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Abstract 

Background: Whole chloroplast genome (cpDNA) sequence is becoming widely used in the phylogenetic studies 
of plant and species identification, but in most cases the cpDNA were acquired from silica gel dried fresh leaves. So 
far few reports have been available to describe cpDNA acquisition from crude drugs derived from plant materials, 
the DNA of which usually was seriously damaged during their processing. In this study, we retrieved cpDNA from the 
commonly used crude drug Eriobotryae Folium (Pipaye in Chinese, which is the dried leaves of Eriobotrya japonica, 
PPY) using genome skimming technique.

Results: We successfully recovered cpDNA sequences and rDNA sequences from the crude drug PPY, and bioin-
formatics analysis showed a high overall consistency between the cpDNA obtained from the crude drugs and fresh 
samples. In the ML tree, each species formed distinct monophyletic clades based on cpDNA sequence data, while the 
phylogenetic relationships between Eriobotrya species were poorly resolved based on ITS and ITS2.

Conclusion: Our results demonstrate that both cpDNA and ITS/ITS2 are effective for identifying PPY and its coun-
terfeits derived from distantly related species (i.e. Dillenia turbinata and Magnolia grandiflora), but cpDNA is more 
effective for distinguishing the counterfeits derived from the close relatives of Eriobotrya japonica, suggesting the 
potential of genome skimming for retrieving cpDNA from crude drugs used in Traditional Chinese Medicine for their 
identification.

Keywords: Eriobotrya japonica, Eriobotryae Folium, Crude drug, Identification, Chloroplast genome, Genome 
skimming

© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
Chloroplast is one of the two organelles having their own 
genetic materials in plant cells. The chloroplast genomes 
(cpDNA) are double-stranded DNA in a closed-loop con-
figuration with a length ranging from 120 to 220 kb [1–3]. 
The cpDNAs, which are maternally inherited and remain 

haploidy without recombination, have multiple cop-
ies per cell and in angiosperms, their size, structure and 
gene composition are quite consistent [4–7]. The cpDNA 
contains rich genetic information, based on which a large 
database can be constructed for comparative study. In 
addition, the moderate nucleotide substitution rate of 
cpDNAs and the differences in their molecular evolution 
speed of the coding region and non-coding region allow 
for systematic studies of the plants at different levels 
[8–11]. The good collinearity of the cpDNAs of different 
plant groups also provides much convenience for com-
parative analysis and can reflect the phylogenetic history 
of the plant population [12–15].
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The development of high-throughput sequencing tech-
nology has allowed full-length sequencing of the cpDNA 
[16, 17], which has become an important basis of phy-
logenomic studies. The complete sequence of cpDNA 
has confirmed some non-genomic-data-based conclu-
sions at different classification levels and revealed many 
new systematic relationships; it has also shown unique 
advantages in species identification [12, 13, 18–21]. 
Using massively parallel sequencing technology, Nock 
et al. [22] sequenced the cpDNA of Oryza sativa japonica 
and two other Oryza species (i.e. O. meridionalis and O. 
australiensis), together with that of Potamophila parvi-
flora (a close relative to Oryza) and Microlaena stipoides 
(an Australian native grass), and found that each species 
could be identified accurately based on these cpDNA 
sequences. In the following years, increasing reports 
emerged on the application of cpDNA sequences in 
the identification of such medicinal plants as Magnolia 
officinalis [23], M. grandiflora [24], Scutellaria baicalen-
sis [25], Fritillaria cirrhosa [26], and Ligularia spp. [27]. 
According to incomplete statistics, the cpDNA of at least 
3721 plant species have been described so far, ranging 
from green algae to terrestrial and aquatic plants [28].

In almost all these studies, fresh leaves were used as 
the samples for acquiring cpDNA. No report has been 
available to describe cpDNA sequencing using samples 
of crude drugs derived from medicinal plants, the DNA 
of which was usually damaged during preparation [29, 
30]. To investigate the feasibility of cpDNA sequencing 
based on samples of crude drugs, we attempted to obtain 
complete chloroplast genome through genome skimming 
from crude drugs derived from different parts (root, rhi-
zome, fruit and seed) from Pipaye (PPY), the dried leaf of 
loquat [Eriobotrya japonica (Thunb.) Lindl.], the selected 
representative of leaf-derived crude drugs.

