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Abstract
Background: Characterizing transcription factor binding motifs is a common bioinformatics task.
For transcription factors with variable binding sites, we need to get many suboptimal binding sites
in our training dataset to get accurate estimates of free energy penalties for deviating from the
consensus DNA sequence. One procedure to do that involves a modified SELEX (Systematic
Evolution of Ligands by Exponential Enrichment) method designed to produce many such
sequences.

Results: We analyzed low stringency SELEX data for E. coli Catabolic Activator Protein (CAP), and
we show here that appropriate quantitative analysis improves our ability to predict in vitro affinity.
To obtain large number of sequences required for this analysis we used a SELEX SAGE protocol
developed by Roulet et al. The sequences obtained from here were subjected to bioinformatic
analysis. The resulting bioinformatic model characterizes the sequence specificity of the protein
more accurately than those sequence specificities predicted from previous analysis just by using a
few known binding sites available in the literature. The consequences of this increase in accuracy
for prediction of in vivo binding sites (and especially functional ones) in the E. coli genome are also
discussed. We measured the dissociation constants of several putative CAP binding sites by EMSA
(Electrophoretic Mobility Shift Assay) and compared the affinities to the bioinformatics scores
provided by methods like the weight matrix method and QPMEME (Quadratic Programming
Method of Energy Matrix Estimation) trained on known binding sites as well as on the new sites
from SELEX SAGE data. We also checked predicted genome sites for conservation in the related
species S. typhimurium. We found that bioinformatics scores based on SELEX SAGE data does
better in terms of prediction of physical binding energies as well as in detecting functional sites.

Conclusion: We think that training binding site detection algorithms on datasets from binding
assays lead to better prediction. The improvements in accuracy came from the unbiased nature of
the SELEX dataset rather than from the number of sites available. We believe that with progress
in short-read sequencing technology, one could use SELEX methods to characterize binding
affinities of many low specificity transcription factors.
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Background
Understanding regulatory circuits controlling gene expres-
sion is one of the fundamental problems in modern biol-
ogy. Gene expression is controlled at many different levels
but control of transcription is one of the main steps of reg-
ulation. One of the best understood control mechanisms
is the binding of transcription factors (TFs) to the regula-
tory sites on DNA in a sequence-specific manner, which
affects transcription initiation [1]. The important problem
of locating the binding sites for specific TFs, and thus
identifying the genes they regulate, has attracted much
attention from the bioinformatics community [2,3]. Dif-
ferent methods have been employed for abstracting pat-
terns or "motifs" from the sequences that bind particular
TFs leading to predictions of likely binding sites in the
genome of the organism under study. Factors regulating
multiple genes often have binding motifs low in informa-
tion content [4], making the task of prediction harder.
Examples of such highly pleiotropic proteins range from
global regulators in prokaryotes (e. g. CAP, LRP, FIS, IHF,
H-NS, HU, σ factors [5] in E. coli) to Hox proteins [6],
important in metazoan development.

Experimental approaches to locating binding sites on
DNA [7,8], have uncovered numerous binding sites for
various factors. However, looking at the databases
devoted to such regulatory sites, like DPInteract [9] and
RegulonDB [10] for E. coli, SCPD for yeast [11] and
TRANSFAC for many higher eukaryotic organisms [12], it
is obvious that, for most pleiotropic TFs targeting a large
number (100–1000) of genes, the number of known sites
is still a small fraction of all the functional sites. A high-
throughput version of the chromatin immunoprecipita-
tion method, commonly known as the "ChIP on chip",
has been introduced recently [13-15]. In principle, this
method locates binding sites genome-wide. However, the
resolution is limited to several hundred bases and requires
further bioinformatic analysis [16,17].

An alternative approach would be to find the DNA bind-
ing specificity of a TF by an in vitro method and then use
the binding motif to search the genome for putative sites.
One of these methods is SELEX [18], which is often used
to find the strongest binding sites (sequences close to the
consensus) from a library consisting of randomly gener-
ated oligonucleotides. However, a TF can often function at
binding sites that are far weaker than the consensus.
Therefore, to characterize the binding preferences of a TF,
we need to identify many of these potential weak binding
sites and to estimate the parameters describing the statis-
tical distribution of those sequences. The appropriate
modification of the SELEX procedure needed to achieve
this goal is based on the SELEX-SAGE procedure [19].
Analysis of the conditions under which we get a signifi-
cant number of intermediate strength sites was performed

in [20]. We will use this procedure on the pleiotropic E.
coli factor CAP. An alternative to this technology would
have been to use DNA chips for protein binding [21,22].
Currently, for transcription factors with long binding sites
(e.g. CAP site which is roughly 22 nt), it is common prac-
tice to use genomic sequences rather than random librar-
ies in DNA chips. This has its advantages but also might
lead to uncertainties regarding the genomic background
model in the final statistical analysis.

