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Abstract
Background: Expression of human Interleukin-5 receptor alpha (hIL-5Rα) is controlled by
alternative splicing, which generates two different transcripts encoding a membrane-anchored and
a soluble form of the receptor, respectively. Although the study of the expression and regulation
of hIL-5Rα is of crucial importance in the field of immunological processing, methods and
techniques until now described lack sufficient sensitivity for detection of small differences in the
expression of these isoforms. The aim of this study was to develop a reliable and sensitive real-time
quantitative PCR assay to analyse the expression level of each isoform.

Methods: For the quantitative real-time PCR assay, two standard curves specific for each splice
variant were constructed. PCR amplifications were performed on CDNA from peripheral blood,
eosinophilic chronic rhinosinusitis and normal nasal tissue using a common forward and two
specific reverse primers, in combination with SYBR Green I as the detection format.

Results and conclusion: We have developed an accurate and reliable assay for quantification of
interleukin-5 receptor alpha mRNA isoforms over a broad dynamic range of input molecules.
Importantly, excess of one isoform did not influence accurate quantification of the other isoform.
Quantification of hIL-5Rα variants in human samples demonstrated an overexpression of both
membrane-anchored and soluble encoding variants in eosinophilic chronic rhinosinusitis tissue and
peripheral blood in patients with eosinophilic chronic rhinosinusitis compared to healthy subjects.
The implementation of this assay will allow a better understanding of the regulatory mechanisms
of the hIL-5Rα gene and hence its role in the pathogenesis of chronic inflammatory diseases.
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Background
Immune responses are mediated by a large group of pep-
tides known as cytokines. These molecules play an impor-
tant role in promoting cell growth, differentiation,
activation and regulation of human inflammatory
responses. Human interleukin-5 (hIL-5), a haemopoietin
that belongs to the alpha-helical group of cytokines, plays
an essential role in the induction and maintenance of
eosinophilic airway infiltration [1–3]. It has been shown
that this cytokine is linked to the occurrence of chronic
inflammatory diseases such as asthma and eosinophilic
chronic rhinosinusitis [4–6]. The action of the hIL-5 is
mediated by interaction with its receptor, the human IL-5
receptor. This receptor belongs to the class I cytokine
receptor family together with receptors for IL-3 and GM-
CSF [7,8] and consists of a heterodimer containing a
unique α-subunit required for ligand-specific binding [9],
and a β-subunit involved in binding affinity and signal
transduction events [9]. Expression of the α-subunit has
been described, in vitro, in eosinophils and basophils,
whereas the β-subunit is expressed in eosinophils, B cells,
and basophils, but also in type II pneumocytes [10–12].

The gene for the human interleukin 5 receptor alpha sub-
unit (hIL-5Rα) is present in a single copy on chromosome
3 (band 3p26) of the human genome [13] and is com-
posed of 13 introns and 14 exons [13].

Recent studies have shown that function and expression
of hIL-5Rα can be regulated through splicing events and
by ligand (hIL-5) stimulation [14]. Splicing of the hIL-
5Rα gene can generates two different transcripts: one
encoding a membrane-anchored protein through alterna-
tive splicing, and a second one encoding a soluble form of
this receptor, by normal splicing events [15].

Although both receptor isoforms bind to hIL-5 with equal
affinity [15], different responses are generated. The mem-
brane-anchored receptor interacts with the β-subunit,
increasing the affinity for hIL-5 and activating specific sig-
nal transduction pathways, such as cellular proliferation,

maturational responses and inhibition of cell apoptosis
[16,17]. The soluble isoform competes with the mem-
brane-anchored receptor for hIL-5 binding [18], and
therefore this variant is considered to be a potential natu-
ral negative regulator of hIL-5 function in vivo [19].

Knowledge of the regulatory mechanisms of hIL-5Rα
expression is of utmost relevance for the development of
future therapeutic strategies to control eosinophil activa-
tion mechanisms. However, although the groundwork for
such strategies is currently being laid [16,20,21], regula-
tion of hIL-5Rα gene transcription still remains largely
unknown.

