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Abstract

Background: Multi-copy gene integration into microbial genomes is a conventional tool for obtaining improved gene
expression. For Penicillium chrysogenum, the fungal producer of the beta-lactam antibiotic penicillin, many production
strains carry multiple copies of the penicillin biosynthesis gene cluster. This discovery led to the generally accepted
view that high penicillin titers are the result of multiple copies of penicillin genes. Here we investigated strain
P2niaD18, a production line that carries only two copies of the penicillin gene cluster.

Results: We performed pulsed-field gel electrophoresis (PFGE), quantitative gRT-PCR, and penicillin bioassays to
investigate production, deletion and overexpression strains generated in the P. chrysogenum P2niaD18 background, in
order to determine the copy number of the penicillin biosynthesis gene cluster, and study the expression of one
penicillin biosynthesis gene, and the penicillin titer. Analysis of production and recombinant strain showed that the
enhanced penicillin titer did not depend on the copy number of the penicillin gene cluster. Our assumption was
strengthened by results with a penicillin null strain lacking pcbC encoding isopenicillin N synthase. Reintroduction of
one or two copies of the cluster into the pcbC deletion strain restored transcriptional high expression of the pcbC
gene, but recombinant strains showed no significantly different penicillin titer compared to parental strains.

Conclusions: Here we present a molecular genetic analysis of production and recombinant strains in the P2niaD18
background carrying different copy numbers of the penicillin biosynthesis gene cluster. Our analysis shows that the
enhanced penicillin titer does not strictly depend on the copy number of the cluster. Based on these overall findings,
we hypothesize that instead, complex regulatory mechanisms are prominently implicated in increased penicillin

biosynthesis in production strains.
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Background

Fungi can produce diverse secondary metabolites with
antibacterial activity against numerous microorganisms.
Among these metabolites, penicillin represents the start-
ing point of the discovery of highly effective antibiotics,
a milestone in therapeutic medicine [1, 2]. To date, only
the filamentous ascomycete Penicillium chrysogenum is
used industrially to obtain economically relevant penicil-
lin titers [3].
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In the first reaction of penicillin biosynthesis, the three
precursor amino acids L-a-aminoadipic acid, L-cysteine,
and L-valine are condensed to the tripeptide §-(L-a-ami-
noadipyl)-L-cysteinyl-D-valine (ACV). This step is catalyzed
by ACV synthetase, a single multifunctional enzyme with
non-ribosomal peptide synthetase activity that is coded by
the pcbAB gene (synonym, acvA). The second step is
characterized by the oxidative ring closure of the linear
ACYV tripeptide, leading to the formation of a bicyclic ring
comprising the p-lactam and thiazolidine ring. This reac-
tion is catalyzed by the isopenicillin N synthase, encoded by
the pcbC gene (synonym, ipnA). The resulting compound,
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isopenicillin N, is the first bioactive intermediate of the
penicillin biosynthesis pathway. In the third reaction of
penicillin biosynthesis, the hydrophilic L-a-aminoadipate
side chain of isopenicillin N is exchanged for a hydrophobic
phenylacetyl or phenoxyacetyl group, resulting in the
formation of penicillin G and penicillin V, respectively. This
final step is catalyzed by the acyl-coenzyme A: isopenicillin
N acyltransferase, and the corresponding gene is penDE
(synonym, aatA) (for an overview see [2, 4, 5]).

All three penicillin biosynthesis genes occur in a single
cluster that is structurally conserved in pro- and eukaryotic
microbial producers. This shared characteristic supports
the hypothesis that fungi have acquired these genes from
bacteria through horizontal gene transfer [6, 7].

The progenitor of all industrially used P. chrysogenum
strains is strain NRRL 1951 (= CBS 307.48), which was
isolated in 1943 from a moldy cantaloupe in Peoria, IL.
Since then, this strain and its descendants have been
subjected to strong mutagenic treatments during strain
improvement programs. This pressure has not only re-
sulted in sharply increased antibiotic production but also
in increased copy number of the penicillin biosynthesis
cluster in some high-production strains, several of which
harbor as many as 50 copies of the cluster [3, 8—10]. For
example, in the high producer AS-P-78, a 106.5-kb DNA
region comprising the pen cluster is amplified in tandem
repeats of five or six copies linked by conserved hexanu-
cleotide sequences, whereas wild-type strains contain a
single copy of this region [11]. Fierro et al. [11] proposed
that the amplification occurred by mutation-induced
site-specific recombination at the conserved hexanucleo-
tide sequences. The amplified region is not identical in
the different high-producing strains tested, although the
mechanism of amplification is probably similar.

