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Abstract

Background: Metabolic engineering in heterologous organisms is an attractive approach to achieve efficient

production of valuable natural products. Glucosinolates represent a good example of such compounds as they are
thought to be the cancer-preventive agents in cruciferous plants. We have recently demonstrated that it is feasible
to engineer benzylglucosinolate (BGLS) in the non-cruciferous plant Nicotiana benthamiana by transient expression

of five genes from Arabidopsis thaliana. In the same study, we showed that co-expression of a sixth Arabidopsis
gene, y-glutamyl peptidase 1 (GGPT), resolved a metabolic bottleneck, thereby increasing BGLS accumulation.
However, the accumulation did not reach the expected levels, leaving room for further optimization.

Results: To optimize heterologous glucosinolate production, we have in this study performed a comparative
metabolite analysis of BGLS-producing N. benthamiana leaves in the presence or absence of GGPI. The analysis
revealed that the increased BGLS levels in the presence of GGP1 were accompanied by a high accumulation of the
last intermediate, desulfoBGLS, and a derivative thereof. This evidenced a bottleneck in the last step of the
pathway, the transfer of sulfate from 3’-phosphoadenosine-5-phosphosulfate (PAPS) to desulfoBGLS by the
sulfotransferase AtSOT16. While substitution of AtSOT16 with alternative sulfotransferases did not alleviate the
bottleneck, experiments with the three genes involved in the formation and recycling of PAPS showed that
co-expression of adenosine 5-phosphosulfate kinase 2 (APK2) alone reduced the accumulation of desulfoBGLS and
its derivative by more than 98% and increased BGLS accumulation 16-fold.

Conclusion: Adjusting sulfur metabolism by directing sulfur from primary to secondary metabolism leads to a
remarkable improvement in BGLS accumulation and thereby represents an important step towards a clean and
efficient production of glucosinolates in heterologous hosts. Our study emphasizes the importance of considering
co-substrates and their biological nature in metabolic engineering projects.

Background

The plant kingdom is an extensive source of valuable
compounds with a wide range of applications, most
notably, in medicine. However, the availability of phyto-
chemicals in their natural sources is often limited. In
recent years, the efficient production of bioactive plant
natural products has mainly been attempted through the
metabolic engineering of microorganisms, as exemplified
by the successful production of artemisinic acid in yeast
[1]. Although microorganisms are generally considered
easier to engineer, plants themselves present a series of
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advantages as production organisms. For example, they
only require soil, water, and sun light for their growth
(which is unarguably CO, friendly), and their care does
not need highly educated personnel or specialized
equipment. Therefore, there is a growing interest in the
metabolic engineering of plants for the production of
high-value bioactive compounds. Still, pathway engineer-
ing in plants is in its infancy and improvements are
needed to reach the same level of flux control and yield
optimization as seen in microorganisms. Part of the
explanation for this is that stable plant transformations
are notoriously time-consuming, making the challenge
of stably engineering a whole biosynthetic pathway -
without prior confirmation of feasibility - an endeavour
beyond the scope of most research projects.
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To obtain fast answers about the feasibility of
engineering projects, we have turned to an established
protocol for transient transformation of Nicotiana
benthamiana [2], which has allowed us to rapidly probe
the engineering of the sulfur-rich phytochemicals called
glucosinolates (GLS). Apart from being well known as
biopesticides, glucosinolates are thought to be the can-
cer-preventive agents in cruciferous plants [3]. Recently,
we demonstrated the production of benzylglucosinolate
(BGLS) in leaves of N. benthamiana by transient
co-expression of five known biosynthetic genes from
Arabidopsis thaliana [4]. The accumulation of BGLS
was, however, concomitant with a disproportionately
higher accumulation of a putative intermediate, the glu-
tathione conjugate GS-B (~100-fold higher at 6 dpi).
This problem was solved by the discovery of y-glutamyl-
peptidase 1 (GGP1), which was able to cleave GS-B
in vitro, and whose presence in BGLS-producing
N. benthamiana leaves led to a strong reduction in GS-B
accumulation (> 99% at 6 dpi) and a substantial increase
in BGLS levels (~4-fold at 6 dpi) [4]. The discovery of
GGP1 showed that the transient system was not only
useful for assessing the feasibility of engineering a given
pathway, but also for gene discovery.