To abstract a motif from the sequences found by the mod-
ified SELEX process, we need a computational method: a
supervised algorithm, trained on a set of binding sites
identified directly by experimental measurements
[23,24,9]. We will compare different supervised methods
for extraction of parameters and use CAP targets as a
benchmark.

The widely used bioinformatic tool for quantitatively
describing such motifs is the weight matrix method [25-
29]. Setting the threshold correctly is essential for the
quality of predictions (see [9] for an example of strong
threshold dependence). However, optimization of the
threshold is a non-trivial problem, resolving which is one
of the goals of this study. We have shown [4,30] that using
the physically correct expression for binding probability,
with saturation effects built in, leads to a more accurate
estimate for the binding energy and provides a practically
useful solution to the problem of classifier threshold
choice. The resulting method, Quadratic Programming
Method of Energy Matrix Estimation or QPMEME [30],
turns out to be a one-class support vector machine [31].

In this paper we do the following:

(i) Perform high throughput, low stringency SELEX exper-
iments.

(ii) Analyze SELEX experiments and extract parameters for
models of sequence-dependent TF/DNA interactions by
using QPMEME and its extensions.

(iii) Verify in vitro affinity predicted by models built on
SELEX data by electrophoretic mobility shift assay.

(v) Identify CAP targets in E. coli.

(vi) Compare various predicted sites from different meth-
ods to see their functional conservation among gram-neg-
ative facultative anaerobes.

Results and discussion
SAGE SELEX study of CAP
We followed the SELEX-SAGE procedure [19]. After
extracting a large number of sequences, we passed these
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sequences through a quality filter to find sequences that
were likely to have been bound by a CAP dimer in the ran-
dom region of the SELEX pool. We were left with 69
sequences at the end.

Analysis of sequences from SAGE SELEX study

The maximum-likelihood method for distributions with
sharp cutoffs was described in [30]. In particular circum-
stances, the parameter estimation method becomes a sup-
port vector machine, and the resulting algorithm,
QPMEME, can be used to determine the binding energy of

the protein to the sequence S, as E(S) = ∑iα εiα Siα . The var-

iable Siα is defined as follows: if the ith base is α in

sequence S, then Siα = 1 and Siα = 0 otherwise. The param-

eter εiα is the contribution to the binding free energy from

base α being at position i. These εiα parameters are chosen

to minimize the variance of E(S) over the background dis-
tribution of sequences S, subject to the constraints E(S(j))

≤ -1 for the set of example binding sequences S(j), j = 1, ...,

N. Sequences satisfying E(S(j)) ≤ -1 are then declared to be
binding sites. In practice, the base frequencies are taken to

be independent and the probability of finding the base α
is taken to be pα. The quantity to be minimized is given by

, subject to the constraints , for each

i.

The QPMEME algorithm was used to produce an energy

matrix, [εiα], using the set of 49 known CAP binding sites

from the DPinteract database. An energy matrix was also
constructed using the binding sites identified by the
SELEX procedure described below. Weight matrices were
also constructed for both the known sites and the SELEX
sites using the formula wiα = log [fiα/(Npα)], where wiα is

the i, α component of the weight matrix and 

is the frequency of the ith base being α. The background
probabilities for G and C are taken to be the same. The
same applies to the background probabilities for A and T.
For both algorithms, the background GC content was
taken to be 0.43 (the GC content of non-ORF regions in
E. coli) when constructing energy matrices from the
known sites, and was taken to be 0.5 when constructing
energy matrices from SELEX sites. For the weight matrices/
energy matrices used in the study, see Additional file 1,
Additional file 2, Additional file 3 and Additional file 4.

