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Abstract

Background: One of the major challenges for membrane protein structural genomics is
establishing high-throughput cloning and expression screening methods to obtain enough purified
protein in a homogeneous preparation for structural and functional studies. Here a series of ligation
independent cloning based vectors were constructed to address this challenge.

Results: The feasibility of these vectors was tested with 41 putative membrane proteins from
Mycobacterium tuberculosis. The efficiency for direct cloning of these target genes from PCR
products was 95% (39/41). Over 40% of cloned genes were overexpressed in Escherichia coli BL21
(DE3)-RP codon plus strain in the first round of expression screening. For those proteins which
showed no expression, three protein fusion partners were prepared and it was found that each of
the target proteins could be overexpressed by at least one of these fusions, resulting in the
overexpression of two thirds of the cloned genes.

Conclusion: This expression platform features high throughput cloning, high flexibility for
different constructs, and high efficiency for membrane protein overexpression, and is expected to
be useful in membrane protein structural and functional studies.

Background

Genomic sequence analysis predicts that integral mem-
brane proteins constitute 20-30% of all sequenced
prokaryotic and eukaryotic genomes. These proteins are
critical for many essential cellular functions and consti-
tute 60 to 70% of current drug targets [1]. However, to
date, less than 1% of the atomic resolution structures in
the Protein Data Bank represent membrane proteins [2].

The remarkable gap between the significance of mem-
brane proteins and the limited number of high resolution
membrane protein structures is, in part, due to the availa-
bility of membrane proteins for structural biology.

For structure determination, obtaining enough highly
homogeneous protein is the first substantial challenge,
especially for membrane proteins [3-5]. For a specific
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membrane protein, overexpression of a functional state is
so difficult that researchers often have to perform numer-
ous expression trials. Apart from selection of a suitable
strain as the host and optimization of expression condi-
tions, vector construct optimization can be critical,
including selection of promoters, fusion partners, trunca-
tion, mutation and other protein engineering methods [6-
10]. Such "trial and error" processes can be very time con-
suming.

The ligation independent cloning (LIC) approach was
developed for direct cloning of PCR products without
restriction enzyme digestion or ligation reactions [11,12].
By making use of the 3'-5' exonuclease activity of T4 DNA
polymerase, the specific 12-15 nucleotide single stranded
overhangs can be created for both the vector and the
insert. After annealing in vitro and transformation into the
host cells, the vector and the insert are covalently ligated
in vivo to form a circular plasmid. Generally, the LIC
approach features simplicity and very low non-recom-
binant background, and it is suitable for high throughput
cloning [13-15].

There is no doubt that the construction of a high through-
put cloning and expression screening platform would
facilitate expression optimization through construction of
fusion proteins and protein engineering as well as the
characterization of membrane proteins. In the present
effort, we have developed such a platform, which consists
of a series of ligation independent clone (LIC) based vec-
tors, for high throughput cloning and expression screen-
ing and then tested the platform with 41 putative integral
membrane proteins from Mycobacterium tuberculosis.
These targets have a molecular weight range lower than 30
kDa and one to four transmembrane a-helices. The results
show that, by using this platform, genes encoding mem-
brane proteins can be efficiently cloned for initial expres-
sion screening. For those proteins which could not be well
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expressed in the initial screening, three fusion partners
were used to successfully facilitate their overexpression.

Methods

Construction of expression vectors

In the present work, the vectors used were modified from
the LIC expression vector pMCGS7 [13] (a generous gift
from Dr. Mark I. Donnell from University of Wisconsin).
To facilitate the addition of fusion partner proteins onto
the N terminus, a Spel restriction site was introduced into
the pMCSG7 vector right after the His tag by PCR (sense
primer 5'-CATC ATTCTACTAGTGTAGATCTG-3', anti-
sense primer 5'-CAGATCTACACTAGTAG AATGATG-3"),
resulting in a new vector, named pTBSG. The maltose
binding protein (MBP) gene was amplified by PCR by
using the sense primer 5'-GGACTAGTAAAATCGAA-
GAAGGTAAACTG-3' and anti-sense primer 5'-CGGG
GTACCAGTCTGCGCGTCTITCAG-3'. The glutathione S-
transferase (GST) gene was amplified by using the sense
primer 5'-GGACTAGTCTAGGTTATTGGA AAATTAAG-3'
and the anti-sense primer 5'-CGGGGTACCATCCGATTIT
GGAGGATGGTC-3". The ketosteroid isomerase (KSI)
gene was amplified by using the sense primer 5'-
GGACTAGTCATACCCCAGAACACATC-3' and the anti-
sense primer 5'-GGGGTACCCTGGCATGCGTGAATATTC-
3'. The PCR products were digested with restriction
enzymes Spel and Kpnl, and then ligated into the pTBSG
vector digested with the same enzymes, resulting in 4
fusion vectors (Figure 1).