Although the presence of GGP1 in BGLS-producing
N. benthamiana leaves resolved a major metabolic bot-
tleneck, the increase in accumulation of BGLS did not
account for the reduction in GS-B accumulation. In fact,
only a small portion of the cleaved GS-B was converted
to BGLS [4]. This suggested that an additional down-
stream bottleneck was present, and that BGLS produc-
tion in this system could be further improved. In the
present study, we report the identification of this bottle-
neck and its alleviation, which led to greatly increased
BGLS levels. Our results are discussed in terms of the
heterologous production of glucosinolates and in the
general context of pathway engineering.

Methods

Generation of plant expression constructs

All constructs were assembled in Escherichia coli strain
DH10B by USER cloning of coding sequences (CDSs)
into the plasmid pCAMBIA3300-35Su [5]. The CDS
of SAL1 (At5g63980) was amplified by PCR from cDNA
made from leaves of A. thaliana Col-0. The CDSs of
the remaining genes were amplified from existing cDNA
clones: APK2 (At4g39940) from ABRC clone u21470;
ATPS1 (At3g22890) from ABRC clone ul0843; UGT74B1-
SURI (At1g24100-At2g20610) from ORF2nat [6]; and
finally, AtSOT16 (Atlg74100), AtSOT17 (At1gl8590),
AtSOT18 (Aglg74090), and PAPS-S from published cDNA
clones [7,8]. AtSOT16 has been previously referred to by
us as AtST5a [4,6].
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Transient co-expression in leaves of N. benthamiana

Transient transformation of leaves of N. benthamiana
was performed using Agrobacterium tumefaciens strain
GV3850 and the silencing suppressor p19 [2]. Co-trans-
formations were done by mixing different Agrobacter-
ium strains (each carrying a single expression construct)
in equal volumes prior to infiltration (Total ODggg of
the mixed strains was 0.5), as previously described [4].
When comparing the effects of unequal number of
strains, a strain transformed with an expression plasmid
encoding for GFP [2] was included so as to obtain equal
individual ODs across different strain combinations.

GLS and LC-MS analysis

Leaves were harvested at 6 dpi by cutting four leaf discs
from the Agrobacterium-infiltrated area and homogeniz-
ing them in 400 pl of MeOH containing 0.02 mM sini-
grin as internal standard. Glucosinolates were quantified
by HPLC-UV using the desulfoglucosinolate method [9]
and BGLS amounts were calculated relative to sinigrin
using a relative response factor of 0.8 [10]. Metabolite
analysis was performed by LC-MS as previously
described [4], and exact masses were obtained using a
micrOTOF-Q detector (Bruker Daltonics).

Endogenous N. benthamiana sulfatase activity assay

N. benthamiana leaves infiltrated with Agrobacterium har-
boring AtSOT16 were harvested at 6 dpi and homogenized
in protein extraction buffer [250 mM sucrose, 100 mM
Tris-HCI pH 7,5, 50 mM NaCl, 2 mM EDTA, 5% PVPP,
5 mM DTT and 1X ‘Complete Protease Inhibitor’ (Roche
Molecular Biochemicals)]. After centrifugation at 20 000 g
at 4°C for 20 min, 50 pg of soluble protein (from the
supernatant) was added to 200 pl reaction buffer I
[100 mM Tris-HCl pH 8.0, 10 mM MgCl,, 1 mM PAP
(3’-phosphoadenosine 5’-phosphate, Sigma-Aldrich)
and 1 mM BGLS (Calbiochem)]. The reaction mixtures
were incubated at 25°C for one hour and stopped and
extracted by addition of 400 pl ethyl acetate. A fraction
of the ethyl acetate phase was evaporated and resus-
pended in acetonitrile. Sulfatase activity, represented
by the formation of desulfoBGLS, was quantified by
HPLC-UV [9].

As a positive control for the extraction of active solu-
ble proteins, a sulfotransferase assay was carried out in
parallel by adding 50 pg protein from 20 000 g superna-
tant to 100 pl of reaction buffer II [100 mM Tris-HCl
pH 8.0, 10 mM MgCl,, 0.1 mM PAPS (3’-phosphoade-
nosine 5’-phosphosulfate, Calbiochem) and 0.1 mM
dBGLS (obtained by desulfation of BGLS)]. The assay
mixtures were incubated at 25°C for one hour and
stopped by addition of 400 pl of methanol. Sulfotrans-
ferase activity, represented by the formation of BGLS,
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was quantified by HPLC-UV using the desulfoglucosino-
late method [9].

