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Abstract
Background: Global gene expression profiling by DNA microarrays is an invaluable tool in
biological research. However, existing labeling methods are time consuming and costly and
therefore often limit the scale of microarray experiments and sample throughput. Here we
introduce a new, fast, inexpensive method for direct random-primed fluorescent labeling of
eukaryotic cDNA for gene expression analysis and compare the results obtained on the
NimbleGen microarray platform with two other widely-used labeling methods, namely the
NimbleGen-recommended double-stranded cDNA protocol and the indirect (aminoallyl) method.

Results: Two total RNA samples were labeled with each method and hybridized to NimbleGen
expression arrays. Although all methods tested here provided similar global results and biological
conclusions, the new direct random-primed cDNA labeling method provided slightly better
correlation between replicates compared to the other methods and thus increased ability to find
statistically significant differentially expressed genes.

Conclusion: The new direct random-primed cDNA labeling method introduced here is suitable
for gene expression microarrays and provides a rapid, inexpensive alternative to existing methods.
Using NimbleGen microarrays, the method produced excellent results comparable to those
obtained with other methods. However, the simplicity and cost-effectiveness of the new method
allows for increased sample throughput in microarray experiments and makes the process
amenable to automation with a relatively simple liquid handling system.

Background
DNA microarrays allow global profiling of nucleic acid
sequences and have become an important and ubiquitous
tool in biological and biomedical research. Although
many applications of DNA microarrays have been devel-
oped in the past decade [1,2], differential gene expression

profiling remains the most widely used application of this
technology. Improvements in microarray design now
allow rapid fabrication of custom microarrays, representa-
tion of an increasingly large number of features on a sin-
gle glass slide and hybridization of multiple samples on
physically separated arrays on the same slide. Robots
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designed specifically for DNA and RNA extraction are also
commercially available now and can considerably reduce
the hands-on time required for RNA preparation for
microarray studies. Although identification of the most
biologically relevant information from a microarray
experiment and interpretation of this information in a
biological context can be challenging, methods and tools
for microarray data analysis have become more widely
available and easy to use, and are now streamlining the
first step of data analysis. However, the sample labeling
procedure remains a rate-limiting step in high throughput
microarray workflows.

Several methods to fluorescently label cDNA for gene
expression have been developed over the years (reviewed
in [3] and [4]). The first method introduced was the direct
incorporation of fluorophore-conjugated nucleotides
during reverse-transcription (RT). However, this method
suffered from lower cDNA yields and significant dye bias
(in two-color experiments) due to steric hindrance of the
large fluorescent moieties attached to the labelled nucle-
otides. An indirect method of cDNA labeling, where mod-
ified (i.e. aminoallyl) nucleotides are incorporated into
the cDNA and chemically coupled with the fluorescent
dye post RT, was developed to overcome these shortcom-
ings. This indirect method provided increased dye incor-
poration and mitigated dye bias, and has become a
benchmark for microarray sample labeling, especially in
dual labeling experiments. However, this method
increased the sample preparation time and cost signifi-
cantly. Other "indirect" labeling methods were also devel-
oped, mainly aimed at increasing specific fluorescence of
the labelled product (and conversely, permitting the use
of lower amounts of starting material) (e.g. DNA den-
drimers), but these methods are still not widely used.
Instead, template (RNA) amplification methods, mostly
based on an early in vitro transcription method [5], cou-
pled with traditional downstream labeling methods, are
more broadly adopted when the amount of available RNA
is limited, notably because of the efficiency and robust-
ness of the process, as well as the great flexibility it pro-
vides regarding the amount of input RNA needed. More
recently, NimbleGen introduced a new labeling method
based on double-stranded cDNA synthesis followed by
labeling with a DNA polymerase by extension of 5'-
labeled random primers [6]. This method is very robust in
that the yield of each step is excellent and it produces an
abundance of labeled material. However it is costly and
requires the most time to perform.

We sought a method for fluorescently labeling cDNA for
microarray analysis that would be rapid to perform, limit
the need for manual handling and reduce the cost signifi-
cantly when the RNA input is not limiting. In this study
we demonstrate a new one-step labeling method--the

direct, random-primed cDNA labeling method (hereafter
referred to as the direct random method), based on the
elongation of 5'-labeled random DNA nonamers during
reverse transcription of eukaryotic total RNA. We demon-
strate the suitability of our method for gene expression
analysis by comparing results with those obtained using
the indirect and the NimbleGen-recommended ds-cDNA
protocols.