In Traditional Chinese Medicine, PPY is believed to be 
effective for treating asthma and coughing [31]. Nin Jiom 
Pei Pa Koa, a Chinese patent medicine with loquat leaf as 
the main ingredient, has attracted aroused heated discus-
sion in the United States during the influenza season in 
2018 after the Wall Street Journal published a report por-
traying an architect and professor of design at Pratt Insti-
tute for taking the medicine to cure his long-standing 
cough [32]. Actually, the history of using PPY for medical 
purposes can be dated back to Han Dynasty [33]. In the 
long history of its medicinal uses, PPY is sometimes con-
fused with the leaves of some other plants, e.g. Dillenia 
turbinata and Magnolia grandiflora, which are similar in 
appearance to loquat leaves [34]. These counterfeits have 
no effects of genuine PPY, thus should be clearly identi-
fied, but their identification can be difficult even for pro-
fessionals due to their high similarities in appearance, 
especially when the leaves are cut into pieces.

Theoretically, the Internal transcribed spacer region 
(ITS) can be used for loquat species identification, but 
currently no studies of ITS-based identification of PPY 
against its adulterants has been reported, except for some 
studies on genetic diversity of Eriobotrya japonica [35, 
36]; nor was a specific PCR system has been available 
for PPY identification. Currently, a thin-layer chroma-
tography (TLC) inspection for PPY is recommended in 
the Chinese Pharmacopoeia, in which ursolic acid serves 
as the reference substance. As ursolic acid is widely dis-
tributed in plant species, the TLC-based identification 
of crude drugs often has a low specificity. Although a 
UPLC-Q-TOF/MS analysis targeting the anti-EGFR 
chemical constituents had been reported for PPY iden-
tification [37], the performance of this modality for PPY 
identification remains to be further verified.

cpDNA sequencing is a promising technique for crude 
drug identification. Genome skimming is PCR-free to 
avoid such issues of amplification failure and false posi-
tive and false negative results. With genome skimming, 
not only the cpDNA sequence but also the sequence of 
ITS region can be obtained from the high-throughput 
sequencing data, thus a combined analysis of cpDNA 
and ITS sequences can be possible. Additionally, genome 
skimming is more cost-effective than MALDI-TOF MS 
analysis.

In this study, we sequenced the cpDNA not only from 
fresh leaf samples of Eriobotrya japonica and its close 
relatives E. deflexa, E. cavaleriei, E. fragrans, as well as 
those of Dillenia turbinata and Magnolia grandiflora, 
but also from self-made sun-dried E. japonica leaves 
(self-prepared PPY, SP) and three commercial PPY sam-
ples to investigate the feasibility of cpDNA sequencing in 
identification of the crude drugs. We also compared the 
efficiency of cpDNA sequencing and the general barcode 
such as ITS/ITS2 for PPY identification.

Results
Analysis of cpDNAs of Eriobotrya japonica and its relative 
and counterfeit species
Structure and genes
In this study, all the cpDNAs showed a typical circular 
tetramerous structure, consisting of a pair of inverted 
repeats (IRs), a large single copy region (LSC), and 
a small single copy region (SSC) (Fig.  1). The size of 
cpDNA and its regions were all similar across differ-
ent Eriobotrya species (Table  1). The cpDNA length of 
genus Eriobotrya ranges from 159,115  bp (E. japonica) 
to 159,393 (E. deflexa); the cpDNA length is 159,270 bp 
for E. cavaleriei and 159,177  bp for E. fragrans. The 
size of the IR region ranges from 26,317(E. fragrans) to 
26,335 bp (E. cavaleriei), while the SSC and LSC size var-
ies from 19,213 (E. fragrans) to 19,350 bp (E. cavaleriei) 
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and from 87,222 (E. japonica) to 87,401 bp (E. deflexa), 
respectively (Table  1). The cp gonomes of D. turbinata 
and M. grandiflora are 163,250–159,690  bp in length, 
consisting of an IR region of 26,497–26,580  bp, a SSC 
region of 18,754–19,349 bp and LSC regions of 87,776–
90,907  bp. E. japonica contains 112 genes, including 
78 protein coding genes, 30 tRNA genes and 4 rRNA 
genes, the same as the remaining Eriobotrya species 
and M. grandiflora. The D. turbinata cpDNA consists of 
113 genes, including 79 protein-coding genes, 30 tRNA 

genes, and 4 rRNA genes. Compared to the Eriobotrya 
species, D. turbinata has 113 genes due to the presence 
of the gene infA. In addition, the presence of infA and the 
deletion of rpl22 gene of M. grandiflora result in the con-
sistency in the number of genes with Eriobotrya species. 
The ycf1 sequence located in the IRa and SSC boundary 
of all the samples was identified as a pseudogene because 
it was truncated, i.e. incomplete duplications of the nor-
mal copy. In addition, two pseudogenes, accD and ndhK, 
were also found in D. turbinata. In the cpDNA of all the 

