo shoots) of P. caerulea were predicted based on 
different types and concentrations of PGRs (i.e., TDZ, BAP, PUT, KIN, and IBA) as well as callus types (i.e., callus derived 
from different explants including leaf, node, and internode) using generalized regression neural network (GRNN) and 
random forest (RF). Moreover, the developed models were integrated into the genetic algorithm (GA) to optimize the 
concentration of PGRs and callus types for maximizing indirect shoot regeneration responses. Moreover, sensitivity 
analysis was conducted to assess the importance of each input variable on the studied parameters.

Results  The results showed that both algorithms (RF and GRNN) had high predictive accuracy (R2 > 0.86) in both 
training and testing sets for modeling all studied parameters. Based on the results of optimization process, the highest 
de novo shoot regeneration rate (100%) would be obtained from callus derived from nodal segments cultured in 
the medium supplemented with 0.77 mg/L BAP plus 2.41 mg/L PUT plus 0.06 mg/L IBA. The results of the sensitivity 
analysis showed the explant-dependent impact of exogenous application of PGRs on indirect de novo shoot 
regeneration.

Conclusions  A combination of ML (GRNN and RF) and GA can display a forward-thinking aid to optimize and predict 
in vitro culture systems and consequentially cope with several challenges faced currently in Passiflora tissue culture.
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Introduction
Passionflower (Passiflora caerulea L.) is considered to be 
one of the most well-known climbing, evergreen shrub 
species [1]. P. caerulea is most often cultivated as a fruit 
crop, ornamental, or medicinal plant in virtually all tropi-
cal and subtropical regions of the world [2]. Due to the 
unique secondary metabolite profiles and phytochemi-
cal compositions of P. caerulea oils, there remain cer-
tain unexplored applications plant that relate to different 
fields of research [3, 4]. Various phenols, alkaloids, gly-
cosides, flavonoids, and saponins, represent P. caerulea 
compounds of high medicinal and industrial interest [5]. 
Improving P. caerulea with selected utility traits broad-
ens its biotechnological applicability, which forms the 
basis of the passionflower industry [6].

The micropropagation procedure, as vegetative repro-
duction in in vitro cultures, is an excellent way to obtain 
clones (i.e., plants genetically identical to the parent 
plants) and genetic improvement through genetic engi-
neering approaches [7]. A new plant arises from the 
existing meristems of the parent plant, from adventi-
tious meristems [8], or indirectly through the formation 
of callus (undifferentiated mass of tissue) [9, 10]. Micro-
propagation represents a common method of germplasm 
and biodiversity conservation for cultivated, threatened, 
and endangered species [1]. One of the most important 
purposes of micropropagation is also obtaining second-
ary metabolites [11–13]. The micropropagation process 
is generally carried out in a laboratory setting with con-
trolled light and temperatures, under axenic conditions 
[14]. Complete isolation from the external environment 
provides a given plant with protection against potential 
threats, such as the presence of parasites, viruses, bacte-
ria, or abiotic factors that can negatively influence growth 
development [15]. The development of an optimal micro-
propagation protocol makes it possible to obtain regener-
ated plants with significant healing potential, which are 
not easily accessible due to the small area of occurrence 
or are exposed to dangerous factors in the natural envi-
ronment [16, 17]. One of the most effective in vitro cul-
ture methods is indirect shoot regeneration, where callus 
is used to obtain de novo shoots [18, 19].

The indirect shoot regeneration protocol can be 
divided into three basic phases [6]. In phase I, the plant 
material is selected [20]. This stage is extremely impor-
tant because improperly selected explants can determine 
the results of cultivating [21, 22]. The explants should be 
taken from a young, healthy plant, living in an optimal 
environment, developing in a favorable period of the year 
(in spring, plants grow most intensively and are most pro-
ductive) [23]. The explant should be taken from the part 
of the plant that has meristematic cells, which guarantees 
further growth [20, 24, 25]. Sterilization of plant material 
to be cultured (seed or explant) is critically important to 