Cloning

Methods for target selection of membrane proteins from
Mpycobacterium tuberculosis were used as described [2]. The
molecular weight of the target proteins were limited to
about 30 kDa (Table 1). Target genes were amplified by
PCR using a pair of primers in which the sense primer
began with the sequence 5'-TACTTCCAATCCAATGCA-3'
followed by the target gene and the anti-sense primer

fusion partner

His Tag

insertion site

TEV cleavage site LIC site

1T 1 v

M H H H H HH S T S Vv DL G TENTL Y F Q 8 N Y W K
CATATGCACCATCATCATCATCATTCTACTAGTGTAGATCTGGGTACCGAGAACCTGTACTTCCCAATCCAATATTGGARG

NdeI Spel

Figure |

BglII

Kpnl Sspl

Sequence and illustration of pTBSG and its derivatives. Following the His tag at the very N terminus, different fusion partners
(KSI, GST and MSP) were inserted between the restriction enzyme sites for Spel and Kpnl. A tobacco etch virus protease
(TEV) cleavage site was inserted between the fusion partner protein and the target protein which was inserted at the Sspl site

through LIC.
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Table I: Cloning and first round of expression screening of the targeted membrane proteins.

ORF MW (kDa) #of TM Cloned Expression location * Expression Detection™* Expression Level ***
Rv0007 31 2 Yes IB/M wiw ++
Rv0008c 15.7 | Yes 1B/M clc +++
Rv0010c 15.2 2 Yes IB/M c/w +++
Rv0OI Ic 10.2 2 Yes No

Rv0012 28.3 | Yes 1B/M clw ++++
Rv0150c 9.6 2 Yes 1B c ++++
Rv0258c 16 2 Yes IB/M clc ++++
Rv0345 14 2 Yes 1B c ++++
Rv0420c 15.1 2 Yes 1B c ++++
Rv0424c 10 | Yes IB/M clc ++++
Rv0426c 13.9 2 No

Rv0460 8.1 3 Yes 1B w ++
Rv0513 19.4 2 Yes IB/M wiw +
Rv0514 10.3 2 Yes 1B w +
Rv0531 1.4 2 Yes IB/M wiw ++
Rv0544c 9.7 2 Yes No

Rv0882 9.6 3 Yes No

RvI 171 15.2 4 Yes IB/M wiw ++
RvI214c 10.8 | Yes 1B c ++++
Rv1303 16.9 4 Yes 1B/M cle +++
Rv1382 18.2 2 Yes IB/M wiw ++
RvI567c 10.4 2 Yes 1B/M clc +++
RvI76l1c 13.5 | Yes IB/M clc ++++
Rv1772 10.9 2 Yes No

Rvi8I 1 24.8 4 Yes M w +
Rv2044c 1.9 3 Yes 1B/M wiw ++
Rv2076c 9 2 Yes IB/M wiw ++
Rv208Ic 14.2 | Yes 1B/M clc +++
Rv2128 74 2 Yes No

Rv2390c 19.9 | Yes IB/M wiw ++
Rv2551c 13.8 4 Yes No

Rv2654c 7.7 2 No

Rv2668 18.3 2 Yes 1B c +++
Rv2828c 19.6 2 Yes IB/M clc ++++
Rv2843 17.7 3 Yes 1B C ++++
Rv3078 14.1 4 Yes No

Rv3346c 8.9 2 Yes No

Rv3486 16 3 Yes IB/M wiw ++
Rv3632 13.1 3 Yes No

Rv3656c 7.1 | Yes No

Rv3901c 15.4 | Yes IB/M wiw ++

* |B: Inclusion body fraction; M: Membrane fraction.