Fig. 1 Chloroplast genome map of E. japonica. The genes outside of the circle are transcribed clockwise, while those inside are transcribed 
counterclockwise. Small single copy (SSC), large single copy (LSC), and inverted repeats (IRa, IRb) are indicated
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samples, the gene rps12 was a trans-splicing gene, whose 
5’ exon was located in the LSC region and the 3’ exon in 
the IRs region.

The junction positions were conserved in Eriobot-
rya species. Eriobotrya species have partially duplicated 
rps19 and ndhF genes in the IR regions, while these two 
genes are located respectively in the LSC and SSC regions 
of D. turbinata and M. grandiflora (Fig. 2). In Eriobotrya 
species, the extent of rpsl9 duplication ranges from 120 
(E. cavaleriei and E. fragrans) to 127 bp (E. deflexa), and 
12 nucleotides of ndhF are duplicated. The final 12 nucle-
otides of the IR region are shared by ndhF and the pseu-
dogene ycf1 (ψycf1), which are transcribed in opposite 
directions; in D. turbinata and M. grandiflora, ψycf1 gene 
is located in the IRb region and ndhF in the SSC region. 
The LSC/IRa-rpl2 spacer ranges in length between 38 (D. 
turbinata) and 195 nucleotides (E. deflexa).

Condon usage
The total length of the protein coding genes (PCGs) of 
Eriobotrya cpDNAs ranges from 78,600 (E. fragrans) 
to 78,630  bp (E. cavaleriei and E. deflexa), and that of 
D. turbinata and M. grandiflora was 77,301  bp and 
77,811  bp, respectively (Table  2). These PCGs contain 
25,767 (in D. turbinata) to 26,210 (in E. cavaleriei and E. 
deflexa) codons, with UGA, UAG and UAA as the ter-
mination codons. For Eriobotrya cpDNAs, the most fre-
quent amino acid is leucine (Leu), encoded by 2749–2754 
(10.51%) of the codons; the least frequent amino acid 
in the cpDNAs is cysteine (Cys), encoded by 299–301 
(1.14%) of the codons (Fig.  3). Most of the amino acid 
codons have preferences except for methionine and tryp-
tophan. Within the PCGs of Eriobotrya cpDNAs, the GC 
content of the codons in the third position was 26.7%. 
Within the PCGs of D. turbinata and M. grandiflora cpD-
NAs, the AT content of the codons at the third position is 
26.4% and 28.8%, respectively. All the preferred synony-
mous codons (RSCU > 1) of E. japonica ended with A or 
U except for the codons of trnL-CAA , while most of the 
non-preferred synonymous codons (RSCU < 1) ended 
with G or C, which is the same as the other Eriobotrya 
species in our study.

SSRs and long repeat sequences
We found that the mononucleotide repeats of genus 
Eriobotrya, D. turbinata and M. grandiflora were by far 
the most frequent SSR type, followed by dinucleotides, 
tetranucleotides, trinucleotides, pentanucleotides, and 
finally hexanucleotide (Table  3). Eriobotrya cpDNAs 
exhibit variations in the number of SSRs; the number 
is 92 in E. japonica, 90 in E. cavaleriei, 108 in E. deflexa 
and 98 in E. fragrans. The number of SSRs is 93 in D. 

turbinata, and is only 53 in M. grandiflora, the smallest 
among all the species. among the Eriobotrya species, 
there was no trinucleotide repeat and only a single hex-
anucleotides was found only in E. deflexa. No pentanu-
cleotide repeat was found in M. grandiflora.

The tandem repeats in the cpDNAs of Eriobotrya spe-
cies has generally a low variation, ranging from 130 (E. 
fragrans) to 133 (E. cavaleriei) (Table 4). Among all the 
species, D. turbinata has the highest number of tandem 
repeats (up to 216), while M. grandiflora has the least 
number of only 49. Five different long repeats, includ-
ing tandem, complement, forward, palindromic and 
reverse repeats, were found in the cpDNA in this study. 
Complement repeat was absent in E. japonica, E. fra-
grans and M. grandiflora. Reverse repeat was not found 
in M. grandiflora.