Results and discussion
Overview of labeling methods, cDNA yield and dye 
incorporation
Our new direct random-primed labeling method consists
essentially of a RT reaction with 5'-labeled random non-
amers followed by chemical hydrolysis of the RNA tem-
plate and silica-based cDNA clean up (in order to remove
non-elongated primers and other RT reaction compo-
nents). This method provides a rapid and inexpensive
protocol for sample labeling (Figure 1). In order to evalu-
ate the microarray results obtained with this method, we
labelled two S. cerevisiae total RNA samples with the Nim-
bleGen-recommended double-stranded cDNA method,
the indirect (aminoallyl) method and our direct random
method, each in triplicate. The three methods, being
intrinsically different, produced different cDNA labeling
in terms of representation, dye incorporation, cDNA yield
(Table 1) and size distribution (not shown). It is impor-
tant to note that, because of these differences, it is hard to
compare these values directly and predict behaviour in
microarray hybridization. For example, our direct random
method also reverse-transcribes the ribosomal and other
non-coding RNA species, which constitute the vast major-
ity of the total RNA but are not of much interest in a dif-
ferential expression experiment, and produced cDNA with
the lowest dye incorporation. In contrast, the indirect
method produced cDNA of the largest median size and
spread and exhibiting the highest dye incorporation, but
the cDNA yield was the lowest. Finally, the ds-cDNA pro-
cedure produced the most labeled cDNA, roughly six
times the recommended amount for a microarray hybrid-
ization, with a median cDNA size consistent with random
priming. Of note, the random-primed Klenow labeling
reaction uses ds-cDNA generated with an oligo(dT)-
primed RT reaction as template and contains the sense
strand, which does not hybridize to the microarray. The
higher specific dye incorporation in the ds-cDNA method
than in our direct random protocol is likely due to the
amount of 5'Cy3 random nonamers used in each reac-
tion, with a mass ratio of primer to template of about 33
and 0.7, respectively.

Concordance of microarray results
Despite the lower dye incorporation in the cDNA using
our direct random method, we decided to hybridize the
samples to NimbleGen 4-plex expression microarrays. For
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each labeling method, different amounts of labeled cDNA
were hybridized to the arrays (Table 1). Since NimbleGen
recommends hybridization of 4 g of labeled ds-
cDNA[6], we used this quantity for the ds-cDNA method.
In the absence of guidelines for the other two labeling
methods, we hybridized an amount of cDNA consistent
with the respective yield of each method (Table 1). Visual
inspection of the resulting slide images revealed differ-
ences in the global fluorescence intensity of individual
arrays (not shown), the brightest arrays being achieved
with the ds-cDNA method whereas the other two methods
produced a similar but slightly lower global fluorescence.
To compensate for these differences, the arrays were

scanned independently in order to adjust the photomulti-
plier tube (PMT) gain for each array as recommended [6].

Pair-wise correlation of the intensities obtained with each
labeling method after summarization and normalization
were examined for each set of replicates for each sample
(n = 3) and averaged (n = 6) (Table 2). All three methods
produced very good correlation of internal replicates, but
the highest average correlation and the narrowest spread
of values was obtained with our direct random method.
However, the average correlation coefficient fell dramati-
cally when comparing the different labeling methods
(Table 2), the ds-cDNA method being the most different
from the other two methods. This result indicated there

Overview of the sample labeling methods used in this studyFigure 1
Overview of the sample labeling methods used in this study.

Table 1: cDNA yield, dye incorporation and amount of material used for hybridization (n = 6 for each method). 

Labeling Yield (avg. ± S.D.) Quantity hybridized

cDNA
( g)

Dye
(pmol)

Ratio
(pmol dye/ g cDNA)

cDNA ( g)

ds-cDNA 25.8 ± 0.8 463 ± 66 18 ± 3 4.00
Indirect 0.33 ± 0.06 33 ± 5 105 ± 26 0.30
Direct Random 7.7 ± 0.6 85 ± 6 11.1 ± 0.5 5.00

S.D., standard deviation.
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were differences in the cDNA population produced by the
different labeling methods, which caused different
hybridization characteristics. Nonetheless, since each
method is very reproducible (Table 2), it is expected that
the relative changes in expression deduced using any of
these methods would be similar.