Reverse transcriptase PCR (RT-PCR) is a technique that is
increasingly used to quantify physiological changes in
gene expression. However, this method has the limitation
that accurately quantification is in most of the cases not
possible [22]. To circumvent this problem, several RT-PCR
techniques have been developed during the last decade
with the real-time PCR being the most accurate and
straightforward. This methodology consists in the contin-
uous monitoring of a fluorescent reporter, the signal of
which increases in direct proportion to the amount of
PCR product formed in a reaction. Quantitative real-time
PCR has the advantage of a large dynamic range of quan-
tification, no requirement for post-PCR sample handling
and extremely good sensitivity [23]. Several fluorescent
detection strategies for this technique have been devel-
oped, including the SYBR Green I DNA binding dye
[24,25] and the use of specific fluorescently labelled
hybridization or hydrolysis probe(s) [26,27].

The aim of this study was to develop a reliable and accu-
rate real-time PCR method using SYBR Green I technology
that allows cost effective measurements of the expression
levels of the hIL-5Rα splice variants in human tissue and
peripheral blood. As a model system, we use eosinophilic
chronic rhinosinusitis, a sinus disease associated with
severe local and systemic eosinophilic inflammation.

Table 1: Primer sequences used for template generation of the standard curves and real-time PCR amplification of hIL-5R  and beta-

actin genes

mRNA target Forward primer Reverse primer Amplicon 
size

Primer pair 1 Membrane-anchored hIL5Rα gemplate
standard curve

5'-GTGTCTGCTTTTCCAATCCATTG-3' 5'-TGCTGGAATTGGAAACAACT3' 347 bp

Primer pair 2 Soluble hIL5Rα template standard curve 5'-GTGTCTGCTTTTCCAATCCATTG-3' 5'-AATCTGCTATCCCTGCTGTTGTT-3' 294 bp
Primer pair 3 Membrane-anchored hIL5Rα 5'-GCAGCAGTGAGCTCCATGTG-3' 5'-AGGGCTTGTGTTCATCATTTCC 3' 89 bp
Primer pair 4 Soluble hIL5Rα 5'-GCAGCAGTGAGCTCCATGTG-3' 5'-TGGATGTTATCTCCTTTATCTTGAGAA-3' 95 bp
Primer pair 5 Beta-actin Template standard curve 5'CCAAGGCCAACCGCGAGAAGATGAC-3' 5'-AGGGTACATGGTGGTGCCGCCAGAC-3' 588 bp
Primer pair 6 Beta-actin 5'-CTGGAACGGTGAAGGTGACA-3' 5'-AAGGGACTTCCTGTAACAATGCA-3' 140 bp

α.
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Results and Discusion
Experimental validation
A common forward primer and two exon specific reverse
primers were used for the quantification of the soluble
and membrane-anchored hIL-5Rα encoding transcripts
by real-time PCR amplification (Fig. 1). The forward
primer is located in exon 10, whereas the reverse primer
for the transcript encoding for the soluble form hybridises
to exon 11, which is specific for this isoform [15]. The
reverse primer for the membrane-anchored encoding var-
iant is positioned in exon 12, which is also specific for this
splice form [15]. Specific amplification was verified by
agarose electrophoresis (4% in TAE), which resulted in
one specific band of the expected size (membrane-
anchored = 87 bp, soluble = 95 bp). These data were also
confirmed in a melting curve analysis performed on the
GeneAmp 5700 Sequence Detection System. Dissociation
curves showed a single peak corresponding to a melting
temperature of 80.2°C for the soluble and 81.6°C for the
membrane-anchored hIL-5Rα encoding splice form, dem-
onstrating specific amplification and the absence of
primer dimers.

To exclude the possibility of coamplification of contami-
nating genomic DNA during RT-PCR, we performed a
PCR run with either cDNA or genomic DNA extracted
from eosinophilic chronic rhinosinusitis tissue samples.
The amplicons were analysed by 2% agarose
electrophoresis and the absence of a specific band for the
genomic DNA sample confirmed the cDNA specificity of
the primers. In addition, all samples were treated with

DNase during RNA purification as described by the man-
ufacturer (Qiagen, USA).