** Protein expression was detected by Coomassie blue stain (c) or Western blot (w) after SDS PAGE.
k¥ Estimated expressed level: + < 0.5 mg/L; ++: 0.5-2 mg/L; +++: 2—10 mg/L; ++++: > 10 mg/L.

began with the sequence 5'-TTATCCACTTCCAATG-3' fol-
lowed by the complement of a stop codon and the C-ter-
minus of the target gene. The volume of a typical reaction
mixture was 25 pL, the product was cleaned using a YM-
30 spin column (Microcon, Inc.) and recovered in 50 uL
of buffer including 50 mM Tris (pH 8.0) and 1 mM EDTA.
The vector (with or without fusion partners) was digested
with Ssp1 for two hours and applied to DNA agarose elec-
trophoresis. The band corresponding to the cleaved vector
was carefully sliced and recovered from the gel using the
QIA® gel extraction Kit (Qiagen) and then treated with T4

DNA polymerase (Novagen, LIC quality) in the presence
of dGTP. The insert was treated with dCTP and T4 DNA
polymerase at room temperature for 30 minutes then
heated at 75°C for 20 minutes to stop the reaction.
Annealing was carried out simply by mixing 1 puL of the
digested vector, 2 L of the insert and 1 pL of EDTA (25
mM, pH 8.0) and incubated at room temperature for 5
minutes. The annealed plasmid was transformed into
DH5a competent cells. Positive clones were screened by
PCR and then sequenced. Cloned genes were transformed
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Figure 2

Overexpression of |16 putative membrane proteins in the first round of expression screening. After induction at 37°C for 4
hours, cells were harvested and lysed by sonication. The whole cell samples were subjected to SDS-PAGE. The gels were
stained by Coomassie blue and the expressions were confirmed by western blot using an antibody against the His-tag. The
arrows indicate the expressed proteins for lanes where it is not obvious.

into the expression host, BL21(DE3)-RP codon plus
(Stratagene).

Protein expression screening

The E. coli cells harboring the expression vector were
grown on LB agar plates containing 50 pg/mL ampicillin
and 34 pg/mL chloramphenicol. A single clone was
picked and inoculated into 3 mL LB media for overnight
growth. 100 pL of the overnight culture was then inocu-
lated into 10 mL LB media, and the expression was
induced with the addition of 0.4 mM IPTG when ODy,
reached 0.6. The culture was grown for an additional 4
hours at 37°C. Cells were harvested by centrifugation at
4500 g for 15 min at 4°C, resuspended in 1 mL lysis buffer
(10 mM Tris-HC], pH 7.8, 5 mM EDTA) and lysed by son-
ication (Sonic Dismembrator, Model 100, Fischer Scien-
tific, Inc.) three times (15 sec each). The lysate was
fractionated by centrifugation for 20 min at 10,000 g. The
supernatant normally contained soluble proteins and
fragmented membranes, while the pellet consisted of
insoluble proteins (inclusion body fraction). The super-
natant was subjected to ultracentrifugation at 100,000 g
for 45 min at 8°C to separate the membrane and soluble
protein fractions. The soluble, insoluble and membrane
fractions were adjusted to the same volume with lysis
buffer, and then 15 pL of each was mixed with 5 uL sam-
ple buffer (4x) and 10 pL was loaded on 12% Tricine SDS-
PAGE gels followed by either Coomassie staining or west-
ern blot using antibody against the His-tag of expressed
proteins. Control experiments were performed under the
same experimental conditions without IPTG induction.

Small scale purification of Rv001 I c
MBP-Rv0011c was expressed in 10 mL cultures as
described above. The membrane fraction was collected

and solubilized in 20 mM Tris-HCl, pH 7.8, 400 mM
NaCl, and 1% DPC at 4°C for 1 hour. After ultracentrifu-
gation at 100,000 g for 45 min at 8°C, the supernatant
was mixed with 100 pL Ni2*-NTA resin (Qiagen) which
was pre-equilibrated with the wash buffer (20 mM Tris-
HCL, pH 7.8, 400 mM NaCl, 0.2% DPC and 5 mM imida-
zole). After incubation at 4°C overnight with gentle shak-
ing, the resin was extensively washed with the wash buffer
and then eluted with the elution buffer (20 mM Tris-HCI,
pH 7.8, 400 mM NaCl, 300 mM imidazole and 0.2%
DPC). TEV with an N terminal His tag was purified as
reported previously [8] and added at a mass ratio of 5:1
(MBP-Rv0011c: TEV). The cleavage reaction was per-
formed at 30° C for 2 hours. Before re-loading on the Ni2+-
NTA resin (approximate 4 mg of fusion protein/mL resin)
to remove MBP and TEV (both have an N terminal His
tag), the sample was dialyzed against the dialysis buffer
(20 mM Tris-HCI, 400 mM NaCl, 0.2% DPC, pH 7.9) for
4 hours to remove imidazole. The re-loading was per-
formed at 4°C overnight with gentle shaking, and then
the flow through containing the released Rv0011c was
collected and analyzed by SDS-PAGE.

