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Abstract

enhancing reproducibility.

Background: Solution-based targeted genomic enrichment (TGE) protocols permit selective sequencing of
genomic regions of interest on a massively parallel scale. These protocols could be improved by: 1) modifying or
eliminating time consuming steps; 2) increasing yield to reduce input DNA and excessive PCR cycling; and 3)

Results: We developed a solution-based TGE method for downstream lllumina sequencing in a non-automated
workflow, adding standard lllumina barcode indexes during the post-hybridization amplification to allow for sample
pooling prior to sequencing. The method utilizes Agilent SureSelect baits, primers and hybridization reagents for
the capture, off-the-shelf reagents for the library preparation steps, and adaptor oligonucleotides for lllumina paired-
end sequencing purchased directly from an oligonucleotide manufacturing company.

Conclusions: This solution-based TGE method for Illumina sequencing is optimized for small- or medium-sized
laboratories and addresses the weaknesses of standard protocols by reducing the amount of input DNA required,
increasing capture yield, optimizing efficiency, and improving reproducibility.
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Background

In the post-genome era great strides have been made in
DNA sequencing technologies. Massively parallel se-
quencing (MPS) has facilitated the discovery of novel
disease genes [1,2] as well as improved diagnostics for
inherited disorders such as non-syndromic hearing loss
[3] and cancer [4].

While it is clear that in the near future whole genome
sequencing (WGS) will become routine, it is currently
not feasible for two primary reasons: (1) the cost of se-
quencing the entire genome with an accuracy level suffi-
cient to call all variants is still prohibitively expensive;
and (2) the interpretation of the significance of these var-
iants remains extremely challenging. Targeted genomic
enrichment (TGE) approaches were developed to address
these issues by reducing cost and variant analysis com-
plexity by screening specific disease-associated genomic
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regions. Essentially, TGE is a whole genome amplifica-
tion followed by isolation of specific regions of the gen-
ome. Whole exome sequencing (WES) is simply a TGE
of all exons in the genome.

TGE may be performed in solution (solution-based tar-
geted genomic enrichment, solution-based TGE, [5]), or
on an array platform (solid-phase targeted genomic en-
richment, solid-phase TGE, [6]). Although solid-phase
TGE was developed first, unlike solution-based TGE it
requires expensive hybridization equipment and is less
scalable. While some studies have shown that solid-phase
TGE provides more even coverage and a greater sensitivity
for single nucleotide variants [7], solution-based TGE with
ultra-long (>100 bp) oligonucleotides as used in Agilent’s
SureSelect system provides a greater sensitivity for indels
[8]. However, what may be the primary consideration for a
small-to-medium sized laboratory wishing to perform
TGE may be the expense associated with ancillary equip-
ment. In the case of solution-based TGE the most expen-
sive ancillary equipment required is a PCR machine. The
combination of scalability and little-to-no infrastructure
investment has made solution-based TGE the preferred
method for TGE in many laboratories.
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Current solution-based TGE protocols would benefit
from improvement in several areas. First, they should be
made more efficient by modifying or eliminating time
consuming steps. Second, yield should be maximized to
reduce input DNA and excessive PCR cycling. Third,
they must be made reliably reproducible. Several
improved protocols have been reported for solution-
based TGE. In the first protocol modification, several li-
brary preparation steps were optimized including effi-
ciency of adaptor ligation [9], but this protocol did not
improve overall yield significantly enough to reduce the
amount of input DNA. In the second protocol modifica-
tion, a methodology was developed for high-throughput
solution-based TGE using automation equipment at a
large genome center [10], however this protocol is not
amenable to implementation in small- or medium-sized
laboratories. Another recent report increased multiplex-
ing ability but still required 2 micrograms of input DNA
and prepared libraries for SOLIiD sequencing [11]. Here
we report an optimized protocol for fast, reproducible
and inexpensive targeted genomic capture for the small-
or medium-sized laboratory.

Results

We developed a solution-based TGE method for down-
stream Illumina sequencing that incorporates improve-
ments proposed by Fisher et al., 2011 and Mamanova
et al,, 2010, in a non-automated workflow. In all cases
we add standard Illumina barcode indexes during the
post-hybridization amplification to allow for sample
pooling prior to sequencing. We have validated this
method on > 150 libraries using custom target designs
ranging from 200 Kb to 1.1 Mb and the whole exome
(50 Mb). Here we present results from 44 consecutive li-
braries prepared with this method and targeting the
same genomic region comprising 350,160 bp. This
method utilizes Agilent SureSelect baits, primers and
hybridization reagents for the capture, off-the-shelf
reagents for the library preparation steps, and adaptor
oligonucleotides for Illumina paired-end sequencing pur-
chased directly from an oligonucleotide manufacturing
company.