To quantify the number of molecules of each hIL-5Rα
splice form, we constructed two different standard curves.
The template of these standards consisted of PCR frag-
ments obtained from two plasmids containing the specific
cDNA sequence for each splice variant as explained in
Materials and Methods. Analytical sensitivity in the Gene-
Amp 5700 Sequence Detection System was determined by
using a ten-fold serial dilution of the standards for the sol-
uble and membrane-anchored encoding transcripts as
template for amplification. Amplification with the SYBR
Green I Master mix and primer pair 3 or 4, resulted in sen-
sitive standard curves where a minimum of 5 molecules of
each splice variant could be detected. A high linearity
(expressed as correlation coefficient R2) was observed over
a dynamic range of at least 4 orders of magnitude. The
maximum amount that could be quantified to keep the
standard curve's linearity was 5 × 105 molecules for the
soluble and 5 × 104 molecules for the membrane-
anchored encoding transcripts.

In all cases, PCR efficiency ranged between 0.95 and 0.97
for both splice variants. Accuracy of the standard curves
was evaluated by analysing each standard dilution point
as unknown as previously described [29]. Coefficients of
variation (C.V.) less than 2% for CT and 25 % for calcu-
lated quantities demonstrate the accuracy of the standard
in all dilutions tested (Table 2).

Alternative splicing of the human Interleukin 5 receptor alpha gene (hIL-5Rα) generating two transcripts encoding the soluble and membrane-anchored hIL-5Rα isoformsFigure 1
Alternative splicing of the human Interleukin 5 receptor alpha gene (hIL-5Rα) generating two transcripts encoding the soluble 
and membrane-anchored hIL-5Rα isoforms. Skipping of exons 12, 13 and 14 generate the soluble encoding form, whereas for 
the membrane-anchored encoding variant, only exon 11 is skipped. Arrows indicate the region amplified by the primer pairs 3 
or 4.

Splice form encoding the soluble hIL-5Rα 

10 117 8 96542 31 Exons 12, 13 and 14 skipped 

1312 14 Exon 11 skipped 107 8 96542 31

Splice form encoding the membrane- anchored hIL-5Rα
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Quantification of either soluble or membrane-anchored
hIL-5Rα encoding transcripts in the presence of the alter-
native form was tested by mixing an excess (5 × 105 mole-
cules) of one transcript form with a dilution series of the
other. As a control, we used a standard curve containing
only a single splice variant. In absence of inhibition, both
dilution series should give equal CT values and quantities
for each dilution point. The low coefficient of variation
values obtained in this experiment indicate that accurate
and specific quantification of hIL-5Rα splice variants is
possible up to 5 molecules (equivalent PCR product), in
presence of excess of the alternative splice form (Figure 2).

Expression of hIL-5Rα splice variants in biological samples
Quantities of the transcripts encoding the soluble and the
membrane-anchored forms of hIL-5Rα are expressed as
relative number of molecules normalized to the number
of molecules of internal control gene ACTB. Analysis of
mRNA levels showed a significantly higher expression of
both splice forms in eosinophilic chronic rhinosinusitis
tissue (CRS) compared to normal nasal mucosa (Fig. 3).
In addition, in peripheral blood from CRS patients com-
pared to control subjects, both transcripts were also over-
expressed, reaching statistical significance however only
for the soluble variant (Fig. 3).

These data demonstrate that quantification of the hIL-5Rα
splice isoforms by real-time quantitative PCR is feasible in
human peripheral blood and eosinophilic chronic rhinos-
inusitis tissue, showing an up-regulation of both isoforms
in nasal tissue and blood from eosinophilic chronic rhi-
nosinusitis patients. In view of the crucial role of hIL-5 in
the terminal differentiation of eosinophils and the
involvement of these cells in severe airway and skin dis-
eases, tools to investigate the regulation of the IL-5 recep-
tor expression in vivo are mandatory to understand the
pathomechanisms involved as well as to design future
therapeutic approaches [3,30–33]. Treatment of eosi-
nophil-infiltrated polyp tissue with neutralizing anti-IL-5

monoclonal antibody (mAb) resulted in eosinophil apop-
tosis and decreased tissue eosinophilia in vitro [29], but
antagonizing IL-5 activity in asthma patients with human-
ized anti-IL-5 mAbs was largely unsuccessful [33] [34]. A
reassessment of the in vivo regulation of the soluble and
membrane anchored hIL-5Rα expression may help to
understand the role of the soluble variant, which has
antagonistic properties in vitro, and a possible role in fail-
ures of anti-IL5 treatment.