Prediction of in vitro affinity of binding sites
The energy matrices constructed using each of the meth-
ods allows one to assign an estimated binding energy to a
given site. The correlation of these estimated binding
energies with the values of log(Kd), Kd being the dissocia-
tion constant, measured for the seven sites (TBS1–6 and
the Lac site) as described in the materials and methods
section is shown in Fig. 1. From the summary of the cor-
relations in Table 1, it is apparent that the SELEX proce-
dure produced significantly better information about the
binding characteristics of CAP than were available using
the known sites, while using QPMEME to infer the bind-
ing parameters εiα produced better correlation with the
measured values of log(Kd) when used with the SELEX
data set. The p-values associated with the correlation coef-
ficients (namely the probabilities of getting a correlation
coefficient that is greater than or equal to that value for
random i. i. d. gaussian data) in table 1 are as follows: r =
0.48 => p = 13.8%, r = 0.71 => p = 3.7%, r = 0.86 => p =
0.65%. The best correlation coefficient, obtained for
QPMEME trained on SELEX data, r = 0.86, represents very
significant but less than perfect correlation. However, one
has to remember that the measurements of Kd's them-
selves have a certain amount of error. Therefore, even with
perfect predictive power, we would not get a correlation
coefficient of one.

Note that the number of sequences used from the SELEX
data is comparable to the number of biological CAP bind-
ing sites used in weight matrix determination. This obser-
vation suggests that the improvement is due to unbiased
sampling of binding sequences and not due to the greater
number of sites used.

Comparison of binding energies of orthologous sites for E. 
coli and S. typhimurium
Without evolutionary pressure to keep the binding energy
constant over time, the binding energy of the orthologous
site will drift towards the average binding energy, which is
set to zero in our convention. For an E. coli site which is
estimated to be a strong binding site, the vast majority of
mutations will result in a weaker estimated binding
energy. This has the consequence that, even if the true
binding energy is conserved, a poor method of estimating
binding energies will probably assign a weaker binding
energy to the S. typhimurium orthologs of those E. coli sites
with the strongest estimated binding energy.

P i
i

α α
α

ε 2∑ P iα α
α

ε∑ = 0

f Si i
j

j
α α= ∑ ( )

Table 1: Correlation coefficient of inferred binding energy with 
log(Kd)

Known Sites SELEX

Weight matrix 0.48 0.71
QPMEME 0.48 0.86
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Estimated binding energy versus log(Kd) with different training sets and methodsFigure 1
Estimated binding energy versus log(Kd) with different training sets and methods. (A) Binding energies inferred 
using weight matrix method applied to known sites from literature. (B) Binding energies inferred using QPMEME method 
applied to known sites in literature. (C) Binding energies inferred using weight matrix method applied to SELEX sites obtained 
by this study. (D) Binding energies inferred using QPMEME method applied to SELEX sites obtained by this study.
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For each site, S, in E. coli with an S. typhimurium ortholog,
S', and for each estimation of the energy matrix, ε, one can
define the drift of S according to ε as:

Where E1 = ε • S, E2 = ε • S' and  is the standard devi-

ation of the conditional distribution P (E2|E1). The func-

tion Θ (x) is the Heaviside theta function which 1 for x ≥
0 and 0 for x < 0. The quantity Ds measures how much the

binding energy of the S. typhimurium site has apparently
weakened compared to a measure of how much it would
be expected to drift if there were no evolutionary pressure
to sustain it.

For each of the four estimations of the energy parameters,
the total drift for the highest-scoring 200 E. coli binding
sites with orthologs in S. typhimurium is shown in table 2.
False positives, that is, candidate binding sites identified
in E. coli, on the basis of inferred binding energy, which
are not functional in vivo, would not be expected to have
orthologs in S. typhimurium with significant binding
energy. The overall drift indicated in table 2 then receives
contributions from both the false positives picked up dur-
ing the scan of the E. coli genome, and from functional
sites whose estimated binding energy differs from the
actual binding energy.

Figures 2a and 2b show the amounts of drift of individual
candidate sites ordered according to drift for the energy
parameters inferred from the SELEX training set and the
training set consisting of the known sites, respectively.
Overall, the binding parameters inferred using QPMEME
systematically indicated less drift than the parameters
inferred using the weight matrix, with the best overall per-
formance when the SELEX data set was used to train the
algorithm.

