Rice JB, Desai U, Cummings AK, Birnbaum HG, Skornicki M, Parsons NB. Burden of diabetic foot ulcers for medicare and private insurers. Diabetes Care. 2014;37(3):651–8.
Article
Google Scholar
Wayman J, Nirojogi V, Walker A, Sowinski A, Walker MA. The cost effectiveness of larval therapy in venous ulcers. J Tissue Viability. 2000;10(3):91–4.
Article
CAS
Google Scholar
Thomas S, Jones M. Wound debridement: evaluating the costs. Nurs Stand. 2001;15(22):59–61.
CAS
Google Scholar
Chan DC, Fong DH, Leung JY, Patil NG, Leung GK. Maggot debridement therapy in chronic wound care. Hong Kong Med J. 2007;13(5):382–6.
Google Scholar
Sherman RA, Mumcuoglu KY, Grassberger M, Tantawi TI. Maggot therapy. In: Grassberger M, Sherman RA, Gileva OS, Kim CMH, Mumcuoglu KY, editors. Biotherapy - history, principles and practice: a practical guide to the diagnosis and treatment of disease using living organisms. Dordrecht: Springer; 2013. p. 5–29.
Chapter
Google Scholar
Sherman RA, Hall MJ, Thomas S. Medicinal maggots: an ancient remedy for some contemporary afflictions. Annu Rev Entomol. 2000;45:55–81.
Article
CAS
Google Scholar
Jeffcoate WJ, Price P, Harding KG, International Working Group on Wound H, Treatments for People with Diabetic Foot U. Wound healing and treatments for people with diabetic foot ulcers. Diabetes Metab Res Rev. 2004;20 Suppl 1:S78–89.
Article
Google Scholar
Lerch K, Linde HJ, Lehn N, Grifka J. Bacteria ingestion by blowfly larvae: an in vitro study. Dermatology. 2003;207(4):362–6.
Article
Google Scholar
Robinson W. Ammonium bicarbonate secreted by surgical maggots stimulates healing in purulent wounds. Am J Surg. 1940;47:111–5.
Article
CAS
Google Scholar
Sherman RA. Mechanisms of maggot-induced wound healing: what do we know, and where do we go from here? Evid Based Complement Alternat Med. 2014;2014:592419.
Article
Google Scholar
Steenvoorde P, Jukema GN. The antimicrobial activity of maggots: in-vivo results. J Tissue Viability. 2004;14(3):97–101.
Article
CAS
Google Scholar
Cazander G, Pritchard DI, Nigam Y, Jung W, Nibbering PH. Multiple actions of Lucilia sericata larvae in hard-to-heal wounds: larval secretions contain molecules that accelerate wound healing, reduce chronic inflammation and inhibit bacterial infection. Bioessays. 2013;35(12):1083–92.
Article
CAS
Google Scholar
Cerovsky V, Zdarek J, Fucik V, Monincova L, Voburka Z, Bem R. Lucifensin, the long-sought antimicrobial factor of medicinal maggots of the blowfly Lucilia sericata. Cell Mol Life Sci. 2010;67(3):455–66.
Article
CAS
Google Scholar
Andersen AS, Sandvang D, Schnorr KM, Kruse T, Neve S, Joergensen B, et al. A novel approach to the antimicrobial activity of maggot debridement therapy. J Antimicrob Chemother. 2010;65(8):1646–54.
Article
CAS
Google Scholar
Altincicek B, Vilcinskas A. Septic injury-inducible genes in medicinal maggots of the green blow fly Lucilia sericata. Insect Mol Biol. 2009;18(1):119–25.
Article
CAS
Google Scholar
Huberman L, Gollop N, Mumcuoglu KY, Block C, Galun R. Antibacterial properties of whole body extracts and haemolymph of Lucilia sericata maggots. J Wound Care. 2007;16(3):123–7.
Article
CAS
Google Scholar
Kawabata T, Mitsui H, Yokota K, Ishino K, Oguma K, Sano S. Induction of antibacterial activity in larvae of the blowfly Lucilia sericata by an infected environment. Med Vet Entomol. 2010;24(4):375–81.
Article
CAS
Google Scholar
Beasley WD, Hirst G. Making a meal of MRSA-the role of biosurgery in hospital-acquired infection. J Hosp Infect. 2004;56(1):6–9.
Article
CAS
Google Scholar
van der Plas MJ, van der Does AM, Baldry M, Dogterom-Ballering HC, van Gulpen C, van Dissel JT, et al. Maggot excretions/secretions inhibit multiple neutrophil pro-inflammatory responses. Microbes Infect. 2007;9(4):507–14.
Article
Google Scholar
van der Plas MJ, Baldry M, van Dissel JT, Jukema GN, Nibbering PH. Maggot secretions suppress pro-inflammatory responses of human monocytes through elevation of cyclic AMP. Diabetologia. 2009;52(9):1962–70.