Another descendant of strain NRRL 1951, obtained by X-
ray and UV mutagenesis, is the former industrial strain P.
chrysogenum P2 (ATCC 48271) [12], which shows a 85-fold
increased penicillin titer compared to its ancestor. This
strain was used for conventional mutagenesis to construct
P2niaD18, a nitrate reductase-deficient derivative [13].
Recently, whole genome sequencing of this strain revealed
that chromosome I carries a tandem repeat duplication of
the penicillin biosynthesis cluster comprising genes pcbAB,
pcbC, and penDE [14].

Here, we performed pulsed-field gel electrophoresis
(PFGE) to further determine the size of the duplicated
region. The PFGE revealed that a genomic region of about
110 kb, which harbors the pen cluster, is duplicated in the
high-producer strain compared to the wild-type strain.
Most strikingly, the loss of one of these copies did not
result in decreased penicillin production, thus indicating
that the copy number is not responsible for high produc-
tion in P2niaD18. Although the penicillin biosynthesis
pathway is well-studied and the enzymes involved are
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characterized in detail [2, 4], little is known about the
complex regulatory mechanisms behind this process. Our
results indicate that instead, regulation of penicillin
biosynthesis may have a far more important effect on the
amount of penicillin that the fungus produces and there-
fore represents an important starting point for targeted
strain improvement programs.

Methods

Strains and culture conditions

All P. chrysogenum strains used in this study are listed in
Table 1. Strain P2niaD18 [13], whose genome was recently
determined by high-throughput sequencing [14], served
as the fungal recipient for all experiments. Like all com-
monly used industrial strains, P2niaD18 is a derivate of
the former industrial strain Q176, which have underdone
multiple rounds of conventional mutagenesis [15]. Based
on this strain, a marker-free deletion strain of gene Pcku70
(APcku70) was generated [16]. APcku70 served as a reci-
pient for the construction of knockout mutants based on
the FLP/FRT recombination system. All P. chrysogenum
strains were grown in liquid complex medium or minimal
medium at 27 °C and 120 rpm or grown on solid medium
as already described [17]. To inoculate shake flasks and
solid medium, we used spores collected from 7-day-old
cultures grown on medium M322. Transformation of
individual P. chrysogenum strains was performed as de-
scribed previously [13, 18], and selection of transformants
was done by growth on solid medium supplemented with
200 pg ml™ nourseothricin, 40 pug ml™* phleomycin, or
700 pug ml™! pyrithiamine.

Recombinant plasmids were generated using either
standard laboratory techniques [19] or the In-Fusion®
HD Cloning Kit (Clontech) according to the manufac-
turer’s instructions, with Escherichia coli strain XL1-
Blue MRF as host for general plasmid construction and
maintenance [20].

Construction of plasmids

All plasmids used in this study are listed in Table 2.
For generation of a pchC deletion plasmid, the 5 and
3 regions of PcvelB in plasmid pKOvelB (a derivative
of pD-Phleo) were replaced by 1-kb 5’ and 3’ flanking
regions of pchC, via Sphl and Miul (5 flank) and
Nhel and Notl restriction sites (3’ flank), respectively,
resulting in plasmid pKOpcbCFRTble. In an alterna-
tive approach, the 5’ flank of PcvosA in plasmid pKO-
vosA [21] was replaced by pcbC-specific flanks, using
the Sful and Ndel restriction sites. The 3’ PcvosA
flank was replaced by the 3’ pcbhC flank using the In-
Fusion® HD Cloning Kit (Clontech) according to the
manufacturer’s instructions, resulting in plasmid
pKOpcbCFRTnat. For complementation by homolo-
gous integration, the pchC open reading frame (ORF)
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Table 1 P. chrysogenum strains used in this study
Strains Relevant genotypes Source
NRRL 1951 (= CBS Wild type, isolated from moldy cantaloupe; parent of most high yielding penicillin producing strains [50]
307.48)
P2niaD18 Penicillin producer; niaD~ [13]
ApcbC T7-1 APcku70=FRT; ApcbC::FRT:PtrpC:phleo:FRT; niaD™ This
study
APcku70 EK2 APcku70:PtrpC:nat] [31]
APcku70.1 T1 APcku70:FRT:PtrpC:ble:FRT 6]
APcku70.1 T17 APcku70:FRT:PtrpC:ble:FRT [16]
APcku702 T1-1 PtroC::Pcflp; PptrA:ptrA; APcku70:FRT 6]
APcku70.2 T17-1 PtroC:Pcfp; PptrA:ptrA; APcku70:FRT 6]
APcku70.2 T1-2 APcku70:FRT; niaD™~ [16]
APcku702 T17-2 APcku70:FRT; niaD™ [16]
ApcbC:pcbC APcku70:FRT; ApcbC:: pcbCi:FRT:: PtrpCinat1:FRT; niaD™ This
study
ApcbC:pcbC-gfp APcku70:FRT; ApcbC:FRT:PtrpC::phleo:FRT; Pgpd:pcbCregfp:TtrpC; PtrpC:natl; niaD™ Thi(sj
study
ApcbC:pPCPVI APcku70:FRT; ApcbC::FRT:PtrpC:phleo:FRT; PpenDE:penDE:TpenDE; PpcbC:pcbC:TpcbC:TpcbC; This
PpcbAB:pcbAB:TpcbAB; niaD* study