Highly divergent regions
In the cpDNA of each species, the non-coding regions 
have a greater variability than the coding regions 
(Fig.  4). Several divergent regions such as trnH-GUG 
, petN-psbM, and trnT-GGU-psbD were found in Erio-
botrya species. For all the species, some highly vari-
able regions were observed in the intergenic regions, 
as in trnH-GUG , trnK-UUU-rps16, petN-psbM, trnT-
GGU-trnL-UAA , rpl20-rps12, psbZ-trnG-GCC  (Fig. 5). 
The ndhF-rpl32 region showed the highest average 
sequence divergence (0.1126), followed by rpl32-trnL-
UAG  (0.1202), rps16-trnQ-UUG  (0.11007), and accD-
psbI (0.1076) (Fig. 5), with the remaining genes having a 
divergence less than 0.1.

Comparison of cpDNAs obtained from PPY, SP and E. 
japonica fresh leaves
The average cover of fresh samples of E. japonica 
(309.71–747.45) was as high as about 5 times that of the 
dried samples (59.99–188.80). Both PPY and SP were 
consistent with E. japonica in terms of gene number, 
GC content (Table  1), genetic makeup (Table  5), the 
boundaries of IR region (Fig. 2), codon usage (Table 2), 
and SSRs type and number (Table 3). Both of PPY and 
SP had 112 genes with a GC content of 36.7%, including 
78 protein coding genes, 30 tRNA genes and 4 rRNA 
genes. In structural analysis of cpDNAs, only minor 
variations were observed in terms of the length of cpD-
NAs (from 159,115  bp in E. japonica to 159,202  bp in 
SP) (Table 1) and the amount of long repeat sequences 
(Table  4). SP had one more forward repeats and two 
more tandem repeats than E. japonica, while PPY was 
similar with E. japonica in the amount and type of the 
long repeat sequences.
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Fig. 2 Comparison of the border regions of the LSC, SSC and IR regions among the 11 cp genomes. The genes cross the LSC/IRb or IRb/SSC regions, 
indicating that the LSC/IRb boundary has moved backward or the IRb/SSC boundary moves forward in these species
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Fig. 3 Amino acid frequencies in 11 samples protein-coding sequences

Table 3 Comparison of simple repeats (SSR) in 11 cp genomes

Sample Mononucleotides Dinucleotides Trinucleotides Tetranucleotides Pentanucleotides Hexanucleotides Total

E. japonica-1 70 15 0 6 1 0 92

E. japonica-2 70 15 0 6 1 0 92

PPY-1 70 15 0 6 1 0 92

PPY-2 70 15 0 6 1 0 92

PPY-3 70 15 0 6 1 0 92

SP 70 15 0 6 1 0 92

E. cavaleriei 70 15 0 4 1 0 90

E. deflexa 83 17 0 6 1 1 108

E. fragrans 75 17 0 6 0 0 98

D. turbinata 58 18 6 9 1 1 93

M. grandiflora 30 9 3 9 0 2 53

Total 736 166 9 70 9 4 994

Ratio 74.04% 16.70% 0.91% 7.04% 0.91% 0.40% 100%

Table 4 Comparison of long repeat sequences in 11 cp genomes

Sample Tandem repeat Complement repeat Forward repeat Palindromic repeat Reverse repeat Total

E. japonica-1 131 0 25 20 3 179

japonica-2 131 0 25 20 3 179

PPY-1 131 0 25 20 3 179

PPY-2 131 0 25 20 3 179

PPY-3 131 0 25 20 3 179

SP 133 0 26 20 3 182

E. cavaleriei 133 2 23 18 7 183

E. deflexa 132 1 22 16 11 182

E. fragrans 130 0 22 17 11 180

D. turbinata 216 1 19 19 8 263

M. grandiflora 49 0 11 16 0 76

total 1448 4 248 206 55 1961
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Phylogenetic tree and species identification
Among all the species, the topological structures of 
ITS, ITS2 and cpDNAs were basically identical, includ-
ing three major clades, namely Eriobotrya, Dillenia and 

Magnolia species (Figs.  6, 7, Additional file  1: Fig. S1). 
But the phylogenetic positions based on ITS and ITS2 
of the other Eriobotrya species were different in that E. 
cavaleriei was placed close to E. deflexa or E. fragrans 

Fig. 4 Comparative chloroplast genomic analysis. The red area represents the non-coding area, and the purple area represents the coding area. The 
large twists and turns indicate large variations
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with strong support (Fig. 7; Additional file 1: Fig. S1). In 
addition, the Dillenia species was closely related to Eri-
obotrya species, as shown in Fig.  7. The ML tree based 
on cpDNA had a higher resolution and each genus node 
had a bootstrap value of 100% (Fig.  6). PPY, SP and E. 

japonica were all classified into one clade with a boot-
strap value of 100%.