Article
Google Scholar
Mumcuoglu KY, Ingber A, Gilead L, Stessman J, Friedmann R, Schulman H, et al. Maggot therapy for the treatment of intractable wounds. Int J Dermatol. 1999;38(8):623–7.
Article
CAS
Google Scholar
Mumcuoglu KY. Clinical applications for maggots in wound care. Am J Clin Dermatol. 2001;2(4):219–27.
Article
CAS
Google Scholar
Prete PE. Growth effects of Phaenicia sericata larval extracts on fibroblasts: mechanism for wound healing by maggot therapy. Life Sci. 1997;60(8):505–10.
Article
CAS
Google Scholar
Honda K, Okamoto K, Mochida Y, Ishioka K, Oka M, Maesato K, et al. A novel mechanism in maggot debridement therapy: protease in excretion/secretion promotes hepatocyte growth factor production. Am J Physiol Cell Physiol. 2011;301(6):C1423–30.
Article
CAS
Google Scholar
Zarchi K, Jemec GB. The efficacy of maggot debridement therapy--a review of comparative clinical trials. Int Wound J. 2012;9(5):469–77.
Article
Google Scholar
Cooper DM, Yu EZ, Hennessey P, Ko F, Robson MC. Determination of endogenous cytokines in chronic wounds. Ann Surg. 1994;219(6):688–91. discussion 91-2.
Article
CAS
Google Scholar
Pierce GF, Tarpley JE, Tseng J, Bready J, Chang D, Kenney WC, et al. Detection of platelet-derived growth factor (PDGF)-AA in actively healing human wounds treated with recombinant PDGF-BB and absence of PDGF in chronic nonhealing wounds. J Clin Invest. 1995;96(3):1336–50.
Article
CAS
Google Scholar
Braund R, Hook S, Medlicott NJ. The role of topical growth factors in chronic wounds. Curr Drug Deliv. 2007;4(3):195–204.
Article
CAS
Google Scholar
Heldin CH, Westermark B. Mechanism of action and in vivo role of platelet-derived growth factor. Physiol Rev. 1999;79(4):1283–316.
CAS
Google Scholar
Siegfried G, Basak A, Prichett-Pejic W, Scamuffa N, Ma L, Benjannet S, et al. Regulation of the stepwise proteolytic cleavage and secretion of PDGF-B by the proprotein convertases. Oncogene. 2005;24(46):6925–35.
Article
CAS
Google Scholar
Papanas N, Maltezos E. Becaplermin gel in the treatment of diabetic neuropathic foot ulcers. Clin Interv Aging. 2008;3(2):233–40.
CAS
Google Scholar
Pierce GF, Tarpley JE, Allman RM, Goode PS, Serdar CM, Morris B, et al. Tissue repair processes in healing chronic pressure ulcers treated with recombinant platelet-derived growth factor BB. Am J Pathol. 1994;145(6):1399–410.
CAS
Google Scholar
Kumar A, Verma A, Mishra A, Agrawal G, Agrawal A, Mishra S. Platelet derived growth factor in healing of large diabetic foot ulcers in Indian clinical set-up: a protocol-based approach. WebmedCentral Wound Heal. 2013;4(2):WMC003985.
Google Scholar
Embil JM, Papp K, Sibbald G, Tousignant J, Smiell JM, Wong B, et al. Recombinant human platelet-derived growth factor-BB (becaplermin) for healing chronic lower extremity diabetic ulcers: an open-label clinical evaluation of efficacy. Wound Repair Regen. 2000;8(3):162–8.
Article
CAS
Google Scholar
Steed DL. Clinical evaluation of recombinant human platelet-derived growth factor for the treatment of lower extremity diabetic ulcers. Diabetic Ulcer Study Group. J Vasc Surg. 1995;21(1):71–8. discussion 9-81.
Article
CAS
Google Scholar
Steed DL. Clinical evaluation of recombinant human platelet-derived growth factor for the treatment of lower extremity ulcers. Plast Reconstr Surg. 2006;117(7 Suppl):143S–9S. discussion 50S-51S.
Article
CAS
Google Scholar
Rees RS, Robson MC, Smiell JM, Perry BH. Becaplermin gel in the treatment of pressure ulcers: a phase II randomized, double-blind, placebo-controlled study. Wound Repair Regen. 1999;7(3):141–7.
Article
CAS
Google Scholar
Hardikar JV, Reddy YC, Bung DD, Varma N, Shilotri PP, Prasad ED, et al. Efficacy of Recombinant Human Platelet- Derived Growth Factor (rh-PDGF) based gel in diabetic foot ulcers: a randomized, multicenter, double- blind, placebo- controlled study in India. Wounds. 2005;17(6):141–52.