Results and discussion

Cloning through LIC

As shown in Table 1, 41 open reading frames (ORFs) iden-
tified in the M. tuberculosis genome as putative helical
membrane proteins were targeted. These proteins range in
molecular weight from 7.4 to 31 kDa with 1 to 4 putative
transmembrane helices, similar to the target genes studied
in a previous effort [2]. Only two of these targeted genes
failed to be cloned using our LIC method, while the con-
ventional ligase dependent method used previously
resulted in a cloning success rate of only 72% [2]. This
substantial increase in cloning efficiency can be attributed
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to the simplicity of ligation independent cloning. The
most difficult step in the ligase dependent method is liga-
tion, whose efficiency is strongly influenced by the
sequence of the sticky end, the efficiency of the restriction
endonuclease enzyme digestion and the experimental
conditions. For LIC the ligation is performed in vivo by the
intracellular system in the host cell, thereby avoiding the
in vitro difficulties and increasing the cloning efficiency.
LIC has been successfully used in high throughput cloning
for soluble proteins [16], and the cloning efficiency in the
present work is close to that for soluble proteins, indicat-
ing that this LIC method is also effective for high through-
put cloning of membrane proteins.

First round expression screening

Table 1 summarizes the results of the first round expres-
sion screening. Of the 39 cloned genes, 30 of them could
be expressed as detected by Coomassie blue staining or
western blot. Figure 2 shows the overexpression of 40% of
these successfully cloned targets (16 proteins) detected by
Coomassie blue staining. Although the expression level
varied among these proteins, the yields are all estimated
to be higher than 2 mg/L based on our experience with the
Coomassie blue staining.

As in the previous study [2], it was found that many over-
expressed membrane proteins were in the inclusion body
fraction. The advantage of such expression is that the pro-
tein is often produced in large quantity (sometimes half of
the whole cell protein mass) and in relatively pure form.
Proteins expressed in inclusion bodies are also protected
from proteolysis. Despite these advantages there are con-
cerns about the refolding of proteins from inclusion bod-
ies. However, methods have been designed to recover
correctly folded proteins from these amorphous aggre-
gates [17] and recently there have been numerous exam-
ples of successful refolding [18-21], including o helical
membrane proteins [22-24]. The work from Villaverde's
group showed two important features of these precipi-
tated aggregates, namely that they are structurally and
dynamically heterogeneous, but importantly, they pro-
vided evidence that the aggregation in the inclusion bod-
ies is reversible [25], consistent with the recent refolding
efforts. 21 of the membrane protein targets here, are also
detected in the membrane fraction, and 8 proteins,
including Rv0008¢, Rv0258¢, Rv0424c¢, Rv1303, Rv1567¢,
Rv1761c, Rv2081c and Rv2828c, were found to be overex-
pressed (>2 mg/L) in the membrane fraction. Expression
in the membrane fraction is a strong indication that the
protein may be in its native or native-like conformation
and that the in vitro refolding process can be avoided in
sample preparations for various characterizations.

Second round expression screening as fusion proteins
To improve upon the first round efforts, three commonly
used fusion partners (MBP [26], GST [27] and KSI [28])

http://www.biomedcentral.com/1472-6750/8/51

were tested for the 10 putative membrane proteins that
did not express in the first round of screening. Table 2 lists
the results for cloning and expression screening of the
fusion proteins where expression was detected by
Coomassie blue staining. Since the same LIC site was used
in all the vectors (Figure 1), T4 DNA polymerase treated
PCR products in the first round of screening were inserted
directly into these vectors without any additional treat-
ment. All the target genes were successfully inserted into
the fusion protein vectors and expressed at high level from
at least one of the fusion vectors. Figure 3 shows the gels
for expression of Rv 0011c and Rv 2128 from the various
vectors.