Based on the K2P model, the intraspecific genetic 
distances ranged from 0.0005 (E. japonica) to 0.0889 
(E. cavaleriei), from 0.0026 (E. japonica) to 0.1403 (E. 

Fig. 5 Comparative analysis of the nucleotide diversity (Pi) value of the cp genomes among the 11 species. A Coding regions, B non-coding 
regions

Table 5 List of genes found in Eriobotrya japonica cpDNA

Gene category Gene group Gene name

Photosynthesis related genes Photosystem I psaA, psaB, psaC, psaI, psaJ

photosystem II psbA, psbB, psbC, psbD, psbE, psbF, psbH, psbI, psbJ, psbK, psbL, psbM, psbN, psbT, 
psbZ

Cytochrome b/f complex petA(× 2), petB*, petD*, petG, petL, petN

ATP synthase atpA, atpB, atpE, atpF, atpH, atpI

NADH dehydrogenase ndhA, ndhB*(× 2), ndhC, ndhD, ndhE, ndhF, ndhG, ndhH, ndhI, ndhJ, ndhK

RubisCO large subunit rbcl

Transcription and translation related genes Ribosomal proteins(SSU) rps2, rps3, rps4, rps7(× 2), rps8, rps11, rps12**(× 2), rps14, rps15, rps16*, rps18, rps19

Ribosomal proteins(LSU) rpl2*(× 2), rpl14, rpl16*, rpl20, rpl22, rpl23(× 2), rpl32, rpl33, rpl36

RNA genes Ribosomal RNAs rrn4.5(× 2), rrn5(× 2), rrn16(× 2), rrn23(× 2)

Transfer RNAs trnS-GGA, trnS-UGA, trnS-GCU, trnE-UUC, trnT-UGU, trnT-GGU, trnF-GAA, trnM-CAU, 
trnW-CCA, trnP-UGG, trnI-CAU (× 2), trnI-GAU*(× 2), trnL-CAA (× 2), trnL-UAA*, trnL-
UAG, trnV-GAC (× 2), trnV-UAC*, trnR-ACG(× 2), trnR-UCU, trnN-GUU (× 2), trnH-
GUG, trnQ-UUG, trnC-GCA, trnD-GUC, trnY-GUA, trnG-UCC*, trnfM-CAU, trnK-UUU*, 
trnA-UGC*(× 2), trnG-GCC 

RNA polymerase ropA, ropB, ropC1*, ropC2

Other genes ccsA, accD, cemA, clpP**, matK

Proteins of unknown function ycf ycf1, ycf2(× 2), ycf3**, ycf4
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fragrans), and from 0.0000 (E. japonica) to 0.0004 (M. 
grandiflora) in the cases of ITS, ITS2, and cpDNA, 
respectively; the interspecific genetic distances ranged 
from 0.0285 (E. japonica and E. deflexa) to 0.8665 (M. 
grandiflora and D. turbinata), from 0.0371 (E. japonica 
and E. deflexa) to 0.7495 (M. grandiflora and E. fragrans), 
and from 0.0007 (E. japonica and E. deflexa) to 0.1195 
((M. grandiflora and D.indica), respectively.

Discussion
The cpDNA of higher plants is highly conserved, which 
ensures the direct homology of genes among distant evo-
lutionary groups. Compared with nuclear and mitochon-
drion genome, cpDNA has a greater gene density with a 
moderate evolution rate, thus making cpDNA a suitable 
and unique molecule for accurate species identification. 
Currently few studies have been available to report plant 

Fig. 6 Phylogenetic tree constructed using ML based on complete cp genomes. The number above the branches are bootstrap support values
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species identification by sequencing cpDNA from crude 
drugs derived from plants instead of fresh leaves. To test 
the feasibility of acquiring complete cpDNA through 
genome skimming for crude drug identification, we used 
commercial PPY samples purchased from local pharma-
cies, i.e. the crude drug practically sold to patients, not 
merely silica gel dried fresh leaf materials used in previ-
ous studies. To our best knowledge, such a pilot empirical 
study has not been reported previously.