was introduced behind the 5 pcbC flank of plasmid
pKOpcbCFRTnat by using the Ndel restriction site.
To achieve complementation by ectopic integration of
a pcbC-egfp fusion construct, the pchC ORF was inte-
grated using the Ncol and Notl sites of pl1783-1nat.
Finally, for complementation of the pcbC null mutant
with the complete penicillin biosynthesis cluster, plas-
mid pPCPV1 was used. This plasmid has a size of
39.8 kb and also carries the bacterial ampicillin resist-
ance gene and the A. nidulans niiA and niaD genes,
a 24.5 kb fragment with the penicillin biosynthesis
gene cluster (pcbAB, pcbC, penDE) from P. chryso-
genum (Kamerewerd and Kiick, unpublished). The nu-
cleotide sequence of the penicillin gene cluster is
identical in NRRL1951 (Dahlmann, unpublished data),
Wisconsin 1255-54 [22], and P2niaD18 [23], and the
same result was reported for another high titer strain
BW1901 [8].

Table 2 Plasmids used in this study

Construction of knockout mutants and complementation
strains

To generate a pcbC null mutant, strain APcku70.2 was used
as a recipient. After restriction of plasmid pKOpcbCFRTble
with Pvull, the knockout cassette harboring the 5 and 3’
flanking regions of pcbC, two FRT sites, and a phleomycin
resistance cassette was introduced into the genome of
APcku70.2 by homologous recombination. The recombin-
ation event was verified by PCR and Southern analysis.
Sequences of oligonucleotides used in these studies are
given in Table 3.

For complementation by homologous recombination,
the Pvull fragment of ppcbCFRTnat, harboring the com-
plementation cassette with the 5" and 3’ flanking regions
of pcbC, the pcbC ORE, and a nourseothricin resistance
cassette, was introduced into the pcbC null mutant. For
ectopic complementation of a pchC-egfp fusion construct,
ApcbC  was transformed with plasmid pGFP-pcbC

Plasmid Characteristics Source

pD-Phleo troC(p):ble [46]

pKOvelB 1 kb 5" flank region and 1 kb 3’ flank region of PcvelB with FRT sites in pD-Phleo This study

pKOpcbCFRTble  Replacement of PcvelB-specific flanks by pcbC-specific flanks in pKOvelB This study

pKOvosA 5'PcvosA flank, 5'FRT, PtrpC, nat! resistance gene, 3'FRT sequence, 3'PcvosA flank (6]

pPTRII_PcFLP trpC promoter, Pcflp gene, ptrA resistance gene of A. oryzae, AMAT sequences of A. nidulans ~ [16]

pKOpcbCFRTnat  Replacement of PcvosA-specific flanks by pcbC-specific flanks in pKOvosA This study

ppcbCFRTnat Introduction of pcbC ORF behind 5" pcbC flank in pKOpcbCFRTnat This study

pGFP-pcbC Pgpd:pcbC:egfp:Ttrpc, PtrpC:nat1 This study

pPCPV1 Plasmid harbouring the complete penicillin biosynthesis cluster and the niaD gene Kamerewerd and Kuck, unpublished
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Table 3 Oligonucleotides used in this study
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Name Sequence (523" Specificity