Conclusion
Our purpose in this analysis was to show that indeed with
the appropriate kind of training data, one could improve
the ability to predict physical and functional binding. This
is in marked contrast to the general feeling in the biology
community that many pleoitropic transcription factors

bind at too many places and that it is hopeless to try to get
functional sites out of motif searches. Recently there were
ChIP-chip experiments done on CAP [32]. The conclusion
of the study was that CAP is physically bound at many
thousands of places in the genome. We saw, however,
from the comparative study, that stronger binding sites
are significantly conserved, indicating selective pressure.
These results are in agreement with similar studies done in
yeast [33] based on DNA chip data.

One of the main goals of the experimental procedure was
to gather specificity data for a transcription factor (TF) at
concentrations comparable to the cellular abundances.
One disadvantage of doing the selection experiment with
very high abundance of TF is that it is possible to select
sequences where the likely binding site partially overlaps
with the primer. For low abundances the sites bound tend
to be in the variable (meaning, the N28) region, because
binding partially to the primer in any window requires
enough free energy to be prohibitive. For high abundance,
the threshold for tolerance of such energetic costs is
higher. We believe that, in the original SELEX SAGE work
[19], the TF abundance is still low enough so that the
"primer contamination" problem is avoided. However,
when using this method for a genuinely pleiotropic TF at
cellular concentrations, one would face the primer con-
tamination problem we describe here.

One possible resolution of this problem is computational.
We could develop a more complex probability model
allowing for the primer contribution and utilize the full
data set. We could do this by generalizing the model in
reference [30], and allowing binding in different windows
on a longer sequence. However, to settle the question of
whether SELEX data sets provide any advantage, we
decided to focus on small number of sequences where the
binding is likely to be in the random or N28 part. The
number of SELEX sequences used for training is compara-
ble to the number of biologically known sites. Hence, the
improvement in prediction should be from better sam-
pling of sequences in the dataset rather than from the
sample size. The use of the full data set requires a new
computational method, which would be a promising sub-
ject for future research.

In this study, we only used sequence data for estimating
the parameters related to the motif. We measured relative
affinities (inverse of dissociation constants) to test the
accuracy of our predictions. As has been shown, combin-
ing SELEX with quantitative affinity measurements leads
to even better predictive power [34]. Our reason for focus-
ing solely on sequence data is that we foresee develop-
ments in short-read sequencing [35] which is expected to
lead to a readily available inexpensive technology for gen-
erating large SELEX data sets.

D E E
E E

E
S = − −Θ( )2 1

2 1
σ

σ E1

Table 2: Total drift of 200 strongest E. coli binding sites for 
different methods

Known Sites SELEX

Weight Matrix 167 134
QPMEME 139 123
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Drift in estimated CAP binding energy between E. coli and S. typhimurium sorted in ascending order plotted against the rankFigure 2
Drift in estimated CAP binding energy between E. coli and S. typhimurium sorted in ascending order plotted 
against the rank. (A) Using energies estimated by weight matrix or QPMEME based on know sites. (B) Using energies esti-
mated by weight matrix or QPMEME based on the SELEX sites. Note that, for QPMEME estimates based on SELEX data, the 
energy drift stays low for many sites, as would be expected of most functional CAP targets.
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In the last few years, we have seen considerable activity
that centers around biophysical aspects of gene regula-
tion. The push has come from two different ends. On the
one hand, detailed structural modeling of protein-DNA
interactions has been used to calculate sequence depend-
ent protein DNA interaction free energies [36]. The
insights from structural considerations could guide the
appropriate parametrization of knowledge-based bioin-
formatic motif discovery tools as well [37]. On the other
hand, Hidden Markov Models, which can be thought of as
one dimensional statistical mechanics models of multiple
proteins binding on DNA, have been applied to study
multiple binding sites for protein complexes in a stretch
of DNA [38,39]. This approach has been extended to
nucleosome positioning as well [40]. The remarkable suc-
cess of these approaches seems to suggest that much could
be done with an accurate biophysical description of pro-
tein-DNA interaction in the context of gene regulation.
Precise characterization of the probabilistic protein DNA
interaction code is a crucial element of such a description.
As technologies for massively parallel signature sequenc-
ing [35] become more accurate, large scale SELEX studies
for determining the interaction code would become more
and more feasible.