Different from that in silica gel dried fresh leaf materi-
als, the genomic DNA in crude drugs usually have severe 
degradation, as often seen in the specimens stored for 
a long time. Long storage time can result in DNA deg-
radation [30] and DNA fragmentation [29] to cause dif-
ficulties in the genome sequencing and identification. 
Genome skimming has proved to well suit the needs of 
species identification based on degenerated genome 
DNA, and researchers have successfully sequenced 
cpDNA from herbarium materials stored for decades 

Fig. 7 Phylogenetic tree constructed using ML tree based on 20 ITS sequences. The numbers above the branches are bootstrap support values
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with this technique [38–40], which is even capable of 
sequencing complete or almost complete cpDNA from 
specimens stored up to 146 years.

As expected, the genomic DNA extracted from the 
crude drugs was of a poor quality in this study. But with 
genome skimming, the cpDNAs retrieved were almost 
identical to those obtained from the fresh samples, and 
a low amount of degraded genomic DNA (9 ng) was suf-
ficient for operation. cpDNAs acquired from PPY, SP and 
E. japonica samples showed negligible variations, which 
can be inferred from the same coding genes, tRNAs and 
rRNAs among their cp genomes. Besides cpDNA, we also 
successfully recovered rDNA sequences from the crude 
drug PPY. These results further demonstrate that genome 
skimming is less affected by template quality than other 
sequencing methods [38–41].

In the continuous efforts for searching ideal DNA bar-
codes for plants, ITS/ITS2 have been considered as the 
most promising ones [42, 43] for their high resolution of 
inter- and intraspecific relationship [44–47], but so far 
a widely accepted universal DNA barcode has not been 
available yet. Appropriate barcodes for specific plant 
taxonomic groups should be investigated case by case. 
Theoretically, ITS/ITS2 can be used for Eriobotrya spe-
cies identification with better convenience and at a lower 
cost compared to cp genome method. Nevertheless, our 
results confirmed that both cpDNA and ITS/ITS2 were 
efficient for identifying PPY and its simple counterfeits 
(Dillenia turbinata and Magnolia grandiflora), but ITS/
ITS2-based identification had a poor resolution for Erio-
botrya species, E. japonica and its close relatives (E. defl-
exa, E. cavaleriei, E. fragrans). Previous studies proposed 
that the unresolved relationships among them may be 
attributed to the confusion of the interspecific bounda-
ries between E. cavaleriei and E. fragrans based on short 
sequences [48–50]. Overlaps between the intraspecific 
and interspecific K2P distances based on ITS/ITS2 were 
also reported. Thus, the short sequences (i.e. rDNA ITS/
ITS2) are not as powerful as expected in identifying Erio-
botryae Folium and its counterfeits due to insufficient 
variation information.

CpDNA contains much more genetic information and 
can provide a large database for species identification [12, 
51–53] to significantly increase the resolution at lower 
taxonomic ranks such as genus and species, and thus may 
serve as a super barcode for species identification [26], as 
in the case of Eriobotrya. Our phylogenetic analysis based 
on cpDNA data showed that the samples belonging to the 
same species formed a separate clade, each with a high 
bootstrap value. In addition, the intraspecific K2P dis-
tance values were significantly lower than the interspe-
cific K2P distance when using cpDNA data. These results 
demonstrate that, compared to ITS and ITS2 sequences, 

cpDNA is more effective for the identification of Eriobot-
ryae Folium.

Although cpDNA genome can provide more charac-
teristics and increase the amount of sequence data to 
enhance species discrimination, it does not address the 
basic challenge that cpDNA do not necessarily track spe-
cies boundaries [54]. Substantial numbers of unlinked 
nuclear markers (e. g. transcriptome sequencing and 
RAD-seq) should be taken to access the ultimate big 
gains in the discriminatory power [54].

Conclusions
Despite of severe degradation of the genomic DNA, 
cpDNA and rDNA can be successfully sequenced and 
assembled from crude drug of Eriobotryae Folium 
through genome skimming. Chloroplast genome 
sequence data can be more effective than rDNA ITS 
and ITS2 sequences for the identification of Eriobotryae 
Folium and the counterfeits with a close resemblance. 
The results of this study demonstrate that genome skim-
ming is capable of retrieving whole chloroplast genome 
from crude drugs used in traditional Chinese medicine 
for their identification.