Google Scholar
Wieman TJ, Smiell JM, Su Y. Efficacy and safety of a topical gel formulation of recombinant human platelet-derived growth factor-BB (becaplermin) in patients with chronic neuropathic diabetic ulcers. A phase III randomized placebo-controlled double-blind study. Diabetes Care. 1998;21(5):822–7.
Article
CAS
Google Scholar
Smiell JM, Wieman TJ, Steed DL, Perry BH, Sampson AR, Schwab BH. Efficacy and safety of becaplermin (recombinant human platelet-derived growth factor-BB) in patients with nonhealing, lower extremity diabetic ulcers: a combined analysis of four randomized studies. Wound Repair Regen. 1999;7(5):335–46.
Article
CAS
Google Scholar
Nagai MK, Embil JM. Becaplermin: recombinant platelet derived growth factor, a new treatment for healing diabetic foot ulcers. Expert Opin Biol Ther. 2002;2(2):211–8.
Article
CAS
Google Scholar
Wieman TJ. Clinical efficacy of becaplermin (rhPDGF-BB) gel. Becaplermin Gel Studies Group. Am J Surg. 1998;176(2A Suppl):74S–9S.
Article
CAS
Google Scholar
Senet P, Vicaut E, Beneton N, Debure C, Lok C, Chosidow O. Topical treatment of hypertensive leg ulcers with platelet-derived growth factor-BB: a randomized controlled trial. Arch Dermatol. 2011;147(8):926–30.
Article
CAS
Google Scholar
Ma C, Hernandez MA, Kirkpatrick VE, Liang LJ, Nouvong AL, Gordon II. Topical platelet-derived growth factor vs placebo therapy of diabetic foot ulcers offloaded with windowed casts: a randomized, controlled trial. Wounds. 2015;27(4):83–91.
Google Scholar
Concha C, Edman RM, Belikoff EJ, Schiemann AH, Carey B, Scott MJ. Organization and expression of the Australian sheep blowfly (Lucilia cuprina) hsp23, hsp24, hsp70 and hsp83 genes. Insect Mol Biol. 2012;21(2):169–80.
Article
CAS
Google Scholar
Sze SH, Dunham JP, Carey B, Chang PL, Li F, Edman RM, et al. A de novo transcriptome assembly of Lucilia sericata (Diptera: Calliphoridae) with predicted alternative splices, single nucleotide polymorphisms and transcript expression estimates. Insect Mol Biol. 2012;21(2):205–21.
Article
CAS
Google Scholar
Concha C, Belikoff EJ, Carey BL, Li F, Schiemann AH, Scott MJ. Efficient germ-line transformation of the economically important pest species Lucilia cuprina and Lucilia sericata (Diptera, Calliphoridae). Insect Biochem Mol Biol. 2011;41(1):70–5.
Article
CAS
Google Scholar
Li F, Wantuch HA, Linger RJ, Belikoff EJ, Scott MJ. Transgenic sexing system for genetic control of the Australian sheep blow fly Lucilia cuprina. Insect Biochem Mol Biol. 2014;51:80–8.
Article
CAS
Google Scholar
Lobo N, Li X, Fraser Jr MJ. Transposition of the piggyBac element in embryos of Drosophila melanogaster, Aedes aegypti and Trichoplusia ni. Mol Gen Genet. 1999;261(4-5):803–10.
Article
CAS
Google Scholar
Guerrero FD, Dowd SE, Djikeng A, Wiley G, Macmil S, Saldivar L, et al. A database of expressed genes from Cochliomyia hominivorax (Diptera: Calliphoridae). J Med Entomol. 2009;46(5):1109–16.
Article
CAS
Google Scholar
Scott MJ. Development and evaluation of male-only strains of the Australian sheep blowfly, Lucilia cuprina. BMC Genet. 2014;15 Suppl 2:S3.
Article
Google Scholar
van Oers MM, Pijlman GP, Vlak JM. Thirty years of baculovirus-insect cell protein expression: from dark horse to mainstream technology. J Gen Virol. 2015;96(Pt 1):6–23.
Article
Google Scholar
Medin JA, Hunt L, Gathy K, Evans RK, Coleman MS. Efficient, low-cost protein factories: expression of human adenosine deaminase in baculovirus-infected insect larvae. Proc Natl Acad Sci U S A. 1990;87(7):2760–4.
Article
CAS
Google Scholar
Fossgreen A, Bruckner B, Czech C, Masters CL, Beyreuther K, Paro R. Transgenic Drosophila expressing human amyloid precursor protein show gamma-secretase activity and a blistered-wing phenotype. Proc Natl Acad Sci U S A. 1998;95(23):13703–8.