facilitate the axenic integrity of the culture [15]. Steriliza-
tion consists of rinsing the material in sodium, calcium 
or potassium hypochlorite or in ethanol and rinsing three 
times in sterile water [15]. Then, in phase II, the culture is 
established. The prepared explants should be transferred 
to a nutrient medium containing all micro- and macro-
elements necessary for the in vitro plant’s growth, as well 
as appropriate carbohydrate sources and exogenous phy-
tohormones determining the direction of development 
and influencing the physiological processes of explants 
[26, 27]. Explant orientation and placement within the 
culture vessel are also important factors impacting speci-
men quality. The proximity of explants to one another 
and proper exposure to media can dramatically influ-
ence various developmental characteristics that relate to 
the integrity of final products [6]. In the initial stage of 
growth, callus formation can be observed. Phase III con-
sists in extending the cultivation of callus on a medium 
enriched with phytohormones until the formation of de 
novo shoots is obtained [20]. In this phase, several factors 
(e.g., type of callus, medium composition, plant growth 
regulators (PGRs), light, and temperature) are influenced 
indirect de novo shoot regeneration [20, 27–30] (Fig. 1). 
Though optimization of these factors is necessary for 
successful indirect shoot regeneration, conventional sta-
tistical models are often inadequate and laborious due to 
manual processing and sequential assessment of single 
factors [31]. Therefore, novel and innovative computa-
tional approaches using machine learning (ML) can be 
adopted to enhance the analytical and predictive mea-
sures required to optimize indirect de novo shoot regen-
eration [32].

Machine learning is defined as an evolving sub-branch 
of artificial intelligence which can be considered a reli-
able and promising computational method to predict and 
optimize a broad range of complicated biological systems 
[33–49]. Analyzing tissue culture datasets and predicting 
optimized treatments using ML algorithms represents a 
favorable approach to in vitro research [32, 36, 50]. Spe-
cifically, regression versions of ML algorithms (e.g., gen-
eralized regression neural network (GRNN) and random 
forest (RF)) are currently being applied to several areas of 
plant tissue culture research [32], including callogenesis 
[51], shoot proliferation [52], androgenesis [53], somatic 
embryogenesis [54], and direct shoot regeneration [55].

There is currently no study that enlists ML methods for 
modeling and optimizing indirect, de novo shoot regen-
eration. The current study represents the first. Since ML 
methods represent powerful approaches to glean insight 
about the nature of in vitro biology, this work enlists two 
ML algorithms (GRNN and RF) to develop a predic-
tive model that relates callus type, PGR type, and PGR 
concentration to the success of indirect, de novo shoot 
regeneration of P. caerulea.
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Materials and methods
Plant material and experimental design
Seeds of P. caerulea were purchased from the Seed and 
Plant Improvement Institute, Karaj, Iran. All the experi-
ments done on P. caerulea are in compliance with rele-
vant institutional, national, and international guidelines 
and legislation. The seed sterilization and germination of 
P. caerulea were performed based on our previous pro-
tocol [15]. In the current study, three different explants 
(i.e., leaf, internode, and node) with 0.5 cm lengths were 
selected from a four-week-old in vitro-grown seedling of 
P. caerulea. In order to develop callus, leaves were cul-
tured in MS medium containing 0.6 g/L agar and 30 g/L 
sucrose along with 2.0 mg/ L 2,4-Dichlorophenoxyacetic 
acid (2,4-D) plus 0.2 mg/L indole-3-butyric acid (IBA) on 
the abaxial side, while internode and node explants were 
horizontally cultured on the mentioned medium. Cul-
tures were maintained in a growth chamber under dark 
conditions at 25 °C ± 2 °C for one month, at which point 
the calli produced was used as explants for the indirect, 
de novo shoot regeneration experiment.

To study the effect of plant growth regulators and dif-
ferent calli (i.e., callus derived from different explants 
including leaf, node, and internode), MS medium con-
taining 0.6  g/L agar and 30  g/L sucrose was used as a 
basal medium. The media contained various exogenous 
plant growth regulators at different concentrations 
including thidiazuron (TDZ: 0.0, 0.5, and 1.0  mg/L), 
6-benzylaminopurine (BAP: 0.0, 0.5, 1.0, 1.5, 2.0  mg/L), 
kinetin (KIN: 0.0, 0.5, 1.0, 2.0  mg/L), putrescine (PUT: 
0.0, 100, 300, 500  mg/L), and IBA (0.0, 0.05, 0.1, 0.15, 
0.2  mg/L). The experiment was performed based on a 
completely randomized design with a total of 39 treat-
ments in triplicate. A list of treatments is presented in 
Table 1. Each replicate consisted of 10 culture boxes and 

one callus was cultured in each box. The pH of all the 
media was adjusted to 5.7 before autoclaving at 121 °C at 
0.1 MPa for 20 min. All the chemicals for in vitro culture 
were supplied by Merck (Sigma-Aldrich products, Irvine, 
UK). Experimental cultures were maintained in a growth 
chamber at 25 °C ± 2 °C, 47 ± 3 µmol m2 s− 1 irradiance for 
two months, at which point de novo shoot regeneration 
rate, number of de novo shoots, and length of de novo 
shoots were measured. The obtained data (Additional file 
1) was used as a dataset to feed ML algorithms.