Conclusion
We have established a fast, accurate and reliable assay for
mRNA quantification of the hIL-5Rα splice isoforms over
a broad range of input molecules. The assay was applied
on eosinophilic chronic rhinosinusitis tissue and human
peripheral blood and demonstrated an overexpression of
both soluble and membrane-anchored encoding splice
variants of hIL-5Rα in both tissue and peripheral blood of
patients with eosinophilic chronic rhinosinusitis com-
pared to healthy subjects. The development of this assay
will greatly help in the study of the regulatory mecha-
nisms of hIL-5Rα. It will also allow investigations of rela-
tive expression of this receptor in other eosinophil-related
diseases such as asthma, atopic dermatitis and hypereosi-
nophilic syndrome, and hence will contribute to the
development of future therapeutic strategies for eosi-
nophil inflammatory diseases.

Methods
Sample Preparation
Samples from normal nasal mucosa and eosinophilic
chronic rhinosinusitis biopsies were collected, frozen in
liquid nitrogen and thoroughly grinded with a cooled
mortar and pestle (Fisher Scientific, UK). 30 mg of tissue
were then resuspended in 0.6 ml of lysis (RLT) buffer
(Qiagen, USA) and stored at -20°C until RNA extraction.

Peripheral blood (5 ml) from subjects was collected in
tubes containing EDTA (Terumo, Leuven, Belgium) and

Table 2: Accuracy of the standard curve for hIL-5Rα spliced forms. Coefficients of variation for CT values and calculated quantities.

CT standard CT unknown Qty standard Qty unknown C.V. (CT) C.V. (Qty)

Membrane-anchored hIL-5Rα 21.86 21.75 3.00 × 104 3.02 × 104 0.94 2.20
24.96 24.92 3.00 × 103 3.12 × 103 0.35 4.08
28.02 28.09 3.00 × 102 3.37 × 102 0.34 7.39
31.88 31.92 3.00 × 101 2.79 × 101 0.60 9.19

Soluble hIL-5Rα 22.44 22.05 3.00 × 104 4.49 × 104 1.19 23.91
24.71 24.65 3.00 × 103 2.94 × 103 0.59 2.02
27.09 27.17 3.00 × 102 2.80 × 102 0.32 4.00
31.60 31.15 3.00 × 101 2.61 × 101 0.83 9.29

Mean of CT values and quantities (number of molecules) after amplification of the transcripts encoding for the soluble and membrane-anchored hIL-
5Rα as standards and as unknowns. C.V(CT): coefficient of variation in % for CT values of standards and unknowns. C.V (Qty): coefficient of variation 
in % between input (Standards) and obtained quantities (unknowns).
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centrifuged at 300 g for 5 minutes. Leukocytes were col-
lected and red blood cells were hemolysed in 25 ml (5 ml
per 1 ml of leukocytes suspension) of cold isotonic
NH4Cl-EDTA lysis buffer (155 mM NH4Cl, 10 mM
KHCO3, 0.1 mM EDTA, pH 7.2) during 5 minutes at
15°C. Cell suspensions were then centrifuged at 300 g for
6 minutes at 4°C and washed in PBS. Finally, cells were
resuspended in 0.6 ml of RLT buffer (Qiagen, USA) and
stored at -20°C until RNA preparation.