Article
CAS
Google Scholar
O’Connell KP, Kovaleva E, Campbell JH, Anderson PE, Brown SG, Davis DC, et al. Production of a recombinant antibody fragment in whole insect larvae. Mol Biotechnol. 2007;36(1):44–51.
Article
Google Scholar
Kato T, Kajikawa M, Maenaka K, Park EY. Silkworm expression system as a platform technology in life science. Appl Microbiol Biotechnol. 2010;85(3):459–70.
Article
CAS
Google Scholar
Michaud S, Marin R, Tanguay RM. Regulation of heat shock gene induction and expression during Drosophila development. Cell Mol Life Sci. 1997;53(1):104–13.
Article
CAS
Google Scholar
Matsumoto S, Tanaka R, Okada K, Arita K, Hyakusoku H, Miyamoto M, et al. The effect of control-released basic fibroblast growth factor in wound healing: histological analyses and clinical application. Plast Reconstr Surg Glob Open. 2013;1(6):e44.
Article
Google Scholar
Moore AJ, Beazley WD, Bibby MC, Devine DA. Antimicrobial activity of cecropins. J Antimicrob Chemother. 1996;37(6):1077–89.
Article
CAS
Google Scholar
Ali RA, Mellenthin K, Fahmy K, Da Rocha S, Baumgartner S. Structural conservation of the salivary gland-specific slalom gene in the blowfly Lucilia sericata. Dev Genes Evol. 2005;215(10):537–43.
Article
CAS
Google Scholar
Elliott DA, Brand AH. The GAL4 system : a versatile system for the expression of genes. Methods Mol Biol. 2008;420:79–95.
Article
CAS
Google Scholar
Singh B, Crippen TL, Zheng L, Fields AT, Yu Z, Ma Q, et al. A metagenomic assessment of the bacteria associated with Lucilia sericata and Lucilia cuprina (Diptera: Calliphoridae). Appl Microbiol Biotechnol. 2015;99(2):869–83.
Article
CAS
Google Scholar
Hurwitz I, Fieck A, Read A, Hillesland H, Klein N, Kang A, et al. Paratransgenic control of vector borne diseases. Int J Biol Sci. 2011;7(9):1334–44.
Article
CAS
Google Scholar
Thomas S, Jones M, Wynn K, Fowler T. The current status of maggot therapy in wound healing. Br J Nurs. 2001;10(22 Suppl):S5. -8, S10, S2.
Article
CAS
Google Scholar
Steenvoorde P, Buddingh TJ, van Engeland A, Oskam J. Maggot therapy and the “yuk” factor: an issue for the patient? Wound Repair Regen. 2005;13(3):350–2.
Article
Google Scholar
Grassberger M, Fleischmann W. The biobag - a new device for the application of medicinal maggots. Dermatology. 2002;204(4):306.
Article
Google Scholar
Blancke S, Van Breusegem F, De Jaeger G, Braeckman J, Van Montagu M. Fatal attraction: the intuitive appeal of GMO opposition. Trends Plant Sci. 2015;20(7):414–8.
Article
CAS
Google Scholar
BM S, Gao S, Zhu N, Sudlow GP, Liang K, Som A, et al. Binocular Goggle Augmented Imaging and Navigation System provides real-time fluorescence image guidance for tumor resection and sentinel lymph node mapping. Sci Rep. 2015;5:12117.
Article
Google Scholar
Dorsett-Martin WA. Rat models of skin wound healing: a review. Wound Repair Regen. 2004;12(6):591–9.
Article
Google Scholar
Li F, Vensko 2nd SP, Belikoff EJ, Scott MJ. Conservation and Sex-Specific Splicing of the transformer Gene in the Calliphorids Cochliomyia hominivorax, Cochliomyia macellaria and Lucilia sericata. PLoS One. 2013;8(2):e56303.
Article
CAS
Google Scholar
Li X, Heinrich JC, Scott MJ. piggyBac-mediated transposition in Drosophila melanogaster: an evaluation of the use of constitutive promoters to control transposase gene expression. Insect Mol Biol. 2001;10:447–55.
CAS
Google Scholar
Edman RM, Linger RJ, Belikoff EJ, Li F, Sze SH, Tarone AM, et al. Functional characterization of calliphorid cell death genes and cellularization gene promoters for controlling gene expression and cell viability in early embryos. Insect Mol Biol. 2015;24(1):58–70.
Article
CAS
Google Scholar
Oku H, Shimizu T, Kawabata T, Nagira M, Hikita I, Ueyama A, et al. Antifibrotic action of pirfenidone and prednisolone: different effects on pulmonary cytokines and growth factors in bleomycin-induced murine pulmonary fibrosis. Eur J Pharmacol. 2008;590(1-3):400–8.
Article
CAS
Google Scholar