Machine learning procedures
Before using ML algorithms, the data was normalized by 
using Box-Cox transformation. Although principal com-
ponent analysis (PCA) was applied to determine outliers, 
no outliers were detected in the dataset. Type of callus 
(i.e., callus derived from different explants including leaf, 
node, and internode), TDZ, BAP, PUT, KIN, and IBA 
were considered as input variables, while de novo shoot 
regeneration rate, number of de novo shoots, and length 
of de novo shoots were fed to ML as target variables 
(Fig. 2a). Moreover, 80% and 20% of the dataset were ran-
domly selected to train and test ML algorithms. In the 
current investigation, two supervised ML algorithms (RF 
and GRNN) were used to model and predict the indirect 
de novo shoot regeneration of P. caerulea.

The regression version of the RF algorithm (Fig.  2b) 
uses different subsets of training data by randomly resa-
mpling the main dataset with the substitution for gen-
erating several T of regression trees. Moreover, the RF 
algorithm, during induction of tree growth, uses the best 
predictor among a predictor subset (p) that has been ran-
domly selected from all input predictors. Therefore, the 
correlation of the different regression trees is avoided 
which leads to higher prediction accuracy. Finally, all T 

Fig. 1  Schematic view of factors influencing indirect de novo shoot regeneration
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regression trees are averaged to obtain the best final pre-
diction (Fig.  2b). GRNN as one of the sub-branches of 
artificial neural networks (ANNs) consisting of four lay-
ers (i.e., input, pattern, summation, and output) was used 
as another supervised ML algorithm in the current study 
(Fig. 2c). GRNN is based on a radial basis network which 
calculates the final prediction based on the average of 
all the weighted observed output data of former layers 
(Fig. 2c).

The accuracy and efficiency of the ML algorithms (FR 
and GRNN) were evaluated and compared by using three 

different performance criteria including coefficient of 
determination (R2), mean absolute error (MAE), and root 
mean square error (RMSE).

Optimization process
In the current study, a genetic algorithm (GA) was used 
to find the optimal level of TDZ, BAP, PUT, KIN, IBA, 
and callus type in order to maximize de novo shoot 
regeneration rate, number of de novo shoots, and length 
of de novo shoots. Hence, the developed ML models 
were fed to GA (Fig.  2d) where the generation number, 

Table 1  Effect of plant growth regulators and type of callus on indirect de novo shoot regeneration in P. caerulea
Callus
type

BAP
(mg/L)

KIN
(mg/L)

TDZ
(mg/L)

PUT
(mg/L)

IBA
(mg/L)

Regeneration rate
(%)

Shoot number Shoot length
(cm)