As expected, all of the KSI fusion proteins aggregated in
the inclusion body fraction (Table 2, Figure 3). KSI
appears to be effective for expression of small peptides
that are unstable and/or toxic [29]. The same idea was
applied in the present work: KSI forced the unstable or
toxic membrane proteins into inclusion bodies, avoiding
the proteolysis and/or potential toxic effects to the host
cells. Of the ten tested membrane proteins, Rv 3078 was
the only one that was exclusively expressed as a KSI fusion
protein. Kcv protein, a viral potassium channel, is another
example where KSI fusion has been uniquely successful
(Qin and Gao, unpublished data).

GST is a highly soluble protein and frequently used as a
fusion partner to increase the solubility and the yield of
small soluble proteins. GST has been used to fuse with a
low molecular weight membrane protein, PsbH [30], and
it was found that the majority of the fusion protein was in
a soluble state, facilitating the purification by affinity
chromatography with immobilized glutathione resin.
However, in our experiments, although the molecular
weights of the target proteins were less than 16 kDa, all of
the expressed fusion proteins were obtained in the inclu-
sion body fraction (Table 2 and Figure 3). It has been pre-
viously reported that the capability of GST to increase the
solubility of the passenger proteins was weak among the
commonly used fusion partners [31,32] consistent with
our results. Compared with KSI fusion proteins, GST
fusion proteins could be relatively easily solubilized and
refolded in detergent micelles, facilitating the cleavage by
a specific protease to release the passenger protein prior to
further purification [10,22].

MBP is known for its strong capability to increase the sol-
ubility of the target protein and has been extensively used
as a fusion partner for both soluble and membrane pro-
teins [7,8,26,27]. In our experiments, MBP fusion pro-
teins show two distinguishing features (Table 2 and Figure
3). The MBP fusion proteins were frequently expressed in
the membrane fraction, in sharp contrast with the KSI and
GST fusion proteins. It is not surprising that MBP
increases the solubility of the target protein, but how the
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Expression of Rv2128 (A) and Rv00| Ic (B) in different con-
structs. Cells were harvested and then sonicated (W: whole
cell). After centrifugation at 10,000 g for 20 min, the inclu-
sion body fraction (IB) was collected. The supernatant was
ultracentrifuged at 100,000 g for 45 min, and the supernatant
(soluble fraction (S)) and pellet (membrane fraction (M))
were collected, respectively. The arrows indicate the over-
expressed fusion proteins. Note that Rv2128 and Rv00l Ic
could not be overexpressed without fusion partners, and
there was no detectable expression for the KSI-Rv2128
fusion.

MBP fusion tag enhances affinity for the membrane frac-
tion is unclear. In addition, the expression levels of MBP
fusion proteins are significantly larger than KSI and GST
fusion proteins. Even when the high molecular weight of
MBP is taken into account, the expression of the target
membrane proteins are still substantially higher than
those for KSI and GST fusion proteins. Both features make
MBP an attractive fusion partner for membrane proteins:
the target membrane proteins are not only overexpressed,
but also in the native membrane. Based on these and pre-
vious results [7,8], the application of MBP as a fusion part-
ner for membrane proteins is a powerful tool for the study
of membrane proteins.

The fusion protein strategy is only effective if the fusion
partner can be easily removed. As shown in Figure 4, MBP-
Rv0011c was purified to homogeneity and subjected to
TEV protease proteolysis. It is clear that after incubation
with TEV protease for 2 hours at 30°C, all of the fusion
protein was cleaved, resulting in two bands on SDS-PAGE
gel corresponding to MBP and Rv0011c, respectively. As
previously reported [8,15], removal of MBP and TEV can
be simply achieved by passing the sample through a Ni2+-

http://www.biomedcentral.com/1472-6750/8/51
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Figure 4

SDS-PAGE analysis of Rv001 | ¢ purification. M: protein mark-
ers; Lane |, un-induced whole cells; Lane 2, induced whole
cells; Lane 3, purified MBP-Rv0O| I c; Lane 4, TEV cleavage at
30°C for 2 hours; Lane 5, purified Rv001 I c in flow through;
Lane 6, purified TEV protease. The molecular weights of the
markers are listed to the left (in kDa).

NTA column (Figure 4, lane 5). It should be noted that
there will be additional three residues (Ser-Asn-Ala)
remaining after TEV cleavage at the N terminus of the tar-
get protein.

In sum, the second round of expression screening resulted
in the production of all the target proteins which were not
expressed in the first round of screening. Also unique fea-
tures of three commonly used fusion partners (KSI, GST
and MBP) were illustrated for membrane protein expres-
sion. The data shown here strongly suggests that construc-
tion optimization, especially with respect to fusion
partner protein screening, can be useful for enhancing
membrane protein expression.