3'pcbC_s TTCGTCGAGAACGGTGAAGC downstream region of pcbC 3'flank used for homologous recombination
Phleo_s TCCTGCGCCTGATACAGAAC 3'region phleomycin resistance cassette

PtrpC_a TGTTGACCTCCACTAGCTCC S'region PtrpC

5'pcbC_a TAGTGGCCGAGAAGCCTATC upstream region of pcbC 5' flank used for homologous recombination
pcbC_s TATACCATGGATGGCTTCCACCCCCAAGG pcbC

pcbC_a TACTCCATGGTAGTCTGGCCGTTCTTGTTG pcbC

SsU1 ATCCAAGGAAGGCAGCAGGC SSUr RNA

Ssu2 TGGAGCTGGAATTACCGCG SSUr RNA

PcpcbC-RT_s CCCTCCCGTTCTTCGTCAATC pcbC (gRT-PCR)

PcpcbC-RT_a CTGCAGATAGTAGCCGTACGA pcbC (gRT-PCR)

resulting in the construction of ApcbC::pcbC-gfp. Strains
of both complementation variants were verified by PCR
and Southern analysis.

For complementation of ApcbC with the complete
penicillin biosynthesis cluster, plasmid pPCPV1 was
transformed into the deletion mutant. The niaD gene on
pPCPV1 served as a selection marker, thus complement-
ing the nitrate reductase deficiency of the deletion
mutant.

Preparation and analysis of nucleic acids

Isolation of fungal genomic DNA was carried out as
described previously [24, 25], and DNA was isolated from
hyphal cells grown at 27 °C and at 120 rpm for 72 h in li-
quid media. Southern blotting was performed with a Gen-
eScreen hybridization transfer membrane (PerkinElmer,
USA), hybridized with [a-3*P]dCTP-labeled probes using
standard methods [19].

Pulsed-field gel electrophoresis (PFGE)

Protoplasts were treated as described previously to iso-
late intact chromosomes [26]. The CHEF Mapper system
(Bio-Rad, Richmond, CA) was used to separate large
DNA fragments [27], which were obtained by hydrolysis
with the rare-cutter endonucleases Pacl, Pmel, and Swal,
as specified in the results section. Pulse times were done
for 18 h at 6 V/cm with initial switching intervals of 10 s
and final switching intervals of 20 s.

gRT-PCR for quantification of the pcbC transcript

RNA extraction for quantitative reverse transcriptase
PCR (qRT-PCR) was performed using the RNeasy” Plus
Universal Midi Kit (QIAGEN, Hilden, Germany) accord-
ing to the instructions provided by the manufacturer.
qRT-PCR analysis was performed as described previ-
ously [13, 28]. Amplification of the SSUrRNA (small
subunit ribosomal RNA) was used as a reference for
normalization. Sequences of oligonucleotides used for
qRT-PCR are given in Table 3.

Penicillin bioassay

For a penicillin bioassay, 100 ml of liquid complex
medium were inoculated with 1x 107 spores. Cultures
were incubated for 96 h at 27 °C and 120 rpm. After being
harvested, supernatants were used to perform the penicil-
lin bioassay, with Staphylococcus aureus as the indicator
organism. The obtained mycelia were used to measure the
dry weight. All experiments were performed in triplicate
from at least two independent isolates.

Results

High-producer P2niaD18 has a duplicated penicillin
biosynthesis cluster

Fungi have relatively small genomes on the order of
about 30-40 Mb, and can be separated on a single gel
by PFGE. This analysis can be extended by using rare
cutting restriction enzymes, thus allowing determination
of the chromosomal structure of a region of interest
[29]. This approach is in particular reasonable for P.
chrysogenum, which has only four chromosomes,
because the two larger chromosomes with a size above
10 Mb are difficult to separate electrophoretically [30].
Here, we performed PFGE (Fig. 1A-C) to compare
the copy number of the penicillin biosynthesis cluster
in the high producer P2niaD18 with the wild-type
strain NRRL 1951, the progenitor of all industrially
used penicillin producers. P2niaD18 is a derivatives of
P2, a former producer strain of Nippon Kayaku Co.
Laboratories, and among the original strains of the
Panlabs series [12]. P2 and Wisconsin 54-1255 are
two independently derived derivatives from the very
early penicillin production strain Q176, which was
later used for further strain improvement programs
[10, 12].