Leaf 0 0 0 0 0 0.00 ± 0.000 0.00 ± 0.000 0.00 ± 0.000

Node 0 0 0 0 0 0.00 ± 0.000 0.00 ± 0.000 0.00 ± 0.000

Internode 0 0 0 0 0 0.00 ± 0.000 0.00 ± 0.000 0.00 ± 0.000

Leaf 1 0 0 0 0.1 90.00 ± 0.000 8.33 ± 0.318 2.53 ± 0.145

Node 1 0 0 0 0.1 100.00 ± 0.000 8.87 ± 0.233 2.67 ± 0.176

Internode 1 0 0 0 0.1 90.00 ± 0.000 8.40 ± 0.200 2.23 ± 0.120

Leaf 1.5 0 0 0 0.15 60.00 ± 0.000 6.30 ± 0.208 2.30 ± 0.153

Node 1.5 0 0 0 0.15 73.33 ± 3.333 6.90 ± 0.100 2.73 ± 0.088

Internode 1.5 0 0 0 0.15 60.00 ± 0.000 6.17 ± 0.145 2.20 ± 0.115

Leaf 2 0 0 0 0.2 90.00 ± 0.000 7.67 ± 0.233 2.47 ± 0.203

Node 2 0 0 0 0.2 100.00 ± 0.000 7.97 ± 0.233 2.73 ± 0.186

Internode 2 0 0 0 0.2 86.67 ± 3.333 7.40 ± 0.173 2.53 ± 0.186

Leaf 0 0 0.5 0 0.05 80.00 ± 0.000 8.40 ± 0.252 2.40 ± 0.208

Node 0 0 0.5 0 0.05 93.33 ± 3.333 8.67 ± 0.145 3.00 ± 0.115

Internode 0 0 0.5 0 0.05 83.33 ± 3.333 8.30 ± 0.100 2.20 ± 0.115

Leaf 0 0 1 0 0.1 60.00 ± 0.000 6.33 ± 0.133 1.30 ± 0.173

Node 0 0 1 0 0.1 70.00 ± 0.000 6.43 ± 0.267 1.80 ± 0.115

Internode 0 0 1 0 0.1 56.67 ± 3.333 6.07 ± 0.133 1.17 ± 0.088

Leaf 0 1 0 0 0.1 43.33 ± 3.333 5.40 ± 0.252 1.27 ± 0.145

Node 0 1 0 0 0.1 50.00 ± 0.000 5.57 ± 0.167 1.50 ± 0.153

Internode 0 1 0 0 0.1 43.33 ± 3.333 5.13 ± 0.120 1.13 ± 0.088

Leaf 0 2 0 0 0.2 50.00 ± 0.000 4.73 ± 0.186 1.20 ± 0.115

Node 0 2 0 0 0.2 50.00 ± 0.000 5.23 ± 0.088 1.40 ± 0.208

Internode 0 2 0 0 0.2 46.67 ± 3.333 4.27 ± 0.186 1.13 ± 0.088

Leaf 0 0 0 300 0 30.00 ± 0.000 4.23 ± 0.133 1.23 ± 0.186

Node 0 0 0 300 0 43.33 ± 3.333 4.73 ± 0.133 1.47 ± 0.120

Internode 0 0 0 300 0 30.00 ± 0.000 4.33 ± 0.186 1.27 ± 0.145

Leaf 0 0 0 500 0 23.33 ± 3.333 3.53 ± 0.273 1.27 ± 0.176

Node 0 0 0 500 0 30.00 ± 0.000 4.20 ± 0.000 1.63 ± 0.088

Internode 0 0 0 500 0 23.33 ± 3.333 3.37 ± 0.120 1.30 ± 0.115

Leaf 0.5 0 0 100 0 20.00 ± 0.000 2.70 ± 0.153 0.99 ± 0.007

Node 0.5 0 0 100 0 30.00 ± 0.000 3.30 ± 0.200 1.20 ± 0.115

Internode 0.5 0 0 100 0 20.00 ± 0.000 2.33 ± 0.233 0.83 ± 0.088

Leaf 0 0 0.5 100 0 10.00 ± 0.000 1.87 ± 0.067 0.93 ± 0.145

Node 0 0 0.5 100 0 20.00 ± 0.000 2.47 ± 0.067 1.10 ± 0.115

Internode 0 0 0.5 100 0 10.00 ± 0.000 1.43 ± 0.133 0.87 ± 0.088

Leaf 0.5 0.5 0.5 0 0 10.00 ± 0.000 1.60 ± 0.100 0.93 ± 0.145

Node 0.5 0.5 0.5 0 0 16.67 ± 3.333 2.33 ± 0.133 1.33 ± 0.176

Internode 0.5 0.5 0.5 0 0 10.00 ± 0.000 1.40 ± 0.100 0.83 ± 0.120
BAP: 6-benzylaminopurine; IBA: indole-3-butyric acid; KIN: kinetin; PUT: putrescine; TDZ: thidiazuron. Values represent mean ± standard error.
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initial population, selection function, cross-over func-
tion, crossover rate, mutation function, and mutation 
rate were respectively considered as 1000, 200, Roulette 
Wheel, two-point cross-over, 0.6, uniform, and 0.05.

Sensitivity analysis
Sensitivity analysis was conducted to evaluate the impor-
tance degree of callus, TDZ, BAP, PUT, KIN, and IBA 
on de novo shoot regeneration rate, number of de novo 
shoots, and length of de novo shoots by calculating vari-
able sensitivity error (VSE) and variable sensitivity ratio 
(VSR). VSE shows the RMSE of the developed ML model 
(i.e., GRNN) when the input is eliminated from the devel-
oped model. VSR equals the ratio of VSE and RMSE of 
the developed ML when all inputs are available. Then, 
the importance of input variables is ranked based on the 
value of VSR. All the analyses were also conducted using 
MATLAB® software.