Results
Metabolite analysis of BGLS-producing N. benthamiana
We performed LC-MS analyses of extracts from Agro-
bacterium-infiltrated N. benthamiana leaves producing
BGLS. The analyses confirmed that, when GGP1 is pre-
sent together with the rest of the BGLS enzymes
(encoded by the 2A-polycistronic constructs ORF1 and
ORF2) [4], the peak of the glutathione conjugate GS-B
was almost completely eliminated (Figure 1A). However,
two major peaks appeared instead (Figure 1A). Based on
MS2 fragmentation patterns (Figure 1B) and exact mass
determination (4-digit mass errors of < 1.6 ppm), these
peaks were annotated as desulfoBGLS (dBGLS) and mal-
onylated dBGLS (mdBGLS). The identity of the dBGLS
peak was confirmed by comparison to an authentic stan-
dard (Figure 1B). Mean dBGLS content at 6 dpi was
quantified to be 1.58 + 0.16 nmol/mg fresh weight
(nmol/mg fw), which is ~five-fold higher than the corre-
sponding BGLS concentration. The size of the mdBGLS
peak was comparable to that of dBGLS (Figure 1A), but
the lack of a standard prevented its quantification.
Malonylation of metabolites and xenobiotics is a general
plant storage and detoxification reaction, and unspecific
malonyltransferases have been previously characterized in
Nicotiana tabacum [11]. The co-occurrence of dBGLS
and mdBGLS could thus readily be explained as a con-
sequence of malonylation of the accumulating dBGLS
by an unspecific endogenous malonyltransferase.
dBGLS itself is the last intermediate of the BGLS path-
way (Figure 1A), hence the accumulation of both
dBGLS and mdBGLS suggested that the last reaction
of the pathway, i.e. incorporation of sulfate by the
sulfotransferase AtSOT16, constituted a metabolic
bottleneck. Alternatively, the presence of dBGLS in
BGLS-producing N. benthamiana could be due to the
desulfation of intact BGLS by an unspecific endogen-
ous sulfatase. However, when we tested soluble protein
extracts from N. benthamiana leaves for in vitro sulfa-
tase activity against BGLS, we were not able to detect
any dBGLS (data not shown). Therefore, we focused
on the sulfotransferase reaction in the remaining
experiments.

Testing of alternative Arabidopsis desulfoglucosinolate
sulfotransferases

A. thaliana ecotype Col-0 has three desulfoglucosinolate
sulfotransferases: AtSOT16, AtSOT17 and AtSOT18, all
of which were reported to convert dBGLS into BGLS in
vitro [7,12]. The sulfotransferase that we had previously
chosen to be part of the 2A multicistronic construct
ORF2 was AtSOT16, which has the highest kc,¢/Kp,
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towards dBGLS [12]. However, since the preferred in
vitro substrates do not always correspond to the pre-
ferred in vivo substrates, we tested the ability of
AtSOT17 and AtSOT18 to support BGLS engineering.
Moreover, the AtSOT16 derived from ORF2 carried an
N-terminal His-tag as well as 17 extra amino acids
(from the 2A sequence) in its C-terminus [6]. As these
additional amino acids might interfere with catalytic
functions, we also tested a native version of AtSOT16 in
parallel with native AtSOT17 and AtSOT18.

In order to have an AtSOT16-free version of ORF2,
we generated the expression construct GT/SUR, which
encoded only the glucosyltransferase UGT74B1 and
the C-S lyase SUR1 (Figure 2A). In addition, three
expression constructs encoding for, respectively, native
AtSOT16, AtSOT17 and AtSOT18 were generated
(Figure 2A) and individually co-infiltrated with ORF1
(coding for CYP79A2 and CYP83B1), GGPI and GT/
SUR. We subsequently compared BGLS and dBGLS
accumulation in leaves infiltrated with the different
strain combinations. No difference was observed in
BGLS accumulation, neither between the tagged (from
ORF2) and the un-tagged AtSOT16, nor between the
three AtSOT isoforms (Figure 2B). The level of dBGLS
remained slightly less constant, but more than twice as
high as the BGLS content in all combinations (Figure 2B),
which demonstrated that the alternative sulfotransferases
could not alleviate the metabolic bottleneck.