Methods
Plant and crude drug samples
Two samples of fresh leaves of E. japonica (E. japonica-1 
and E. japonica-2) were collected from the Medicinal 
Plant Garden of Southern Medical University and South 
China Botanical Garden. The fresh leaves of E. cavaleriei, 
E. deflexa, E. fragrans, D. turbinata and M. grandiflora 
were collected from different localities. A portion of the 
sample E. japonica-1 was subjected to sun-drying to pre-
pare self-made PPY sample (SP). Three batches of PPY 
crude drug (PPY-1, PPY-2 and PPY-3) were purchased 
from Kangmei Pharmaceutical Co., Ltd, Dongfang Phar-
macy, and Henglu Pharmacy, respectively. The voucher 
specimens and crude drug samples were all identified by 
the corresponding author (Table 6). The crude drug sam-
ples were kept in a cool and dry place, while the fresh leaf 
samples were kept at − 80 °C.

DNA extraction
Genomic DNA was extracted from the above samples 
using the modified CTAB method [55]. To eliminate the 
interference by phenolic substances on DNA extraction, 
20  mg polyvinyl pyrrolidone was mixed with Eriobot-
rya samples before DNA extraction [56]. DNA concen-
tration and quality were examined using a NanoDrop 
2000C spectrophotometer and by 1.2% agarose gel 
electrophoresis.
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Sequencing, genome assembly and annotation
Approximately 1  μg genomic DNA was randomly frag-
mented by Covaris (E210), followed by fragments selec-
tion by Agencourt AMPure XP-Medium kit to an average 
size of 200–400 bp. Selected fragments were end-repaired 
and 3’adenylated, and the resulting DNA was ligated with 
adaptors. After the ligation, the products were ampli-
fied by PCR and purified using Agencourt AMPure XP-
Medium kit. The purified double-stranded PCR products 
were heat-denatured to single stand and circularized by 
the splint oligo sequence to generate a single strand cir-
cular DNA (ssCir DNA) library after quality control. The 
ssCir DNA molecule formed a DNA nanoball (DNB), and 
the final DNB was loaded onto a sequencing chip and 
were sequenced using the BGISEQ-500 platform. Finally, 
the pair-end (PE) 124–150  bp reads were obtained by 
combinatorial Probe-Anchor Synthesis (cPAS).

Low-quality reads, adapter contamination, and dupli-
cated reads were removed from the PE sequence data 
generated from the BGI platform using SOAPnuke soft-
ware v2.1.5 [57] to produce the “clean data”, which were 
filtered using Bowtie2 [58] and then assembled using 
SPAdes v3.14.0 [59] in GetOrganelle v1.7.0 [60]. In cases 
of failure of ribosomal DNA assembly, we amplified and 
sequenced the ribosomal DNA to obtain the ITS and 
ITS2 sequences. To improve genome assembly, we also 
conducted reference-based genome assembly using the 
cpDNA sequences available in GenBank (Table  1). The 
contigs obtained from the GetOrganelle assemblies were 
aligned to the reference genome, and the aligned contigs 
were assembled to each cpDNA in Geneious v2020.0.4 
[61].

The assembled cpDNAs were annotated using GeSeq 
(Annotation of Organellar Genomes) (https:// chlor 
obox. mpimp- golm. mpg. de/ geseq. html) [62] and Plastid 
Genome Annotator (PGA) [63] software, followed by 
manual adjustments of the start and stop codons and the 
exon and intron boundaries via Geneious. The ribosomal 
DNA was annotated using Geneious. All the tRNA genes 
were confirmed using the online tRNAscan-SE v2.0.7 [64, 
65] and ARAGORN v1.2.38 [66]. The OGDRAM (http:// 
ogdraw. mpimp- golm. mpg. de/) [67] software was used 
to draw the circular cpDNA maps. The annotated cpD-
NAs and the ribosomal DNA sequence were submitted 
to GenBank (http:// www. ncbi. nlm. nih. gov/) to obtain the 
accession number (Table  2). The IR and SSC boundary 
regions of E. japonica species were compared and exam-
ined with other cpDNAs.