Results
Effect of plant growth regulators and type of callus on 
indirect de novo shoot regeneration in P. caerulea
In the current study, the effect of different types and con-
centrations of PGRs (i.e., TDZ, BAP, PUT, KIN, and IBA) 
as well as callus type (i.e., callus derived from different 
explants including leaf, node, and internode) were evalu-
ated on indirect shoot regeneration responses (i.e., de 
novo shoot regeneration rate, number of de novo shoots, 
and length of de novo shoots) of P. caerulea. Based on 
Table  1, different indirect shoot regeneration responses 
were obtained from different types of calli in the media 

containing various combinations of PGRs. The highest 
de novo shoot regeneration rate, the number of de novo 
shoots, and the length of de novo shoots were obtained 
from callus derived from node segment followed by calli 
derived from leaf and internode explants (Table  1). In 
relation to the combination of PGRs, the media contain-
ing 1 mg/L BAP along with 0.1 mg/L IBA led to the maxi-
mum de novo shoot regeneration rate and the number of 
de novo shoots, while the highest length of de novo shoots 
was observed in the media consisting of 0.5  mg/L TDZ 
along with 0.05  mg/L IBA (Table  1). Also, our results 
showed that there was no de novo shoot regeneration in 
the media without PGRs (Table 1).

In relation to the interaction between callus type and 
PGRs, the maximum de novo shoot regeneration rate 
(100 ± 0.0%) and number of de novo shoots (8.87 ± 0.233) 
were observed in calli derived from nodal segments cul-
tured in the media containing 1  mg/L BAP along with 
0.1 mg/L IBA (Table 1). Moreover, the highest length of 
de novo shoot (3 ± 0.115 cm) was observed in calli derived 
from nodal segments cultured in the media containing 
0.5 mg/L TDZ along with 0.05 mg/L IBA (Table 1).

Evaluation of generalized regression neural network 
(GRNN) and random forest (RF)
In the present investigation, the indirect shoot regenera-
tion responses (i.e., de novo shoot regeneration rate, the 
number of de novo shoots, and length of de novo shoots) 
of P. caerulea were predicted based on different types 
and concentrations of PGRs (i.e., TDZ, BAP, PUT, KIN, 
and IBA) as well as callus types (i.e., callus derived from 

Fig. 2  The schematic representation of the step-by-step methodology of the current study including (a) dataset consists of inputs (i.e., callus type, 
6-benzylaminopurine (BAP), indole-3-butyric acid (IBA), kinetin (KIN), putrescine (PUT), and thidiazuron (TDZ)) and outputs (i.e., regeneration rate, shoot 
number, and shoot length), (b, c), data modeling through generalized regression neural network (GRNN) and random forest (RF), respectively, and (d) 
optimization process through a genetic algorithm (GA).
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different explants including leaf, node, and internode) 
using GRNN and RF algorithms. Based on the results 
(Table  2), the GRNN algorithm led to the development 
of predictive models with higher R2 in both testing and 
training subsets in comparison to RF for all indirect shoot 
regeneration responses including de novo shoot regener-
ation rate (R2 > 0.99 for GRNN vs. R2 > 0.96 RF), the num-
ber of de novo shoots (R2 > 0.98 for GRNN vs. R2 > 0.97 for 
RF), and length of de novo shoots (R2 > 0.89 for GRNN 
vs. R2 > 0.86 for RF). Furthermore, the observed and pre-
dicted values in all indirect shoot regeneration responses 
were perfectly correlated in both training and testing 
subsets (Fig. 3).

In addition, RMSE was used to evaluate and compare 
the accuracy of algorithms (i.e., GRNN and RF). The 
results showed that the GRNN algorithm led to higher 
accuracy and performance in either testing or train-
ing subsets in comparison to RF for all indirect shoot 
regeneration responses including de novo shoot regen-
eration rate (RMSE < 3.08 for GRNN vs. RMSE < 3.12 
for RF), the number of de novo shoots (RMSE < 0.43 for 
GRNN vs. RMSE < 0.63 for RF), and length of de novo 
shoots (RMSE < 0.31 for GRNN vs. RMSE < 0.43 for RF) 
(Table 2). MAE as another performance criterion showed 
that the GRNN algorithm led to higher accuracy and per-
formance in either testing or training subsets in compari-
son to RF for all indirect shoot regeneration responses 
including de novo shoot regeneration rate (MAE < 1.21 
for GRNN vs. MAE < 1.45 for RF), the number of de novo 
shoots (MAE < 0.14 for GRNN vs. MAE < 0.25 for RF), 
and length of de novo shoots (MAE < 0.07 for GRNN vs. 
MAE < 0.12 for RF) (Table 2).