Methods
Purification of CAP
His6-tagged CAP protein was expressed using BL21DE3
cells harboring pAKCRP-HIS6 [41] and purified under
native conditions using Ni-NTA Agarose, with slight mod-
ifications. Specifically, the elutions were performed with
an Imidazole step gradient, with steps of of 60, 100, 200
and 400 mM Imidazole [42]. The pure fractions were dia-
lyzed against a buffer containing 20 mM Tris.cl pH 8.0,
0.1 mM EDTA, 50 mM Nacl, 10% glycerol, 1 mM DTT and
0.1 mM PMSF.

High throughput low stringency SELEX for CAP
In vitro selection, amplification and cloning of TF-binding
sites for CAP were implemented using a modified SELEX
procedure [18]. 25 nM CAP was used to select binding
sequences from a random DNA library N(28) flanked by
the PCR primer sequences 5'-CTGTATGTCGAGATCTA-3'
and 5'-TAGATCTCCTAACCGA-3', with Bgl II sites. The ds
DNA library was added as a competitor along with 10,000
CPM of a radiolabeled medium-strength CAP binding
sequence, 5'-TTATGGAAGAGATATCACATTT-3', flanked
by additional primer sequences, 5'-GTATGTCGAGATC-
TATCCAT-3' and 5'-TAATTTAGATCTCCTAACCG-3', to
the left and the right, respectively. A library of random
sequence oligos was obtained from Invitrogen and used as
a template for primer extension with a 3' primer to make
a double stranded library using TaqPro DNA polymerase
(Cat No: CB-4050-7 from Denville Scientific Inc.). The
resulting double stranded random library was added as a

competitor to 50 nm CAP protein incubated with the radi-
olabeled medium strength CAP binding site. For the later
rounds 25 nm CAP protein was used. The amount of
library DNA was titrated until 50–80% of the radiolabeled
complex was competed away. This was continued for 4
rounds.

For each round, after electrophoresis, the DNA-protein
complexes were eluted using diffusion buffer from Qiagen
(0.5 M ammonium acetate, 10 mM magnesium acetate, 1
mM EDTA, pH 8.0, 0.1% SDS) O/N at 37°C. The DNA
was ethanol-precipitated and then PCR amplified. for 25
cycles. The cycling conditions were as follows. The initial
denaturation was at 94°C for one minute. 25 cycles of
amplification with 94°C for 30 secs, 40°C for one minute
and 70°C for one minute followed the initial step. At the
end, there was final primer extension at 74°C for 5 min-
utes and then a final hold at 4°C.

Concatenation, cloning and sequencing
To obtain a large number of binding sequences, we con-
catenated the selected binding sequences to increase the
sequencing throughput following [19]. The procedure for
concatenation and cloning closely follows the SAGE pro-
cedure described in [43]. After the fourth round, the DNA
was digested with BglII and gel purified using 4.5% regu-
lar agarose gels run in 1× TAE. The 36 mer band was cut
out from gel and sliced further into very tiny pieces using
a scalpel and extracted using quantum prep Freeze N
Squeeze DNA Gel Extraction Spin columns (catalog 732–
6166) from Bio-Rad laboratories. The purified 36-mers
were then further spun through a microcon YM-10 from
Millipore to eliminate further primer contamination and
also to concentrate the sample. The concatenation proce-
dure from [43] was followed. The concatemers (600–
1200 base pair fragments) were gel purified and cloned
into a BamH1 site of a pZero-1 vector (Invitrogen)[19]
and transformed into DH10B E. Coli cells. The colonies
were PCR amplified and were run on 1.5% gel to verify the
fragment length. The colonies which contained insert
sizes in the range of 600-1.2 kb were selected for sequenc-
ing. 5 ul of the PCR was treated with ExoSAP-IT, Cat.No
78201 from USB, incubated at 37°C for 15 minutes and
inactivated by incubating at 85°C for 15 minutes. The
reaction was cooled on ice and 3–4 ul of this was used for
sequencing. The sequencing reaction was carried out
using the M13 forward primer for 25 cycles (96°C for 10
secs, 50°C for 5 secs and 60°C for 4 minute and hold at
4°C). The reactions were cleaned using a CleanSEQ dye-
terminator removal reagent from Agencourt Bioscience
Corporation following the manufacturer's protocol. The
samples were sent out for sequencing to Sequencing and
Genotyping Core Facility, Genomics and Proteomics Core
Laboratories, University of Pittsburgh.
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EMSA of various CAP binding sites predicted from 
QPMEME of known binding sites
Electrophoretic Mobility Shift Assays (EMSA) for CAP
were carried out for several putative CAP binding sites in
the E. coli genome as well as for one known CAP site and
one generic site in E. coli. The putative CAP sites were cho-
sen for an earlier unpublished study which aimed to esti-
mate the false positive rate of QPMEME predictions based
on known biologically functional binding sites. The
sequences of the oligonucleotides are:

5'-TAAAAAGTGTGACCCGGTTCACGTAGCGAT-3'
(TBS1),

5'-GAATTCCTGCGCCTTTGCTCACAATCCAGA-3'
(TBS2),

5'-TAAATATCGAGATAACGATCACAAAAACGA-3'
(TBS3),

5'-GAAATTATGGAAGAGATATCACATTTCTAT-3' (TBS4),

5'-ATGCTAACGCGATTCCGCTCAAAAATCAGT-3'
(TBS5),

5'-AGATCAATTTGATCTACATCTCTTTAACCA-3'(TBS6),

5'-CCTAATGAGTGAGCTAACTCACATTAATTG-3' (Lac
site),

5'-GTCGCTGTTTTCCCGCCCGGTGTACGCCAC-3'
(Non-CAP site).

The oligonucleotides (both top and bottom strand) were
obtained from Integrated DNA Technologies, INC. The
top strand oligonucleotide (50 pmol) was 5'-end labeled
using [γ-32P] ATP and T4 polynucleotide Kinase (New
England Biolabs) according to the manufacturer's instruc-
tions. The labeled strand was purified from unincorpo-
rated [γ-32P] ATP using microspin G-50 column
(Amersham Biosciences). A two-fold of unlabeled bottom
strands were annealed to the 10 picomoles of top strand
by heating the two at 95°C for 5 minutes and allowing
them to cool gradually to room temperature overnight.
The resulting double stranded radio-labelled DNA frag-
ments (10,000 CPM) were incubated with various con-
centrations of CAP (0, 0.01, 0.1, 1, 10,100, 1000 nM) in a
total volume of 20 ul containing 20 mM Tris-HCl, pH 8.0,
40 mM NaCl, 4 mM MgCl2, 0.1 mM EDTA, I mM DTT, 10
ug/ml sheared salmon sperm DNA, 0.2 mM cAMP and
6% glycerol. The complexes were fractionated using elec-
trophoresis on a native 8% polyacrylamide (37.5:1) gel
containing 2% glycerol, 0.1 mM cAMP in 1× TBE. The run-
ning buffer contained 2% glycerol and 20 uM cAMP in 1×

TBE. The resulting gels were processed for analysis on a
Molecular Dynamics Phosphoimager.

Preprocessing of sequence data
96 concatemers were sequenced. For each of the concate-
mers, the subsequences consisting of between 24 and 32
nucleotides surrounded by restriction sites were extracted.
Each occurrence of TAGATCTA was considered to be a
restriction site, in addition to GGATCTA when it appeared
before all of the other restriction sites and TAGATCC
when it appeared after all of the other restriction sites. In
all, 591 subsequences were extracted, along with their
flanking restriction sites [see Additional file 5].

Each of the subsequences was then examined to deter-
mine whether CAP binding to the primer rather than the
sequence from the random library contributed to the
extraction of the sequence. The restriction sites were
replaced by the original PCR primer sequences 5'-CTG-
TATGTCGAGATCTA-3' and 5'-TAGATCTCCTAACCGA-3',
and the resulting sequences were scanned using an energy
matrix constructed from 49 known CAP binding sites
(and their reverse complements) taken from the DPInter-
act database [9]. The energy matrix was constructed using
the QPMEME algorithm as described below. The matrix
was used to assign estimated binding energies, or binding
scores, to each subsequence of length 22. Sequences
whose highest-scoring candidate binding site overlapped
with the PCR primers were discarded, leading to a set of
94 sequences which contained a candidate CAP binding
site within the subsequence from the random library.
From the 94 sequences, 62 unique sites were extracted by
selecting the site within the sequence, which was assigned
the highest score by the energy matrix. Of these, 56 sites
which had scores significantly beyond the threshold of -1
set by the algorithm were identified as candidate CAP
binding sites while the remaining 6 sites, which were sep-
arated in energy from the rest of the sites by a significant
gap, and which all scored below the threshold, were con-
sidered to have been selected due to non-specific binding
and discarded.