A Platform for high throughput cloning and expression
screening for membrane proteins

In the present work, the vectors, pTBSG and the three
derivative fusion protein expression vectors, are the core
components of the platform for high throughput cloning
and expression screening for membrane proteins. The
platform features the following four advantages:

High throughput cloning

Through LIC 95% of the target genes were successfully
cloned on the first attempt. The use of identical treatments
for all targeted genes makes LIC an ideal method for
membrane protein high throughput cloning.

High flexibility for different constructs

As shown in the previous section, fusion partners can be
very useful for membrane protein expression. Through the
use of the same LIC system, the PCR amplified target
genes can be inserted into all the vectors for full expres-
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Table 2: Second round of expression screening as fusion
proteins.

ORF M.W. (kDa) Fusion partner cloned IB* S M
RvOOllc 10.2 GST Yes XOXHE

Rv0460 8.1 GST Yes XX

Rv0544c 9.7 GST Yes X

Rv0882 9.6 GST Yes X

Rvl 171 15.2 GST Yes

Rv2128 74 GST Yes X

Rv3078 4.1 GST Yes

Rv3632 3.1 GST Yes

Rv3656c 7.1 GST Yes XXX

Rv390lc 154 GST Yes XXX

RvOOllc 10.2 MBP Yes XXX XXX
Rv0460 8.1 MBP Yes XX XX
Rv0544c 9.7 MBP Yes XX XXX
Rv0882 9.6 MBP Yes X XXX
RvlI71 15.2 MBP Yes X X
Rv2128 7.4 MBP Yes XXX XXX
Rv3078  14.1 MBP Yes

Rv3632 3.1 MBP Yes X X
Rv3656c 7.1 MBP Yes XXX

Rv390lc 154 MBP Yes XX XXX
RvOOllc 10.2 KSI Yes XX

Rv0460 8.1 KSI Yes X

Rv0544c 9.7 KSI Yes

Rv0882 9.6 KSI Yes

Rvl 171 15.2 KSI Yes X

Rv2128 7.4 KSI Yes

Rv3078 4.1 KSI Yes X

Rv3632 3.1 KSI Yes X

Rv3656c 7.1 KSI Yes X

Rv390lc 154 KSI Yes

* IB: Inclusion body fraction; S: Soluble fraction; M: Membrane
fraction.

* Symbol "X" indicates the estimated yield of the fusion protein from
Coomassie blue stained SDS-PAGE gel. One "X" corresponds to the
expression yield between 10 mg and 20 mg for the fusion protein
from | L LB culture.

sion screening, minimizing the efforts associated with a
new clone/subclone process. In our structural genomics
efforts, both the target genes and vectors were treated and
stored as "standard modules", and construct optimization
meant combining different modules. In addition, the
restriction endonuclease sites for Spel and Kpnl provide
an open window for introducing new fusion partners
(such as GFP [33]) as new modules, making the present
platform updatable.

Highly efficient expression

By using the present platform, as shown in our experi-
ments on 41 putative membrane proteins, all of the
cloned genes (39) could be expressed and two thirds of
the cloned genes (26/39) could be overexpressed in at

http://www.biomedcentral.com/1472-6750/8/51

least one construct. In addition, the target proteins
detected only by western blot (not overexpressed) in the
first round of screening were not tested as fusion proteins,
so there is considerable potential for enhancing the per-
centage of overexpression.

Simplified downstream application

Once cloning and expression screening is completed,
downstream purification and characterization can be con-
veniently performed. In these vectors the N terminal His
tag, which is compatible with detergents and chaotic
agents, provides a simple and general method for down-
stream purification, especially for membrane proteins. In
addition, for fusion proteins, the fusion partner can be
easily removed by passing it through a Ni2*-NTA resin
after TEV proteolysis, leaving the target protein in the flow
through.

Conclusion

In the present work, a LIC based platform for membrane
protein cloning and expression screening is demonstrated
on 41 putative integral membrane proteins from the
genome of M. tuberculosis and potentially suitable for
nuclear magnetic resonance characterization. It was found
that this platform was characterized by its high through-
put and high efficiency for cloning and expression, as well
as its high flexibility for construct optimization. It can be
anticipated that this platform will be a useful tool for
many studies of membrane proteins.
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