PFGE was conducted with chromosomal DNA of both
strains cut with the three different rare cutting enzymes
Swal, Pacl, and Pmel. After PFGE, Southern analysis
with four different probes (adh-like (Pc21g21650), pcbC
(Pc21g21380), rco3 (Pc21g21590), and exo84 (Pc21g21980))
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Fig. 1 Determination of the copy-number of different P. chrysogenum strains using PFGE. (A) Genetic map of the duplicated 110 kb pen cluster region,
based on the recently published genome sequence [23]. The penicillin biosynthesis genes are marked in red and recombination sites are indicated in
bold face (A-H) and are identical to those reported for other Penicillium strains [9]. (B) Simplified map of the penicillin genes and adjacent regions
showing the probes (adh-like, pcbC, rco3 and exo84) for Southern hybridization experiments. In addition restriction sites for Pmel, Pacl and Swal are
given. (C) Pulsed field gel electrophoresis (PFGE) of Pmel, Pacl or Swal restricted genomic DNA. For these experiments, the original cantaloupe strain

proposed duplications are marked with a red asterisk in C

NRRL 1951 [C] and the high-producer P2niaD18 [P] were used. The duplicated area is given as a grey bar in AB, and fragments that indicate the

revealed several differences (Fig. 1B, C). For example,
after restriction with both Pmel and Pacl, an add-
itional signal with a size of about 97 kb was present
in the genomic DNA of P2niaD18 after hybridization
with the probes pchC and rco3. After restriction with
Swal, a shift in the fragment size from about 230 kb
to 340 kb occurred in P2niaD18 for all probes
except exo84 (Fig. 1C). These data confirmed that a
genomic region of about 110 kb, which harbors the
pen cluster, is duplicated in the high-producer strain
compared to the wild-type strain. The recent gen-
ome sequence of P2niaD18 revealed that the two
copies of the pen cluster are identical at the nucleo-
tide level, and the corresponding gene map is given
in Fig. 1A.

Generation of a pcbC null mutant and different
complementation strains

In the next set of experiments, we constructed strains
lacking the pchC gene (Fig. 2a-c). APcku70 EK2
served as parental strain for a series of derivatives,
which are displayed in Fig. 2c and are described fur-
ther in the following section. Previously, strain
P2niaD18 was used to generate a APcku70 strain for
optimized homologous recombination, which was des-
ignated APcku70 EK2 [31]. Both strains have a peni-
cillin V titer of 3 g/L, when grown for 96 h in liquid
shaking cultures [28]. APcku70 EK2 was transformed
with a flipper cassette to generate a marker-free
APcku70 strain [16] in two steps. First, the nourseo-
thricin resistance cassette of APcku70 EK2 was
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Fig. 2 PFGE of P2niaD18 and its derivatives indicate loss of one cluster copy. a Pmel restriction map of the duplicated penicillin cluster. b PFGE
was performed using restriction enzyme Pmel and a genomic fragment comprising the pcbC gene as a probe. For P2niaD18, this results in two
signals with the size of 246.2 kb and 97 kb (a, b), thus indicating the duplication as proposed in a. During the generation of a marker-free
APcku70 strain, the extra copy of the penicillin cluster was lost in T1 and its derivatives. In contrast, T17 and its derivatives still carry both copies
(). In ApcbC, all copies of the pcbC gene were deleted, however a signal still occurs since the probe comprises the gene, the adjacent promotor
region, and part of the flanking penDE gene. ¢ Genealogy of penicillin production strains used in this study. The copy number of the penicillin
gene cluster is given in red

replaced by a phleomycin resistance cassette flanked
by FRT sites, resulting in two independent isolates,
named APcku70.1 T1 and APcku70.1 T17 (Fig. 2c).
Subsequently, both isolates were transformed with the free
replicating plasmid pPTRII_PcFLP, which carries the Pcflp
gene coding for the FLP recombinase, and isolates were
named APcku70.2 T1-1 and APcku70.2 T17-1. Induction
of the flipper-recombinase gene resulted in an excision of
the phleomycin resistance cassette and the following loss
of the free replicating plasmid results in the marker-free
strains APcku70.2 T1-2 and APcku70.2 T17-2 [16]. PFGE
revealed, after restriction with Pmel and subsequent
hybridization with probe pchC (comprising not only the
pcbC ORF but also the promoter region and part of the
penDE gene), that the primary transformant APcku70.1 T1,
as well APcku70.2 T1-2 had lost one copy of the pen clus-
ter (Fig. 2a, b). In contrast, APcku70.2 T17-2 still carries
both copies. In the next step, we used APcku70.2 T1-2 to
construct a marker-free pchC null mutant. This strain,
designated ApcbC T7-1, was obtained by homologous re-
combination using the flipper cassette (Additional file 1:
Figure S1A).