The presence of sequences that are likely to have primers
contributing to the binding of the TF, nearly 84% of the
original dataset, seems unavoidable given that we perform
selection at a high abundance of TF. We tried designing
new primers that allow the least amount of binding, given
our previous knowledge of CAP binding motif. We found
that the condition of avoidance of a certain motif often
makes the primer sequences self-similar leading to single
stranded self-complementing loops. The combination of
computational constraints like high free energy cost of
partial overlap with the CAP binding motif, appropriate
melting temperature, absence of self-looping and aperio-
dicity generated very few possibilities, and experiments
Page 8 of 11
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using those computationally generated sequences had
problems at stages past the SELEX steps. As a result, we
decided to use the primers mentioned above, and use only
a smaller subset of the data.

SVM applied to SELEX data
We solve the dual [44] of the variance optimization prob-
lem mentioned above. We construct the matrix M in terms
of the set of observed sequences O = {S(1), S(2), ..., S(N)} as
follows:

Let us define the elements of the matrix M as,

where  and Pαβ = pα δαβ. We minimize

, subject to constraints γa ≥ 0 for

each a = 1, ..., N.

The relation between the primal and the dual solution is

given by . At the optimal point, for

any a, such that, γa > 0, we have  = -1. If we think

of sequences S as vectors in a vector space V and H = {x ∈
V|ε • x = -1} a hyperplane separating the binding
sequences from the non-binding ones, then H is "sup-
ported" by those observed sequences S(a), which corre-

sponds to non-trivial γa.

For SELEX data pα is taken to be 0.25 for all α ∈ {A, C, G,
T}. In the case where biological binding sites are used as
input to QPMEME, pα is set according to the frequency
with which base α appears in the genomic background (in
this case the non-ORF regions of the genome).

Phylogenetic footprinting
Intergenic regions from E. coli were aligned to ortholo-
gous regions in the genome of the related bacterium S.
typhimurium, in a manner similar to that described in [45].
An intergenic region in S. typhimurium was considered to
be orthologous to a corresponding region in E. coli if the
genes flanking the regions had the same names and rela-
tive orientation in both species. The regions were aligned
using the ClustalW alignment program (reference) with
the default parameters. This yielded 1,628 alignments
from the full set of 3,475 intergenic regions in E. coli.
1,452 of the alignments contained an aligned sequence of
length 22 or more, and were thus sufficiently long to con-
tain a CAP binding site [see Additional file 6].

As described above, several methods were used to identify
candidate CAP binding sites within the intergenic regions
of the E. coli genome. For those candidate sites, which
were located in a region with an S. typhimurium ortholog,
the S. typhimurium sequence aligned to the E. coli site was
extracted. In the cases when there were no gaps in the
alignment, the extracted S. typhimurium sequence could be
assigned an estimated binding energy using either a
weight matrix or a QPMEME energy matrix.
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Additional file 1
Weight matrix extracted from DPInteract database sites. The conven-
tional weight matrix, obtained from the known CAP sites in the DPInter-
act database, is provided. The matrices are in tab-separated format with 
the order of the columns being A, T, G and C.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1472-
6750-8-94-S1.htm]

Additional file 2
Energy matrix extracted from DPInteract database sites. The energy 
matrix, obtained by using QPMEME on known CAP sites in the DPInter-
act database, is provided. The matrices are in tab-separated format with 
the order of the columns being A, T, G and C.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1472-
6750-8-94-S2.htm]

Additional file 3
Weight matrix extracted from the SELEX dataset. The conventional 
weight matrix, based on SELEX data presented in this paper, is provided. 
The matrices are in tab-separated format with the order of the columns 
being A, T, G and C.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1472-
6750-8-94-S3.htm]

Additional file 4
Energy matrix extracted from the SELEX dataset. The energy matrix, 
obtained by training QPMEME on SELEX data presented in thin paper, 
is provided. The matrices are in tab-separated format with the order of the 
columns being A, T, G and C.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1472-
6750-8-94-S4.htm]
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