Interestingly, the direct random method revealed the
most differentially expressed genes at any given signifi-
cance level (Table 3), and most of the genes with a fold-
change of at least 2 (in any given direction) were found at
99% confidence. This was not the case with the other two
methods (Table 3). Lowering the significance level to 95%
increased the number of genes found by each method
considerably regardless of the fold-change. Similar num-
bers of differentially expressed genes were found when

comparing the direct random method at a significance
level of 99% with the other two methods at 95% (Table
3). The direct random method found the largest number
of significantly differentially expressed genes (126) at
99% confidence (136 different genes total across all three
methods) (Figure 2A). Very few differentially expressed
genes were found exclusively by either the indirect or the
ds-cDNA methods (Figure 2A), whereas many such
changers were uniquely found by the direct random
method. Most of the differentially expressed genes unique
to the direct random method were found to have a modest
(< 2) fold-change (Table 3). Overall, the median fold-
change (in any direction) of the genes found at 99% con-
fidence was 4.15 for the ds-cDNA method, 2.79 for the
indirect method and 1.56 for the direct random method.
The smaller median fold-change of genes changing with

Table 2: Average pair-wise correlation coefficients (± S.D.) of normalized intensities of replicate arrays within a labeling method (n = 6) 
and across methods (n = 18).

Direct Random Indirect ds-cDNA

Direct Random 0.995 ± 0.001 - -
Indirect 0.934 ± 0.006 0.990 ± 0.004 -

ds-cDNA 0.62 ± 0.02 0.55 ± 0.02 0.987 ± 0.002

Overlap of differentially expressed genes found by each labeling method at different confidence intervalsFigure 2
Overlap of differentially expressed genes found by each labeling method at different confidence intervals.
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high confidence suggests that the direct random method
generally provided higher statistical confidence in lower
fold-change values. These results can be explained by the
higher correlation between replicates obtained with this
method (Table 2), which translate into better p-values on
the fold-change determined, especially for genes with
smaller fold-change (Figure 3). This could possibly be due
to the fewer manipulations in the direct random method
compared to the other two methods, reducing experimen-
tal variability and providing greater precision. However, it
is difficult to determine if these genes are really changing
or are the result of a loss of specificity. The large represen-
tation of the rRNA species in the direct random product
can potentially cause non-specific hybridization.
Although the probe design and hybridization conditions
used should provide the required specificity, additional
controls, such as a large number of array features with ran-
dom sequences, and samples, e.g. depleted of rRNA or
purified mRNA, would have been necessary to assay and

compare specificity of the methods and determine more
appropriate statistical cut-offs.

In order to analyze comparable numbers of differentially
expressed genes for the three methods, we chose a 95%
confidence interval for the data from the indirect and ds-
cDNA methods and 99% confidence interval for the direct
random (Table 3 and Figure 2B). Using these criteria, a
similar proportion (53-56%) of differentially expressed
genes found by any method was also found by other
methods (Figure 2B). Overlap between the methods
increases substantially when comparing the genes with
the largest fold-change values (> 2), most of which were
found by more than one method (Figure 2C).

However, it is possible that any given threshold may intro-
duce a bias as to which genes are represented in each
group. In order to more accurately compare the global
correlation between the fold-change values obtained with
each method, we omitted a statistical cut off for the fol-

Distribution of p-valuesFigure 3
Distribution of p-values.
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lowing comparisons. All three methods agree largely as to
the direction of change in gene expression (upregulated or
downregulated). 61 out of the 62 genes with a fold-
change > 2 with any method were found to be changing in
the same direction across all methods. The only gene with
inconsistent data across the three methods was also asso-

ciated with a high p-value (> 0.2) in all methods. Overall,
3,297 genes (57.4%) changed in the same direction across
all three methods; 99.7% of the genes that don't agree
may not be significantly changing (the average fold-
change for these genes is 1.00 with a standard deviation of
0.09; their mean p-value is 0.6). All three methods pro-
duced similar distributions of significantly differentially
expressed genes across the range of signal intensities
observed (Figure 4).