Library preparation and yield

As described previously [10], immediately after shearing
genomic DNA, SPRI beads are added to the tube contain-
ing the DNA sample and maintained throughout the suc-
cessive library preparation steps including end-repair, A-
tailing, and adaptor ligation. After each incubation, a puri-
fication is performed in the same tube. In order to allow
the DNA to re-associate with the SPRI beads, a highly
charged NaCl-PEG buffer is introduced. The ratio of this
buffer to the DNA solution determines the size of DNA
that will associate with the beads. We have found that this
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method of purification greatly reduces DNA loss (~8.6%
loss after each purification step) as compared to column
purification (~20.5% loss after each purification step) and
standard SPRI purification (~18.8% loss after each purifica-
tion step), as detailed in Additional file 1.

We found that after shearing with the Covaris, a tight
size range is attained, and this size range can be main-
tained with a 1:1 ratio of NaCl-PEG buffer to sample,
negating the need for any size selection with gel electro-
phoresis, bead-based selection, or specialized equipment.
The primary benefit of this method is that DNA loss is
minimized during elution or tube transfers, as the sam-
ple is maintained in the same tube. Additionally, the
chances for sample mix-up are minimized as there are
fewer tube transfers in the protocol (only 3 versus the
standard 9 prior to the hybridization step). Immediately
prior to the pre-hybridization amplification, DNA is
eluted off the beads. Standard SPRI purifications are per-
formed after both pre- and post- hybridization amplifica-
tions and after sequence capture. In all cases when the
DNA sample is isolated from the SPRI beads, we per-
form a double elution to increase yields. All column-
based purifications have been removed, as they are asso-
ciated with an increased loss of DNA and present
chances for sample-mix ups. These improvements have
allowed us to reduce sample input.

Starting input and yield
Standard protocols require 3,000 ng of genomic DNA
(gDNA) per sample. During the development of this
protocol we noted that our yields were consistently high
after the pre-hybridization PCR. In order to proceed with
hybridization and subsequent sequence capture, 500 ng of
DNA is required. Using 3,000 ng of input gDNA and the
standard Agilent SureSelect protocol (v1.0 September
2009) yielded on average 650 ng of adaptor-ligated DNA
when performing up to 18 amplification cycles during the
prehybridization PCR. Current Agilent protocols recom-
mend 4-6 cycles (v1.2 May 2011), however in our experi-
ence up to 12 cycles are required to obtain enough DNA
for hybridization. Using the protocol described here, we
have been able to reduce the number of amplification
cycles required to 6 cycles while increasing the yield of
adaptor-ligated DNA to an average of 2,432 ng (Table 1).
We also tested lower amounts of starting input DNA,
including 1,500, 1,000, 750, 500 ng or 375 ng, using the
same number of PCR cycles in all cases (6 cycles) and
could achieve yields comparable to 3,000 ng input with
starting amounts as low as 500 ng (Figure 1). The yield
using 375 ng of starting DNA was reduced (Figure 1),
but the number of amplifications can be increased dur-
ing the prehybridization PCR to obtain adequate yields
(data not shown), although PCR cycles should always be
minimized to reduce the number of PCR duplicates. By
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Table 1 Sequencing results for the same sample sequenced with either 3,000 ng or 500 ng input DNA

Metric Sample 1A - 3,000 ng Sample 1D - 500 ng Average (Std Dev)

DNA after prehyb PCR (ng) 2,734 2,625 2,432 (541)

Total sequencing reads 39,964,814 28,476,648 37,685,938 (27,502,720)
% of reads mapped 97.70% 98.40% 94.5% (4.9%)

% duplicate reads 56.80% 44.80% 53.7% (16.3%)

% of reads overlapping target 62.90% 54.50% 61.7% (3.7%)

% of targeted bases covered at 10X 98.10% 98.50% 97.8% (0.5%)

Avg depth of coverage of target regions 4692 3,660 5,826 (4,200)

Average includes data from all samples including 1A and 1D (n=44). Targeted region size was 350,160 bp. Distribution of coverage was also similar (Additional file 1).
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Figure 1 Reduced requirement for input DNA using this method. A single gDNA sample was taken through the protocol using either

3,000 ng (curve A), 1,500 ng (curve B), 750 ng (curve C), 500 ng (curve D), and 375 ng (curve E) starting material and 6 cycles of PCR ampilification.
A) Bioanalyzer trace after shearing step, B) Bioanalyzer trace after pre-hybridization amplification showing no detriment to overall library
preparation yield for starting material greater than 500 ng.
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comparing the final sequencing enrichment statistics
from the same sample prepared with either 3,000 ng or
500 ng starting material, the reduced input does not have
any significant effect on target enrichment or library
complexity (Table 1). Similar results were achieved when
using gDNA from blood (extracted using a PureGene
Kit) or saliva (extracted with a Genotek Kit) (data not
shown).