The deletion of ApcbC was further confirmed by PCR
(Additional file 1: Figure S1B) and Southern
hybridization using the 3’ flanking region of pcbC as a
probe (Additional file 1: Figure S1C). As an example,
three independently derived transformants (T7, T9, and
T10) are shown.

To generate penicillin-producing strains from the
above-described null mutant, the pcbC gene under control
of its native promoter was used for homologous re-
combination (Additional file 2: Figure S2A). The
approach generated ApcbC::pcbC, of which five indi-
vidual transformants (T1-T5) were tested. The site-
specific integration of the pchC genes was verified by PCR
(Additional file 2: Figure S2B) and Southern hybridization
(Additional file 2: Figure S2C). Additionally, we generated
a penicillin-producing strain (ApcbC::pcbC-gfp) by ectopic
integration of a pcbC-egfp fusion construct under control
of the constitutive gpd promoter. Southern hybridization
revealed at least three ectopic integrations of this
construct (Additional file 2: Figure S2C, right lane).

Our next step was to determine whether the copy
number in these strains affected penicillin biosynthesis,
so we conducted a halo assay using the indicator bacter-
ium Staphylococcus aureus. The size of the halo was
measured in relation to the dry weight of the mycelium.
Most strikingly, no differences were detectable between
the reference strain P2niaD18 and the strain
APcku70.2 T17-2, which both harbored two copies of
the cluster, and two strains T1 (APcku70.1) and T1-1
(APcku70.2), which lack one copy (Fig. 3). As expected,
disruption of the pchC gene in APcku70.2 T1-2 yielded a
penicillin non-producer (ApcbC T7-1), verifying that this
strain is indeed single copy with respect to the penicillin
biosynthesis gene cluster. Complementation of the null
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displayed above the corresponding column. For all strains with a copy nu

Fig. 3 Quantification of penicillin production of strains with different copy numbers of the pcbC gene. The strains were grown for 96 h in shaking
cultures. The diameter of each halo was measured to calculate the area and is given in relation to the dry weight of the respective culture.
Standard deviations were determined from representative isolates, which were measured in triplicate. The copy number of each strain is

pcbC gene and the complete cluster. For ApcbC T7-1, one copy of both pcbAB and penDE is still present, whereas pcbC is missing. To generate
ApcbC:pcbC-gfp, the ApcbC recipient was complemented with three ectopic integrations of a pcbC-egfp fusion construct. For comparison, wild
type strain NRRL 1951, which carries one copy of the penicillin cluster, is given

mber of 1 or 2, the number indicates both the copy number of the

mutant with one copy of the pchC gene under its native
promoter resulted in penicillin biosynthesis comparable
to the reference strains. Additionally, an ectopic integra-
tion of at least three copies of a pchC-egfp fusion con-
struct under control of the constitutive gpd promoter
(ApcbC::pcbC-gfp) complemented the penicillin defect
of the null mutant to an extent similar to that of the
native complementation constructs (Fig. 3). For com-
parison, the titer of the wild type strain NRRL 1951 is
given, which has a titer of about 20% in our plate assays
compared with the other penicillin producing strains.
We then complemented the ApcbC mutant with plasmid
pPCPV1, which carries the complete penicillin biosynthesis

cluster of 26 kb, together with the niaD gene, thus allowing
complementation of the nitrate reductase deficiency of
P2niaD18 and its descendants. After restriction of the
chromosomal DNA with Pmel, followed by PFGE, the sub-
sequent Southern hybridization with a probe comprising
pcbC revealed that this construct integrated in all cases in
the genomic area that harbors the native cluster. However,
some transformants (T1, T4) showed a single integration of
the plasmid whereas T2 and T3 carried two copies of the
plasmid (Fig. 4), thus resulting in complementation strains
with either one or two intact copies of the cluster. A
penicillin bioassay again revealed no significant differences
between the complementation strains, independent from
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Fig. 4 Generation of pcbC complementation strains by complementation

in the genomic region of the penicillin cluster and further showed single
content of individual strains is indicated above each lane, for comparison

was complemented with plasmid pPCPV1 harboring the complete biosynthesis cluster (a). PFGE proved that integration of the plasmid occurred

with the complete penicillin biosynthesis cluster. The pcbC null mutant

(T1, T4) or double (T2, T3) integration of the plasmid (b). The gene
strain Aku70 (APcku70 EK2) is given
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the copy number (Fig. 5). All four complementation strains
even slightly exceeded the penicillin production observed in
the reference strain APcku70.2 T1-2.