Optimization process
The developed GRNN models (the most accurate algo-
rithm in the current investigation) were integrated into 
the genetic algorithm (GA) as a single-objective evolu-
tionary optimization method to optimize the concentra-
tion of PGRs (i.e., TDZ, BAP, PUT, KIN, and IBA) and 
callus types (i.e., callus derived from different explants 
including leaf, node, and internode) for maximizing indi-
rect shoot regeneration responses (i.e., de novo shoot 
regeneration rate, the number of de novo shoots, and 
length of de novo shoots). Based on the results of opti-
mization using GRNN-GA (Table  3), the highest de 
novo shoot regeneration rate (100%) would be obtained 
from callus derived from nodal segments cultured in 
the medium supplemented with 0.77  mg/L BAP plus 
2.41 mg/L PUT plus 0.06 mg/L IBA. Also, the maximum 
number of shoots (8.75) would be obtained from callus 
derived from nodal segments cultured in the medium 
supplemented with 0.76  mg/L BAP plus 0.005  mg/L 
TDZ plus 0.96 mg/L PUT plus 0.076 mg/L IBA (Table 3). 
Moreover, the highest length of shoot (3.1 cm) would be 
obtained from callus derived from nodal segments cul-
tured in the medium supplemented with 0.002 mg/L BAP 
plus 0.007 mg/L KIN plus 0.5 mg/L TDZ plus 1.006 mg/L 
PUT plus 0.17 mg/L IBA (Table 3).

Importance degree of each input on P. caerulea indirect 
shoot regeneration responses
In the current study, sensitivity analysis through the cal-
culation of variable sensitivity ratio (VSR) was conducted 
to assess the importance of each input variable (i.e., cal-
lus type, TDZ, BAP, PUT, KIN, and IBA) on the stud-
ied objective functions (i.e., de novo shoot regeneration 
rate, the number of de novo shoots, and length of de novo 
shoots). According to our results (Table 4), the callus type 
was the most important factor for indirect shoot regen-
eration rate followed by BAP, IBA, PUT, TDZ, and KIN 
respectively. Callus type > BAP > KIN > TDZ > IBA > PUT 
was ranked for number of shoots (Table 4). In addition, 
callus type > BAP > KIN > PUT > TDZ > IBA was ranked 
for shoot length (Table 4). VSR values for callus type are 
considerably higher than all PGRs (Table  4), indicating 
callus type to be the principal factor impacting indirect, 
de novo shoot regeneration. This emphasizes the explant-
dependent impact of exogenous PGRs on indirect, de 
novo shoot regeneration.

Discussion
Indirect shoot regeneration of P. caerulea can be applied 
to production of secondary metabolites, clonal produc-
tion, and gene bank establishment [6, 28]. The latter two 
of which are integral to genotype preservation, while the 
former has broad biotechnological and medicinal appli-
cations. However, it is necessary to optimize several 

Table 2  Performance criteria of machine learning algorithms for 
indirect de novo shoot regeneration of P. caerulea in training and 
testing subsets
Output ML 

Model
subset R2 RMSE MAE

Regeneration 
rate

GRNN Training 0.99 2.65 0.00

Testing 0.99 3.08 1.21

RF Training 0.97 3.02 0.29

Testing 0.96 3.12 1.45

Shoot number GRNN Training 0.99 0.21 0.00

Testing 0.98 0.43 0.14

RF Training 0.98 0.45 0.02

Testing 0.97 0.63 0.25

Shoot length GRNN Training 0.94 0.18 0.00

Testing 0.89 0.31 0.07

RF Training 0.91 0.25 0.04

Testing 0.86 0.43 0.12
GRNN: generalized regression neural network; MAE: mean absolute error; ML; 
machine learning; R2: coefficient of determination; RF: random forest; RMSE: 
root mean square error.
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factors involved in de novo soot regeneration from cal-
lus cultures [32]. PGR type and concentration, in addi-
tion to the origin of calli represent fundamental factors 
affecting indirect, de novo shoot regeneration [27]. 
Importantly, the interaction of PGRs and callus type rep-
resents a critical factor impacting success of this process, 
which was exemplified in our results. In fact, any given 
concentration of PGRs will fall within the various dose-
response range according to the species and origin of the 

calli [6]. Therefore, the concentration of PGRs should be 
optimized before their application. However, construct-
ing and optimizing tissue culture protocols represents a 
major challenge to the field as a whole [51]. Conventional 
statistical methods and large experiments involving thou-
sands of treatments have traditionally been employed to 
develop tissue culture protocols [56]. Such techniques 
can only assess simple linear/curvilinear relationships 
between variables by serially assessing the influence of 

Table 3  Determination of the optimal level of plant growth regulators and callus types for maximizing indirect shoot regeneration 
responses through genetic algorithm
Fitness function Callus type BAP

(mg/L)
KIN
(mg/L)

TDZ
(mg/L)

PUT
(mg/L)

IBA
(mg/L)

Predicted-optimized outcome

Regeneration rate (%) Node 0.77 0.00 0.00 2.41 0.06 100

Shoot number Node 0.76 0.00 0.00 0.96 0.08 8.75

Shoot length (cm) Node 0.002 0.007 0.500 1.006 0.172 3.100
BAP: 6-benzylaminopurine; IBA: indole-3-butyric acid; KIN: kinetin; PUT: putrescine; TDZ: thidiazuron.