The correlation of fold-change values across methods is
arguably the best way to effectively compare methods
because it plays a major role in the selection of gene lists
and in the interpretation of the results in a biological con-
text. Furthermore, since each method is very reproducible,
it would be expected that the differences between the
cDNA populations produced by the each type of labeling

Table 3: Number of statistically significant differentially 
expressed genes at different confidence intervals. 

99% 95% 90%

ds-cDNA 13 (11) 126 (32) 329 (38)
Indirect 39 (30) 157 (48) 385 (50)

Direct Random 126 (37) 653 (40) 1242 (42)

In parentheses, number of genes with a fold-change greater than 2 (in 
any direction) in this category.

MA plotFigure 4
MA plot. The statistical cut-offs used for each series are shown in parentheses.
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would be similar in both control and experimental sam-
ples and thus produce similar fold-change values.

However, in our dataset, the fold-change values from the
indirect method correlated best with those from our direct
random method (R2 = 0.87), but the correlations were not
as good for the other comparisons (Figure 5). Similar
trends were observed even when only genes with fold-
change greater than 2 (by any method) were considered
(not shown). The modest correlation coefficients of fold-
change values obtained when comparing the indirect and
the direct random datasets with the ds-cDNA dataset were
surprising at first. However, studies comparing microarray
results often find relatively low correlations. For example,
the MicroArray Quality Control (MAQC) project data
shows only 70-85% concordance of qualitative gene calls

(presence or absence) across different test sites using the
same platform (i.e., a commercial microarray and its rec-
ommended labeling method) [7] and correlation coeffi-
cients of fold-change values ranging from 0.53 to 0.92
between platforms [8].

Despite the specific differences in measured fold-change
(and statistical confidence in these measurements) across
labeling methods, the results are globally similar and sug-
gest that the biological interpretation and conclusions
from these experiments would be similar. To assess this
hypothesis, we examined gene ontology categories. First,
since we used an experimental system very similar to the
one used in an experiment published elsewhere [9], we
examined categories expected to have a number of genes
differentially expressed based on this study. All three

Correlation of fold-change values obtained with the different labeling methodsFigure 5
Correlation of fold-change values obtained with the different labeling methods. A: indirect labeling vs. ds-cDNA 
methods. B: direct random vs ds-cDNA. C: direct random vs. indirect.
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methods were able to detect a similar number of signifi-
cantly changing genes in three important categories (Table
4), suggesting similar conclusions from all three methods.
We also took an unbiased approach where we compared
the 15 GO categories with the most genes differentially
expressed genes between labeling methods. Here we omit-
ted GO categories with more than 500 genes in an attempt
to avoid the broad, less meaningful categories. Most of the
categories found to contain the most differentially
expressed genes by one given method were also found by
other methods, but each method also found unique cate-
gories based on these criteria. The direct random method
detected the most unique categories (Figure 6). However,
several arbitrary cut offs used here can affect the represen-
tation of each category and this data should be considered
as indicative at best. Furthermore, we cannot conclude
that the unique categories found by any method provided
additional biological insight supporting the differences
observed without extensive individual validation with a
variety of techniques, which is beyond the scope of this
work. In general, the results from the three methods were
predominantly overlapping, supporting the idea that sim-
ilar global biological conclusions would be extracted from
the data produced by each method.

Comparison with other gene expression technologies
Microarray data can be affected by numerous artefacts,
resulting in expansion or compression of fold-change val-
ues. To determine if one labeling method provides a more
accurate estimate of fold-change over the others, we con-
ducted qPCR analysis on a small set of genes. We selected