Genome structure and comparative analysis
CpDNA characteristics (e. g. structure and genes; 
codon usage, SSRs and long repeat sequences) were 
compared among the species concerned for species 
identification. To determine whether the chloroplast 
genome sequences of PPY and SP obtained herein 
were complete, we also compared cpDNA character-
istics between PPY/SP and fresh samples. The codon 
usage and the relative synonymous codon usage val-
ues (RSCU) of cpDNAs exons in the consensus pro-
tein-coding genes of each species were obtained using 
CondoW v1.4.2 [68]. The MISA software v2.1 [69] was 
used to predict the simple repeats (SSR) in cpDNA 
using the following parameter setting: mononucleotide 
repeat number > 10, dinucleotide repeat number > 5, 
trinucleotide repeat number > 4, tetranucleotide, 

Table 6 Information of samples

Samples Collecting site locality Geographical coordinates Specimen voucher/batch no. GenBank 
accession of cp 
genome

Eriobotrya japonica-1 Medicinal Plant Garden of Southern Medical 
University

23° 19′ 45″ N, 113° 34′ 37″ E Chao Zhi EJ201403 MT479167

E. japonica-2 South China Botanical Garden 23° 19′ 23″ N, 113° 37′ 18″ E Chao Zhi EJ201910 MT473726

E. cavaleriei Wuhan Botanical Garden 30° 54′ 49″ N, 114° 43′ 30″ E Chao Zhi 201,812 MT473722

E. deflexa Guangdong Tree Park 23° 20′ 13″ N, 113° 38′ 05″ E Chao Zhi ED201812 MT473724

E. fragrans Chenhedong Nature Reserve, Guangdong 23° 44′ 02″ N, 113° 50′ 64″ E Chao Zhi EF201903 MT473725

Dillenia turbinata South China Botanical Garden 23° 18′ 51″ N, 113° 36′ 77″ E Chao Zhi DT201403 MT473723

Magnolia grandiflora Medicinal Plant Garden of Southern Medical 
University

23° 19′ 45″ N, 113° 34′ 37″ E Chao Zhi MG201403 MT473732

SP prepared from E. japonica-1 – – MT473731

PPY-1 Kangmei Pharmaceutical Co., Ltd, Guang-
dong

– YC20181201 MT473727

PPY-2 Dongfang Pharmacy, Guangzhou – YC20181202 MT473728

PPY-3 Henglu Pharmacy, Guangzhou – YC20181203 MT473730

https://chlorobox.mpimp-golm.mpg.de/geseq.html
https://chlorobox.mpimp-golm.mpg.de/geseq.html
http://ogdraw.mpimp-golm.mpg.de/
http://ogdraw.mpimp-golm.mpg.de/
http://www.ncbi.nlm.nih.gov/
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pentanucleotide and hexanucleotide repeat number > 3; 
the minimum distance between two SSRs was set as 
100 bp. If the distance between two SSRs was less than 
100 bp, the two SSRs were regarded as one composite 
microsatellite. The Tandem Repeats Finder was used to 
predict the tandem repeats with parameters of 2 for the 
matching weight, 5 for the penalty on the mismatching 
and the indel, the minimum alignment score to report 
repeat was set to 50, and 500 for the maximum period 
size to report [70]. Repeat sequences were predicted by 
the website REPuter [71]. The minimum repeat size was 
set to 30 bp, and the sequence identity with Hamming 
distance was 3. The cpDNA of E. japonica was used as 
the reference sequence, and the sequence similarity 
of cpDNA was analyzed by Shuffle-LAGAN mode of 
mVISTA [72].

Phylogenetic analysis and tree-based identification
The identification capability of cpDNA and the universal 
barcode regions were compared by constructing a maxi-
mum likelihood (ML) tree based on complete cpDNA, 
ITS and ITS2. Additional nine ITS sequences, two 
ITS2 sequences and eight cpDNA sequences were also 
downloaded from GenBank (Additional file 1: Table S4) 
to enrich the data set. The cpDNAs, ITS, and ITS2 
sequences of all species in this study and the published 
genomes from GenBank were aligned using MAFFT 
v7.037 [73] and adjusted manually with MEGA6 software 
as needed [74]. The cpDNA sequences downloaded from 
GenBank were listed in Table  1. The best-fit substitu-
tion models for these cpDNA sequences were inferred by 
ModelFinder [75] integrated into PhyloSuite [76] based 
on the Akaike Information Criterion (AIC). Phylogenetic 
trees were constructed by ML using RAxML (v8.2.4) with 
the GTR + F + G4 model [75] and 1000 bootstrap repli-
cates. The genetic distance between the species in this 
study and the reference sequences mentioned above was 
calculated based on the Kimura 2-parameter distance 
(K2P) model [77].
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