Fig. 3  Scatter plot of values of observations vs. predictions in training sets and testing sets of generalized regression neural network (GRNN) in (a) regen-
eration rate, (b) shoot number, and (c) shoot length
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individual factors without accounting for dynamic, inter-
actional effects of these factors on in vitro plant growth 
and development [56]. Additionally, traditional statistical 
methods and associated experimental systems are largely 
constrained by the extensive footprint of treatments and 
replications required for accurate data modeling [56]. 
Ultimately, such approaches can take insurmountable 
timespans and resources to develop improved, tough 
suboptimal tissue culture protocols [36]. Thus, due to 
the potential to exclude dynamic interactional effects 
of combined factors, optimization methods must be re-
imagined using a modern approach to simultaneously 
optimize multiple factors for development of precision 
techniques [57]. For these reasons, applying new power-
ful approaches for analyzing and predicting in vitro cul-
ture systems is crucial [32].

Using modern computational approaches, ML offers a 
more simple and reliable approach to recognize and diag-
nose complex datasets that are commonly obtained from 
tissue culture experiments [32]. The powerful interop-
erative processes of newly developed nonlinear machine 
learning algorithms have recently been a focus for plant 
system biology [38], plant breeding [33], and plant tis-
sue culture [32]. These methods remove uncertainties 
associated with dynamic tissue responses by diagnos-
ing complex patterns and uses algorithms to predict 
optimal combinations of factors for desired results [36]. 
These patterns can then be analyzed using optimization 
algorithms to predict optimal combinations of factors 
for desired outcomes [56]. The robustness and accuracy 
of hybrid ML-optimization algorithms in modeling and 
predicting different in vitro culture systems have been 
previously confirmed in different species such as chry-
santhemum [54, 58–62], passion fruit [31], Prunus root-
stock [63–65], hazel [66], tomato [53], chickpea [52, 67], 
wheat [68], cannabis [56, 57, 69–72], and ajowan [73].

Therefore, in the current study, two ML algorithms 
(GRNN and RF) were employed to develop a predictive 
model for getting in-depth insight into the effect of PGRs 
(i.e., TDZ, BAP, PUT, KIN, and IBA) and callus types 
(i.e., callus derived from different explants including leaf, 

node, and internode) on indirect de novo shoot regenera-
tion of P. caerulea. Our results showed that both RF and 
GRNN could be accurately model and predict indirect de 
novo shoot regeneration. In line with our results, previous 
studies have shown that GRNN is a powerful ML algo-
rithm for modeling and predicting different plant biologi-
cal systems such as seed germination [71], in vitro shoot 
regeneration [59], shoot growth and development [56], in 
vitro sterilization [69], secondary metabolite production 
[66], in vitro rooting [31], and morphological response of 
the aboveground parts of the plant to drought stress [74]. 
Moreover, the accuracy of RF has been previously dem-
onstrated in different areas of plant science such as plant 
tissue culture [70], breeding [33], high-throughput phe-
notyping [41], and gRNA designing for CRISPR-based 
methods [72]. Generally, the results of the current study 
showed that ML is a reliable and accurate approach for 
predicting indirect de novo shoot regeneration.

Based on the result of sensitivity analysis, callus type 
was the most important factor for all the indirect regen-
eration parameters, followed by PGRs (i.e., BAP, IBA, 
PUT, TDZ, and KIN for indirect shoot regeneration rate; 
BAP, KIN, TDZ, IBA, and PUT for number of shoots; 
BAP, KIN, PUT, TDZ, and IBA for shoot length). It is 
well-documented that the callus type plays a key role in 
indirect de novo shoot regeneration [1, 6, 28]. Indeed, the 
various in vitro responses of each type of callus might be 
due to the differences in epigenetic regulation as well as 
endogenous sugars and phytohormones [75]. Similar to 
our results, previous studies demonstrate that callus type 
represents the most important factor influencing success-
ful indirect, de novo shoot regeneration [6, 27, 28]. Due to 
the totipotent potential of callus cells, the manipulation 
of the concentration and ratio of PGRs leads to the dif-
ferentiation of the callus cells that can ultimately result in 
de novo shoot regeneration [12]. Our results revealed that 
BAP was the second most important factor in indirect de 
novo shoot regeneration. In line with our results, previ-
ous studies showed that BAP led to a higher frequency 
of regeneration compared to other cytokinins in different 
Passiflora sp. such as P. trifasciata [76], P. foetida [76, 77], 