target genes presenting 1) good p-values across labeling
methods but different fold-change values, 2) genes found
as changing but with different statistical significance levels
for different methods, or 3) significantly changing in
some cases but not in others. The qPCR results and com-
parison with microarray data are summarized in Table 5.
The qPCR data is generally in agreement with the array
data, the best correlation coefficient being obtained with
the indirect method (R2 = 0.933), whereas the other two
labeling methods correlated similarly less well with the
qPCR data (0.85 and 0.83, for the direct random and the
ds-cDNA methods, respectively). These correlation values
between the array and the qPCR data are similar to the
correlations obtained by others between microarray data
from different platforms and TaqMan [7] or SYBR Green
[10] qPCR data, whereas in another study the mean corre-
lation coefficients ranged from 0.69 to 0.89 [8]. However,
it should be noted that we used an oligo(dT) priming
strategy for the RT reaction which was then used as a tem-
plate for the qPCR. Further, the primer design was biased
towards the 3'end of the genes. These factors may intro-
duce a bias that improves the correlation between qPCR
and microarrays that used oligo(dT)-primed cDNA labe-
ling methods, namely the indirect and the ds-cDNA meth-
ods.

We also had access to data collected using a new gene
expression technology, the NanoStrings nCounter [11], to
estimate the relative expression of 205 yeast transcription
factors in these RNA samples. The advantages of the
nCounter system over other technologies reside in the
absence of enzymatic bias and in that the absolute abun-
dance of each transcript is established by counting directly
the number of RNA molecules for that transcript in the
sample [11]. From this dataset, we used 7 transcription
factors found to be significantly differentially expressed
(p-values < 0.05), and compared the fold-change values
for these genes with the data obtained by microarrays for
each labeling method (Table 6). Both the indirect and the
direct random methods present an excellent correlation
coefficient with the nCounter data (0.981 and 0.975,
respectively), while the ds-cDNA method's correlation
was lower (0.842).

It has been shown that the fold-change values obtained in
qPCR are highly dependent on the method used [12], and
despite our efforts to use methods considered to be the
most accurate, specific genes may still have unpredictable
biases making comparison across methods difficult. For
example, two genes (RPN4 and PDR3) present in both the
qPCR and the nCounter data sets showed relatively differ-
ent fold-change values with the two methods (Tables 5
and 6). In the absence of known or expected fold-change
values in this data set, it is not possible to assign greater
accuracy to any of the methods. Furthermore, both our

Overlap of the 15 GO categories (with less than 500 genes) with the most significantly differentially expressed genes for the three labeling methodsFigure 6
Overlap of the 15 GO categories (with less than 500 
genes) with the most significantly differentially 
expressed genes for the three labeling methods. The 
statistical cut-offs used to generate the lists of differently 
expressed genes for each method are shown in parentheses.
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qPCR and nCounter datasets are very small and have been
chosen arbitrarily, and no method has shown a clear supe-
riority over the others in estimating fold-change values.
However, all three methods broadly produced similar,
reproducible results and would be considered suitable
sample preparation protocols for microarray workflows.

Conclusion
The goal of this work was to introduce a labeling method
that is comparable to currently used protocols but reduces
sample cost and labeling time. Despite lower dye incorpo-
ration and global fluorescence of the array, the new direct
random method provided excellent reproducibility across
replicates, possibly because of the minimal manipula-
tions. In order to present a generally useful protocol, no
attempts were made to try to optimize different parame-
ters in the labeling protocol or the amount of labelled
cDNA hybridized to the array. We used a typical number
of arrays for a given sample comparison in a large scale
screening experiment. Slightly different results could be
expected with different source materials, microarray plat-
forms or hybridization conditions and optimization of
certain parameters or larger number of replicates may be
beneficial for particular systems. However, the successful
use of the direct random method with eukaryotic RNA
samples suggests that this method would be universally
applicable independent of the source of RNA. Further-

more, the method could be adapted for samples of limited
abundance such as fixed sections, sorted cells or environ-
mental samples, provided that an RNA amplification step
is performed before the labeling. The simplicity of our
method also makes it amenable to automation using a rel-
atively simple liquid handling robot for very high
throughput microarray applications. In this scheme, 96
RNA samples could be reverse-transcribed, labeled and
purified at once, and hybridized to 8 NimbleGen, 12-plex,
microarray slides in a single day by one person.