The negative control without any AtSOT gave only a
~50% reduction in BGLS production when compared to
all other combinations (Figure 2B). Though reduced, the
production of 0.17 + 0.04 nmol BGLS/mg fw in the
absence of an Arabidopsis sulfotransferase shows that
endogenous N. benthamiana sulfotransferases were able
to catalyze the reaction. This is in agreement with a pre-
vious result, where we showed that, upon in vivo feeding
of phenylacetothiohydroximate (the penultimate inter-
mediate in the BGLS pathway) to wildtype Nicotiana
tabacum, BGLS was produced, thereby demonstrating
that the two last steps in the pathway could be catalyzed
in a Nicotiana species by endogenous glucosyltrans-
ferases and sulfotransferases [6]. This results supported
the hypothesis that the late enzymes of glucosinolate
biosynthesis were recruited from general detoxification
pathways. Nevertheless, and similarly to the present sul-
fotransferase experiment in N. benthamiana, the pre-
sence of an AtSOT did improve the accumulation of
BGLS significantly [6].

PAPS as limiting co-substrate

All known sulfotransferases utilize 3’-phosphoadenosine-
5’-phosphosulfate (PAPS) as the activated form of sul-
fate, and the last step of the glucosinolate pathway is no
exception. Furthermore, sulfotransferase reactions not
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Figure 1 Metabolite analysis of BGLS-producing N. benthamiana leaves. A) Total ion chromatograms from the LC-MS analysis of N.
benthamiana leaves expressing ORF1 (coding for CYP79A2 and CYP83B1) and ORF2 (coding for SURT, UGT74B1, and AtSOT16), in the presence
or absence of GGPT (red and blue traces, respectively). A scheme of the engineered pathway is inserted, where the identities of the three main
chromatogram peaks have been assigned to by dashed arrows. Metabolite abbreviations are written in black, and enzyme names are written in
red. B) MS2 fragmentation patterns of the [M+Na]™ adducts of standard dBGLS (upper panel) and of the prominent compounds eluting at 6.5
min (middle panel) and 7.4 min (lower panel) in the analysis of the extracts of N. benthamiana leaves expressing ORF1, ORF2, and GGPI. The
chemical structures of the proposed compounds are inserted. For mdBGLS, the location of the malonyl residue at position 6 is only tentative.
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Figure 2 AtSOT-dependent BGLS and dBGLS accumulation. A) Expression constructs used for testing different versions of AtSOTs. His
B) BGLS and dBGLS accumulation in leaves of N. benthamiana expressing ORF1 and GGPT in combination with the indicated constructs at 6 dpi.
Each data point represents the mean of eight biological replicates. Error bars represent standard deviations.

only produce the sulfated metabolite, but have also ade-
nosine-3’,5’-bisphosphate (PAP) as a by-product.

PAPS is biosynthesized from adenosine-5'-triphosphate
(ATP) and inorganic sulphate (SO4%) in two enzymatic
steps. First, ATP sulfurylase (ATPS) sulfates ATP to
form APS (adenosine 5-phosphosulfate). Second, APS
kinase (APK) phophorylates APS to form PAPS. The
phosphate donor for this reaction is another molecule
of ATP (Figure 3A) [13]. APK is located at an impor-
tant metabolic branchpoint in sulfur assimilation,
because a competing reaction, catalyzed by APS reduc-
tase, channels APS into the reductive assimilatory path-
way leading to cysteine and, further downstream, to
glutathione (Figure 3A). After sulfation, the by-product
PAP is hydrolysed to AMP (adenosine-5-monoho-
sphate) by a bisphosphate nucleotidase. This reaction is
biologically important not only because it removes PAP,
which is an inhibitor of sulfotransferase reactions [12],
but also because AMP can then be regenerated to form
ATP, leading to actual recycling of the adenosine moi-
ety of PAPS (Figure 3A). In Arabidopsis, the hydrolysis
of PAP is most likely catalyzed by the multifunctional
protein SAL1 [14].

In silico microarray-based co-expression databases
such as ATTED-II [15] and CressExpress [16] are
powerful tools for elucidating metabolic networks in
Arabidopsis. We have previously used such databases to
identify genes in the GLS pathway [4,9]. In ATTED-II,
searches were performed using both SURI and
CYP83B1 as query. ATP sulfurylase 1 (ATPSI1), APS
kinase 1 (APK1), APS kinase 2 (APK2) and SALI, all of
which are likely to be involved in the formation and

recycling of PAPS, were among the top 24 co-expressed
genes for both queries, in addition to many known GLS
biosynthetic genes (data not shown). A similar picture
was seen in CressExpress, where APK2, APK1 and
ATPS1 were among the top five co-regulated genes
when five GLS biosynthetic genes (CYP79B2, CYP83Bl1,
SURI, UGT74B1, and AtSOT16) were used as query
(data not shown). Therefore, we hypothesized that the
lack of a highly efficient PAPS formation and recycling
machinery in N. benthamiana prevented the sulfotrans-
ferase reaction from being carried to completion.