Quantification of the pcbC transcript in deletion and
complementation strains, carrying different copies of the
penicillin cluster

Finally, we tested whether the transcriptional expression
level reflects the penicillin titer observed in the recipient
and recombinant strains. All strains were grown for
3 days in shaking flasks with rich Complete Culture
Medium (CCM). This time point represents the early
phase of -lactam production and is characterized by an
expressional switch from genes related to vegetative
growth to those involved in secondary metabolite forma-
tion [17]. As shown in Fig. 6, we quantified the pcbC
transcript from three biological replicates in relation to
the SSUrRNA. Both pcbC null mutants (ApcbC T7.1 +
T10) gave negative results, and the single copy strain
APcku70.1 T1 showed an almost zero expression level.
The results of the quantitative PCR analysis correspond
roughly to the copy number of the pcbC gene. The four
independently derived transformants ApcbC::pPCPV1
T1-T4 have similar transcript levels although distinct by
the copy number of their penicillin gene cluster. This
analysis of relative log2-fold expression ratios of the
pcbC transcript support our previous results that copy
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Fig. 5 Quantification of penicillin production of complementation
strains with different copy numbers of the penicillin biosynthesis
cluster. Standard deviations were determined from representative
isolates, which were measured in triplicate. The copy number of
each strain is displayed above the corresponding column
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Fig. 6 gRT-PCR analysis to quantify the pcbC transcript. RNAs,
isolated from strains as indicated, were used for quantification. The
procedure is described in the Material and Methods section, with
oligonucleotides as listed in Table 3. SSUrRNA served as reference
for normalization. The copy number of each strain is displayed
above the corresponding column

number and thus transcript level have only a minor ef-
fect on penicillin titers.

Discussion
The three penicillin biosynthesis genes pchAB, pcbC, and
penDE are clustered in a single 18-kb region in wild-type
strains of the filamentous fungi P. chrysogenum and
Aspergillus nidulans. Previous chromosome separation
and DNA hybridization analysis showed that production
strains from P. chrysogenum have up to 14 copies of a
56.8-kb region carrying further protein coding genes that
are not characterized in detail [15, 32]. This high copy
number was suggested to be relevant for the high penicil-
lin titer observed [11]. Our analysis, however, indicates
that regulatory genes unrelated to the penicillin biosyn-
thesis gene cluster are responsible for increased penicillin
production, at least in the P2 line of production strains.
Theilgaard et al. [33] showed that penicillin production
in the low-producing, single gene copy strain Wisconsin
54-1255 could be increased by integration of additional
copies of the three penicillin biosynthesis genes. However,
for increased titer, all three genes had to be integrated;
other combinations with only one or two of the genes did
not result in higher penicillin production. The authors
proposed that amplification of all three biosynthesis genes
is responsible for the high penicillin titer of production
strains. More recently, it was found that the amount of
penicillin V increases with penicillin biosynthetic gene
cluster number but with saturation at high copy numbers.
This study was done in industrial strains with a Wisconsin
54-1255 background [34]. Remarkably, in that study, the
protein level of the acyltransferase, the gene product of
penDE, was saturated already at low cluster copy num-
bers, suggesting that the acyltransferase reaction presents
a bottleneck in the biosynthesis process.
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Several high-production strains have been described
that comprise multiple copies of the penicillin cluster [3].
For example, strain AS-P-78 carries between five and nine
copies [11, 15]. Another strain, BW 1890, harbors between
8 and 16 copies of the cluster [32]. The Panlabs strain P2,
which is also a derivative of Q176, was thought to carry
between 5 and 14 copies [11, 15, 22]. However, genome
analysis and results from our work revealed that at least
strain P2niaD18, a nitrate reductase—deficient derivative
that emerged from P2 by conventional mutagenesis, har-
bors only two copies of the penicillin biosynthesis cluster
[14]. Still, this strain produces high amounts of penicillin,
indicating that copy number is not the sole factor in in-
creased production rates. Our data strongly support this
conclusion, revealing that even the loss of one of the two
copies did not result in significantly decreased penicillin
biosynthesis. In addition, complementation strains with
one or two copies of the cluster yielded no significant
differences in titer.