RNA isolation and reverse transcription
For extraction of total RNA, peripheral blood leukocytes,
eosinophilic chronic rhinosinusitis and normal nasal
mucosa tissue, (all present in RLT buffer), were first
homogenized with QIAshreder homogeniser (Qiagen,
USA) as described by the manufacturer. RNA purification
was performed with RNeasy mini Kit (Qiagen, USA). RNA
was quantified using the RiboGreen kit (Molecular
Probes, Leiden, The Netherlands) on a TD-360 fluorome-
ter (Turner Design, USA) and reverse transcription was
performed for 1 µg of total RNA in a 20 µl reaction vol-
ume. Briefly, 1 µl of Oligo (dT)12–18 (500 µg/ml) (Invitro-

PCR amplification plots of each hIL-5Rα splice variant in the presence of excess of the alternative splice formFigure 2
PCR amplification plots of each hIL-5Rα splice variant in the presence of excess of the alternative splice form. PCR amplifica-
tion plots of the membrane-anchored (A) and soluble (B) encoding splice variant in presence of the alternative splice variant 
(data generated on iCycler iQ Real-Time PCR Detection System, BioRad Laboratories, USA). Curves in blue indicate the 
standards diluted in water; curves in red represent standards diluted in 5 × 105 molecules of the alternative splice form. The 
table indicates the quantities for both standard curves and the coefficient of variation (C.V) between the quantities (molecule 
number) obtained for each dilution point.

A B

21 3 4 5  6 21 3 4 5  6 

Cycle Cycle

DilutionStandardcurve
(number of molecules)

Qty of membrane-
anchored

hIL5Rα encoding mRNA
(diluted in 5x105

molecules of the soluble
variant)

C.V (%) for the 
membrane-
anchored

splice form

Qty of soluble
hIL5Rα encoding mRNA

(diluted in 5 
x105molecules of

the membrane- anchored
variant)

C.V (%) for 
the soluble
splice form

1 5 x 10
5

5.5 x 10
5

7.54 5.5 x 10
5

7.06

2 5 x 10
4

5.5 x 10
4

7.49 5.2 x 10
4

3.45

3 5 x 10
3

5.7 x 10
3

9.82 4.2 x 10
3

11.97

4 5 x 10
2

5.2 x 10
2

2.69 5.7 x 10
2

10.20

5 5 x 10
1

5.2 x 10
1

2.43 6.0 x 10
1

13.73

6 5 7.38 63.38 3.44 26.60
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gen, USA) and 200 ng of Random Primers (Invitrogen,
USA) were added to each RNA sample and incubated at
70°C for 10 min. Then, the samples were incubated with
4 µl of 5 × First-Strand Buffer (Invitrogen, USA), 1 µl of 10
mM dNTP mix (Pharmacia Biotech, USA), 2 µl of 0.1 mM
dithiothreitol (Invitrogen, USA) and 200 units of
Superscript RNase H- Reverse Transcriptase (Invitrogen,
USA), first at 25°C for 10 minutes and subsequently at
42°C during 50 minutes. The reaction was stopped by
heating at 90°C for 5 minutes. Finally, RNA complemen-
tary to the cDNA was removed by adding 1 µl (2 units) of
E. coli Ribonuclease H (Invitrogen, USA) and incubated
for 30 minutes at 37°C. All cDNA samples were stored at
-20°C until analysis.

Primer design
Different primer pairs were designed for generation of
standard curve template and for the actual quantification
of the hIL-5Rα splice variants (Table 1), based on
published cDNA sequences (GenBank accession nos.
M75914 and M96652). Primer pairs 1, 2 and 5 were
designed using Primer 3 software (Rozen et al., 2000)
using the following parameters: primer size between 20
and 27 base pairs, primer Tm range between 60 and 66°C,
GC content between 45 and 50%, and sequences contain-
ing no runs of four or more identical nucleotides.

Primer pairs 3, 4 and 5 were designed in Primer Express
Software version 1.5 (Applied BioSystems, USA) using the
sequences flanked by the first set of primers 1, 2 and 5

respectively. Default TaqMan parameters were used with a
restriction of amplicon length between 80 and 100 bp.

Generation of gene-specific real-time PCR standards
Two plasmids containing the cDNA sequences for the sol-
uble or membrane-anchored encoding transcripts of hIL-
5Rα, kindly provided by Prof. Dr. Jan Tavernier, were used
to prepare the template for the standards. A cDNA frag-
ment from each isoform was amplified by mixing 1 × Taq
Polymerase Master mix (Invitrogen, USA) with 200 nM of
primer pair 1 or 2, 20 ng of plasmid DNA and nuclease-
free water to a final volume of 50 µL. The PCR conditions
were: 95°C for 10 minutes followed by 35 cycles at 95°C
for 30 seconds and 64°C for 1 minute and a final cycle at
72°C for 5 minutes in an ICycler thermal cycler (BioRad
Laboratories, USA). The PCR products consisted of a DNA
fragment of 294 bp for the soluble and 347 bp for the
membrane-anchored encoding transcripts. PCR fragments
were run on a 2% agarose gel, excised and eluted using the
QIAquick PCR purification kit (Qiagen, USA).