Table 4  Importance degree of each input on P. caerulea indirect shoot regeneration responses through sensitivity analysis
Outcome Item Subset Callus type BAP KIN TDZ PUT IBA
Regeneration rate VSR Training 3.11 2.11 1.12 1.15 1.21 1.31

Testing 2.34 1.54 0.86 1.00 1.00 1.02

Rank 1 2 6 5 4 3

Shoot number VSR Training 4.97 1.94 1.49 1.37 1.20 1.25

Testing 2.41 0.90 0.88 0.86 0.78 0.83

Rank 1 2 3 4 6 5

Shoot length VSR Training 2.33 1.59 1.46 1.34 1.42 1.22

Testing 1.41 0.94 0.91 0.73 0.86 0.73

Rank 1 2 3 5 4 6
BAP: 6-benzylaminopurine; IBA: indole-3-butyric acid; KIN: kinetin; PUT: putrescine; TDZ: thidiazuron; VSR: variable sensitivity ratio.
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P. suberosa [27, 78], P. caerulea [79], P. cincinnata [80], 
and P. cristalina [81].

The results of the optimization process (GA) showed 
that the maximum de novo shoot regeneration rate would 
be achieved from callus derived from nodal segments 
cultured in the medium supplemented with 0.77  mg/L 
BAP plus 2.41 mg/L PUT plus 0.06 mg/L IBA. The result 
highlighted the importance of balances among PGRs, 
especially between cytokinins and auxins. In general, a 
low concentration of auxin and a high concentration of 
cytokinins induces de novo shoot regeneration [6, 12]. 
In line with our results, Rosa et al. [27] reported that a 
high concentration of cytokinin (BAP) without or with 
a low concentration of auxin was the best PGRs balance 
for indirect shoot regeneration in P. suberosa. The appli-
cation of GA in optimizing plant tissue culture processes 
offers substantial benefits and enhances the reliability of 
achieving optimal outcomes [82]. GA, a robust optimiza-
tion technique inspired by natural selection and genetics, 
proves invaluable in exploring complex solution spaces 
and identifying optimal configurations [63]. In the realm 
of plant tissue culture, GA proves particularly useful in 
fine-tuning critical parameters, including growth media 
composition, hormone concentrations, and culture con-
ditions, to maximize desired outcomes such as callogen-
esis, organogenesis, rhizogenesis, and embryogenesis [29, 
31, 56, 63–65, 68, 70]. GA can significantly reduce reli-
ance on time-consuming and expensive trial-and-error 
experiments [32]. The algorithm’s ability to intelligently 
evolve and refine solutions based on fitness evaluations 
not only expedites the optimization process but also 
ensures more consistent and reliable results [83]. Con-
sequently, GA empowers researchers and plant tissue 
culture practitioners to efficiently design and implement 
effective protocols, leading to enhanced plant propaga-
tion techniques and expanded biotechnological applica-
tions [36]. While previous studies have demonstrated the 
reliability of GA in optimizing in vitro culture processes 
[29, 31, 56, 63–65, 68, 70], it is crucial to conduct future 
research to validate the predicted-optimized (GRNN-
GA) results obtained in the current study.

Conclusion
Optimization of indirect de novo shoot regeneration pro-
tocols is one of the key prerequisites for the development 
of Agrobacterium-mediated genetic transformation and/
or genome editing in P. caerulea. Comprehensive knowl-
edge related to indirect shoot regeneration leading to 
protocol optimization can be achieved by applying the 
combined ML -optimization algorithm approach. Our 
results showed that indirect shoot regeneration of P. cae-
rulea could be precisely predicted and optimized using 
methods that link ML (i.e., GRNN and RF) to evolution-
ary optimization algorithms (i.e., GA). The optimized 

PGRs and the suitability of the developed model (GRNN-
GA) in indirect shoot regeneration should be assessed by 
future studies in other Passiflora species. Moreover, the 
adaptation of a combination of ML (GRNN and RF) and 
GA can display a forward-thinking aid to optimize and 
predict in vitro culture systems and consequentially cope 
with several challenges faced currently in Passiflora in 
vitro culture.
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