The amplified regions might even be responsible for the
genetic instability of strains with multiple copies of the
biosynthetic gene clusters. Harris et al. [35] described, for
example, that after protoplasting, gene clusters are easily
lost in industrial strains derived from Wisconsin54-1255.
Similar observations were made for the yeast Yarrowia
lipolytica. To test gene amplification in the rDNA of Y.
lipolytica, several plasmids were transformed into the
yeast cells [36]. Among other elements, these plasmids
harbored the reporter gene XPR2 encoding alkaline extra-
cellular protease (AEP). Plasmid copy number was stable
for strains containing fewer than 10 copies per cell. How-
ever, for higher copy numbers, multiple integrations were
stable only when AEP synthesis was not induced, while in
inducing medium, the stability of the multiple integrations
was dramatically affected. After AEP induction, a reduced
growth rate was observed, suggesting that the increased
secretory pathway cargo load influenced cell growth.

These data together with our observation that one of
two penicillin biosynthesis clusters was randomly lost
support the hypothesis that the cluster copies are easily
lost and that high-copy strains are unstable. P2niaD18 is
a strain with only two copies but nevertheless capable of
high penicillin production, indicating that other factors
have an important influence on penicillin biosynthesis.

To date, several regulators of penicillin biosynthesis
are already known in filamentous fungi ([2], reviewed
in [5]). So far, a pathway specific regulator of the peni-
cillin biosynthesis cluster has not yet been described. In
addition to positively acting global regulators like the
pH-dependent transcriptional activator PACC and the
CCAAT binding complex AnCF [37-40], proteins of
the velvet family have become of special interest as re-
pressors in recent years [41]. These regulatory proteins
play a key role in coordinating secondary metabolism
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and differentiation processes such as sexual and asexual
sporulation in various filamentous fungi (reviewed in
[42]). In Aspergillus nidulans, VeA forms a heterotri-
meric complex with VelB, another protein of the velvet
family, and the global regulator LaeA under dark
conditions to control sexual development and second-
ary metabolism [43, 44]. In addition, VelB interacts with
VosA, a third velvet-like protein, to form a subcomplex
that is essential for asexual and sexual spore formation
as well as trehalose biogenesis [44, 45]. Meanwhile,
homologs of velvet components have been identified in
numerous other filamentous fungi (for an overview see
[42]. In P. chrysogenum, the velvet proteins control
hyphal morphogenesis, conidiophore development, and
penicillin biosynthesis. Most importantly, distinct velvet
proteins either activate or repress biosynthesis of
penicillin [21, 46]. Interestingly, in another industrial
fungus, the ascomycete Acremonium chrysogenum, a
velvet homologue has a regulatory role on beta-
lactam antibiotic production [47]. In this fungus, at
least seven genes for the biosynthesis of the beta-
lactam antibiotic cephalosporin C are located on two
different clusters on different chromosomes [23].
Thus, simple amplification of a single cluster will not
increase cephalosporin C biosynthesis. Molecular ana-
lysis by different investigators has already shown that
global regulators are responsible for high titer of
cephalosporin C biosynthesis (for review see [48]). Re-
cently, we found a rather unexpected regulation of
gene expression. The mating type locus encoded
MAT1-1-1 transcription factor is known for its role
in sexual identity. However, recent investigations
showed a transcriptional control of wide range of
genes with biotechnological relevance including those
regulating penicillin production. Compared with con-
trol strains, mutants lacking the mating type locus
showed a significant reduction in penicillin biosyn-
thesis throughout a time course [28, 49].

Conclusions

This report reveals that a high copy number of the
three structural genes and an increased pcbC tran-
script level are not strict prerequisites for increased
penicillin production in the production strain Penicil-
lium chrysogenum P2niaD18. Most strikingly, a loss of
one of the two identical copies of the cluster did not
significantly influence the amount of penicillin pro-
duced. These data imply that copy number is not the
limiting factor for increased penicillin biosynthesis in
the strains investigated and we anticipate that instead,
wide domain regulatory factors in tranms are involved
in this process and are thus important targets for
future strain improvement.
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