Handling and efficiency

The “with-bead” method of purification was faster in our
hands than column purification or standard SPRI purifica-
tion. Based on these improvements, average hands-on time
for a set of 10 captures breaks down to 11 hours over three
days, as follows: (1) Covaris shearing to hybridization-
ready sample (includes lyophilization), 6 hours day 1; (2)
hybridization set up, 1 hour day 2; (3) sequence capture,
post-hybridization amplification, 4 hours, day 3.

The use of off-the-shelf enzymes has two primary
advantages: (1) because the reagents are not kitted, it
allows for excess reagent availability in the case of a
preparation failure, and (2) it allows for modification of
the protocol.

Reproducibility

Figure 2 shows the high reproducibility of enrichment qual-
ity when a relatively small region of interest (350,160 bp) is
targeted. On-target capture efficiency is primarily a result of
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the library preparation process and this method has a high
reproducibility. In addition, a consistently high proportion
of targeted regions were covered at 1X, 10X, and 40X
(Figure 2).

Discussion

Since TGE was first described, advances have been made
in library preparation methods for TGE, but none of the
advances have focused on the workflows necessary for
small- to medium-sized laboratories nor have they been
adapted to the most widely used sequencing platform, Illu-
mina. Nijman et al. present a method where up to 96 sam-
ples can be multiplexed, but the protocol is specific to
SOLID sequencing and solid-phase TGE [12]. Another re-
cent publication allows pre-capture multiplexing of up to
12 samples but the adaptors described can only be used
with single-end Illumina sequencing [13]. A more recent
protocol, although providing the ability to perform precap-
ture multiplexing on both solid-phase and solution-based
TGE, is optimized for SOLiD sequencing [11]. None of
these protocols incorporates methods to decrease input by
maximizing yield or reducing hands-on time necessary for
a small- or medium-sized laboratory. Natsoulis et al. de-
scribe a unique approach whereby complementary DNA
oligos are manufactured using a freely available resource
and precapture multiplexing is used [14], however the ma-
jority of investigators in medium-sized laboratories do not
have bioinformatics ability to evaluate robustness of TGE
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Figure 2 Sequencing results show high reproducibility of the method for 44 consecutive samples prepared using this protocol. Both A)
high capture efficiency, and B) high coverage of targeted regions are maintained and are reproducible. Data shown are for enrichment of
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designs, a component which is included in commercial
TGE design options.

In designing this protocol, we used key features in two
previously published optimized protocols, as well as the
manufacturer’s protocol to develop our own protocol for
solution-based TGE, which is suitable for library prepar-
ation for paired-end Illumina sequencing and enrichment
for small targeted regions or the whole exome. Most pro-
tocols for solution-based TGE require 3,000 ng of starting
input DNA. Human genomic DNAs are often in short
supply and therefore must be used sparingly. A primary
goal of this new protocol was to reduce gDNA input and
therefore save precious samples. By making several
changes we were able to reduce the amount of DNA
required to 500 ng with no detrimental effects on library
preparation yield or downstream sequence output (Figure 1
and Table 1). This protocol has the added benefit of redu-
cing the number of cycles required during PCR steps, as
excessive amplification can reduce library complexity due
to decreased representation of genomic regions with high
GC content. This protocol is scalable for a medium-sized
lab to easily perform 10 library preparations in three days
with a single technician.

We use off-the-shelf enzymes for all of the pre-
hybridization steps and amplification steps primarily be-
cause kitted enzymes are proprietary, do not list exact
enzymatic properties (i.e. units per ul) and are therefore
difficult to adjust and troubleshoot experimentally. Im-
portantly, when ordering SureSelect baits, the customer
has the option to request only the baits and
hybridization reagents as opposed to the full kit includ-
ing all enzymes (“XT”). Therefore for use with this
protocol we recommend the non-XT kits to maximize
savings. We use the primers provided in the Agilent kits,
but we order the Illumina adaptors oligonucleotides and
primers directly from an oligonucleotide provider as we
use excess amounts of these reagents. It is possible to
adapt this protocol, or steps from this protocol, to in-
crease yield for SOLiD library preparation (data not
shown). In addition, we feel that this protocol could be
easily adapted to custom-designed DNA baits and pre-
capture multiplexing, if required.

Conclusion

This method provides small-to-medium sized laboratories
a viable option for custom or whole exome enrichment of
precious DNA samples and addresses the primary weak-
nesses associated with standard protocols.

Methods

Oligonucleotides were ordered from IDT Inc. — oligo-
nucleotide sequences available upon request from Illumina,
Inc. Enzymes are from New England Biosciences. All se-
quencing was performed on the Illumina HiSeq using a
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variable number of multiplexed samples per lane. See
Additional file 2 for complete protocol.

Additional files

Additional file 1: Evaluation of purification methods and mean
coverage comparison.

Additional file 2: MORL solution-based targeted genomic
enrichment protocol - lllumina sequencing with multiplexing.
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