Methods
Biological material and RNA extraction
The S. cerevisiae strains used in this study are engineered
strains EPY330 and EPY338 described previously [9].
Briefly, three independent colonies for each strain were
pre-cultured in SD-His-Met-Leu medium and used to
inoculate 5 ml of YPG medium [9] for induction at 30°C
in culture tubes. Cells were harvested after 24 h of induc-
tion by quick centrifugation and immediately frozen in
liquid nitrogen, disrupted with glass beads in a bead-
beater and total RNA was extracted using the RNeasy Mini
kit (QIAGEN), including the on-column DNAse treat-
ment. RNA was quantified by spectrophotometry with a
Nanodrop ND-1000 (Thermo Scientific) and its integrity
verified on a 2100 Bioanalyzer (Agilent). Equal amounts
of RNA from each replicate culture were pooled for each

Table 4: Number of differentially expressed genes in selected GO categories.

Direct Random
(99% - 126 genes)

Indirect
(95% - 157 genes)

ds-cDNA
(95% - 126 genes)

Response to stress 15 18 11
Response to chemical stimulus 23 23 19

Transport 36 34 24

Table 5: Fold-change data comparison between different microarray labeling methods and qPCR for selected genes. 

Fold-change

Gene Microarrays

Direct Random Indirect ds-cDNA qPCR

YNL072W (RNH201; Ref1) 1.0 1.0 1.0 1.0
YLR185W (RPL37a; Ref2) 1.0 1.1 0.9 1.0

YBL005W (PDR3) 2.2** 1.9 2.1 1.6**
YDR011W (SNQ2) 3.4** 4.2* 3.0* 4.6**
YDL020C (RPN4) 1.9** 1.8* 1.7 3.6**
YFR003C (YPI1) 1.0 1.1 0.8** 1.0

YGR035C 12.6** 11.7** 7.3** 10.8**
YGR052W (FMP48) 3.2** 3.0* 3.2* 2.9**
YGR236C (SPG1) 0.4** 0.4* 0.7* 0.5**

YLR346C 7.7** 6.9** 2.0** 6.2**
YOL156W 12.9** 9.7** 4.2** 6.8**

(* p-value < 0.05; ** p-value < 0.01)
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strain and used for microarray labeling and hybridization,
qPCR and the nCounter analysis. All gene expression
ratios in this paper are expressed as EPY330/EPY338.

Microarrays
For each labeling reaction, 10 g of total RNA was used as
starting material regardless of the labeling method. For
the new direct random method, 7 g of 5'Cy3 random
nonamers (TriLink Biotechnologies, San Diego, CA) were
added to the total RNA for a volume of 18.5 l, heat dena-
tured at 70°C for 5 minutes and placed on ice immedi-
ately. The remainder of the RT reaction components (6 l
of 5× First-Strand buffer, 1.5 l of 0.1 M DTT, 1 l of 10
mM dNTPs, 2 l of 400 U/ l SuperScriptIII (Invitrogen)
and 1 l of 40 U/ l RNAseOut) were added and the reac-
tion incubated at 25°C for 5 minutes and at 42°C for 3 h.
Template RNA was chemically hydrolysed by addition of
1 volume of a 200 mM NaOH, 20 mM EDTA solution and
incubation at 65°C for 10 minutes. The hydrolysis reac-
tion was neutralized with 1 volume of 1 M HEPES, pH 7.0
and the labeled cDNA purified on a Qiaquick column
(QIAGEN) following the manufacturer's recommenda-
tions for PCR purification. For the ds-cDNA protocol, the
labeling method was carried out as recommended by
NimbleGen [6], except that the components for the ds-
cDNA synthesis were purchased separately and Super-
ScriptIII was used for the first strand cDNA synthesis. For
the indirect method, the SuperScript Plus Indirect cDNA
Labeling System (Invitrogen) was used with Alexa Fluor
555 reactive dye (Invitrogen) following the manufac-
turer's recommendations, except for the chemical hydrol-
ysis of RNA and cDNA purifications, which were carried
out as described above for the direct random method with
the exception that the kit wash buffer in the first cDNA
purification was replaced with 80% ethanol.