PCR fragments were quantified using the PicoGreen kit
(Molecular Probes, The Netherlands) on a TD-360 fluor-
ometer (Turner Design) and the molar concentration of
each PCR product was calculated on the basis of the mass
concentration and the length in base pairs of each frag-
ment as previously described [29]. Equimolar quantities
of both standards were 10-fold serially diluted and used to
generate standard curves. The generation of a standard
curve, based on serial dilutions of fluorometrically quan-
tified PCR products has been shown to be very reliable

Relative number of molecules of the transcripts encoding the soluble and membrane anchored of hIL-5Rα after normalization to beta-actin (ACTB) gene in eosinophilic chronic rhinosinusitis and normal nasal mucosa (A) and in peripheral blood from eosinophilic chronic rhinosinusitis patients and healthy subjects (B)Figure 3
Relative number of molecules of the transcripts encoding the soluble and membrane anchored of hIL-5Rα after normalization 
to beta-actin (ACTB) gene in eosinophilic chronic rhinosinusitis and normal nasal mucosa (A) and in peripheral blood from 
eosinophilic chronic rhinosinusitis patients and healthy subjects (B). **: p < 0.01; *: p < 0.05; N.S.: non significant differences, 
CRS: eosinophilic chronic rhinosinusitis patients; Ctrol.: healthy subjects.

A B
*

  4 x 10-4

3.5 x 10-4

  3 x 10-4

2.5 x 10-4

   2 x 10-4

1.5 x 10-4

0.5 x 10-4
  1 x 10-4

0

N.S

**

**

Ctrol.CRSCtrol.CRS

Membrane- anchored
hIL-5Rα encoding mRNA 

Soluble hIL-5Rα
encoding mRNA

**
*

**

 Ctrol.Ctrol. CRS CRS

Membrane- anchored
hIL-5Rα encoding mRNA 

Soluble hIL-5Rα
encoding mRNA

14 x 10-4

12 x 10-4

10 x 10-4

8 x 10-4

6 x 10-4

4 x 10-4

2 x 10-4

0
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[29]. Template for the standard curve for the internal con-
trol gene ACTB was prepared following the same proce-
dure described above, using primer pair 5 (Table 1).

Real-time quantitative PCR using SYBR Green I
Real-time PCR was performed on a GeneAmp 5700
Sequence Detection System (Applied BioSystems, USA).
In each experiment, duplicates of a standard dilution
series of specific PCR fragments for each hIL-5Rα tran-
script variant and 25ng cDNA (total RNA equivalent) of
unknown samples were amplified in a 25 µl reaction con-
taining 1x SYBR Green I Master mix (Qiagen, USA) and
300 nM of primer pair 2, 3 or 4 for the membrane-
anchored or soluble receptor encoding transcripts, respec-
tively, and nuclease-free water. The thermal profile con-
sisted of 1 cycle at 95°C for 10 minutes followed by 40
cycles at 95°C for 30 seconds and at 60°C for 1 minute.
Real-time PCR efficiencies for each reaction were
calculated using the formula:Efficiency (E) = [10(1/slope)] - 1,
from the slope values given in the GeneAmp 5700
Sequence Detection System.

Quantification and data analysis
For each run, data acquisition and analysis was done by
the 5700 Sequence Detection System software (version
1.3, Applied Biosystems, USA). The relative number of
molecules of each transcript was determined by interpo-
lating the CT values of the unknown samples to each
standard curve and the obtained values were normalized
with respect to the ACTB number of molecules. Statistical
tests were performed using the MedCalc program version
6. The Mann Whitney U-test (unpaired) was used for com-
parison between the groups and p values < 0.05 were con-
sidered statistically significant.
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