cDNA yields and dye incorporation were obtained with
the Nanodrop ND-1000, using a factor of 37 for ss-cDNA
or a factor of 50 for ds-cDNA. Amounts of cDNA to be

hybridized to each array (Table 1) were aliquoted and
dried in a SpeedVac (Thermo Scientific). NimbleGen S.
cerevisiae 4-plex expression microarrays (cat. # A6186-00-
01) were used, and targets labeled with the different meth-
ods were randomly distributed on 5 microarray slides.
Hybridization on a 12-bay NimbleGen Hybridization Sys-
tem and array washes were performed as recommended
by NimbleGen [6]. Individual array images were acquired
independently using a GenePix Professional 4200A scan-
ner (Axon Instruments), adjusting the PMT gain for each
image as recommended [6]. Image analysis was per-
formed with the NimbleScan software (Nimblegen), and
feature intensities were exported as .pair files. ArrayStar
3.0 (DNASTAR, Madison, WI) was used for probe summa-
rization and normalization (RMA algorithm, quantile
normalization), statistical analysis of differentially
expressed genes (Student's t-test with Benjamini-Hoch-
berg false discovery rate correction) and gene ontology
analysis. The entire microarray data set is available at the
Gene Expression Omnibus (accession GSE15816).

Other gene expression measurements
For qPCR, three independent RT reactions were per-
formed for each RNA sample. Briefly, for each reaction, 1

g of RNA was reverse-transcribed with SuperScriptIII
(Invitrogen) using an oligo(dT) primer following the
manufacturer's recommendations. The cDNA reactions
were treated with RNAse H and diluted 10-fold; 3 l of the
diluted template was used in the qPCR reactions. The Per-
feCTa SYBR Green SuperMix (Quanta Biosciences, Gaith-
ersburg, MD) was used as recommended on a
StepOnePlus instrument (Applied Biosystems). Primers
were designed with the VectorNTi 10 software (Invitro-
gen) (Tm 60-65°C, primer length 20-25 bases, 40-60%
GC, amplicon size 115-175 bp) with a preference towards
the 3' end and are listed in Table 7. For each gene, two rep-
licates of each cDNA were run (n = 6 for each RNA sam-
ple) and the coefficient of variation on the CT of replicates
was < 1.7% for all replicate measurements. Efficiency of

Table 6: Fold-change data comparison between different microarray labeling methods and the nCounter technology for select genes. 

Fold-change

Gene Microarrays

Direct Random Indirect ds-cDNA nCounter

YBL005W (PDR3) 2.17** 1.95 2.07 2.17**
YDL020C (RPN4) 1.87** 1.82* 1.7 1.69*
YDL048C (STP4) 1.80** 2.03 1.80* 2.00**

YER130C 2.79** 2.30* 2.40* 2.22**
YFL052W 0.84 0.81 0.84 0.75*

YGL209W (MIG2) 5.91** 6.76** 3.10** 5.20**
YMR016C (SOK2) 1.65* 1.91* 1.69 1.80*

(* p-value < 0.05; ** p-value < 0.01)
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individual PCR reactions was determined with the Lin-
RegPCR tool [13], and efficiency of all reactions with the
same target amplicon was averaged as in the (PavrgE)Ct

model [14] and used in the Pfaffl equation [15] to obtain
efficiency-corrected, normalized relative quantification
values. Two genes (YNL072W and YLR185W) were
selected as reference genes in this experiment based on the
average fold-change across the entire microarray data set
(closest to 1); their CT and PCR efficiency were averaged
for ratio calculations of target genes ran on the same qPCR
plate. In order to determine a p-value on the gene expres-
sion ratio that takes into account the efficiency and the
reference gene normalization, we computed a value N
proportional to the initial amount of template for each
replicate qPCR reaction:

where is Etarget the average PCR efficiency for that target
amplicon across all reactions, Ereference is the average effi-
ciency of the two reference genes across all replicates, CtTa-

rget is the CT obtained for that target gene in a particular
replicate, and Ctreference is the average CT for the reference
genes across all the replicates in that sample. The values N
for each group of sample replicates were submitted to a
Student's t-test (2-tailed, independent samples with equal
variance) to obtain a p-value.

For the nCounter [11] analysis, RNA from each pool was
processed in triplicate by NanoStrings Technologies (Seat-
tle, WA) with probes corresponding to 205 S. cerevisiae
transcription factors. Raw counts were normalized to the
average counts for all control spikes in each sample [11]
and the normalized counts in the replicate samples were
averaged. In this data set, 7 transcription factors were
found to be significantly differentially expressed (p < 0.05;
t-test with Benjamini-Hochberg false discovery rate cor-

rection) and used for comparison with the microarray
data.
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