A relationship between APK genes and GLS biosynth-
esis was recently found by Mugford et al., who demon-
strated that the Arabidopsis apkl/apk2 double knockout
mutant had reduced levels of GLS and accumulated
desulfoglucosinolates [17]. Furthermore, it has been
shown that ATPSI, ATPS3, APKI, and APK2 are regu-
lated by MYB transcription factors known to regulate
both aliphatic and indolic glucosinolate biosynthesis
[18]. This further suggested that the formation of PAPS
could be limiting in BGLS-producing N. benthamiana
leaves.

To test the hypothesis that an increased PAPS forma-
tion and recycling would aid BGLS production in leaves
of N. benthamiana, we generated individual plant
expression constructs carrying the native coding
sequences of ATPS1, APK2 and SALI, respectively.
However, these three proteins carry predicted chloro-
plast targeting peptides (cTPs) and their fusions to
fluorescent proteins have been shown to localize to
chloroplasts [17,19,20], whereas the glucosinolate path-
way is proposed to be cytosolic [21]. This may pose a
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areas from extracted ion chromatograms. D) BGLS accumulation in N. benthamiana leaves expressing ORF1, ORF2, and GGP1 in combination with
the indicated constructs at 6 dpi. For both C) and D), each data point represents the mean of four biological replicates, and error bars represent
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problem, as the co-substrate PAPS would have to be trans-
ported very efficiently from the chloroplast to the cytosol,
while the by-product PAP would have to be mobilized effi-
ciently in the opposite way. As a means to overcome this
potential problem, we tested in parallel whether the PAPS
formation and recycling machinery could be established in
the cytosol. This was attempted using an ATPS-APK
fusion protein from the marine worm Urechis caupo lack-
ing a cTP, also referred to as PAPS synthetase (PAPS-S)
[8], and a truncated version of SALI without its native
¢TP, which we named SAL1-cTP.

Agrobacterium strains harbouring the different PAPS
formation and recycling genes (Figure 3B) were infil-
trated into N. benthamiana leaves together with strains
harbouring the BGLS biosynthetic genes, both individu-
ally and in selected combinations. In all experiments
where APK2 was included, the levels of dBGLS and

mdBGLS were reduced > 98% (Figure 3C). This was
accompanied by a ~16-fold increase in mean BGLS
levels (Figure 3D). ATPS1 and SAL1 did not affect the
content of BGLS, dBGLS or mdBGLS any further, indi-
cating that the endogenous ATPS and bisphosphate
nucleotidase activities sufficiently support a highly
increased PAPS formation and recycling, and that only
the APK activity was limiting. The accumulation of
BGLS, dBGLS, and mdBGLS in the presence of PAPS-S
and SAL1-cTP, both lacking ¢TPs, did not differ from
the accumulation seen with the plastid localized APK2.
This suggests that the shuttling of PAPS and PAP across
chloroplast membranes was not a limiting factor. In the
presence of APK2, mean BGLS levels reached 1.80 +
0.16 nmol/mg fw at 6 dpi. This is equivalent to the total
GLS levels in rosette leaves of Arabidopsis Col-0 before
bolting [22].
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Discussion

In this study, we have successfully optimized the
heterologous production of BGLS in leaves of
N. benthamiana, reaching glucosinolate levels that are
equal or higher than those observed in plants that
produce glucosinolates naturally. The optimization
was enabled by the identification of a bottleneck in
the last biosynthetic reaction, the transfer of sulfate to
dBGLS by a sulfotransferase. The bottleneck was
resolved solely by co-production of APK2, an enzyme
that converts the intermediate APS in the sulfur
assimilatory pathway into the sulfotransferase co-sub-
strate, PAPS.

In mammalian systems, where numerous xenobiotics
follow sulfation-dependet detoxification routes, sulfate
transfer has been described as a high-affinity,
low-capacity process [23]. The identification of the
sulfotransferase bottleneck in our engineered BGLS
pathway indicates that sulfate transfer is also a low-
capacity process in non-cruciferous plants. However,
the exact reasons for the low capacity are different. In
rats and mice, the limiting factors appear to be the
availability of sulfate and the sulfotransferases them-
selves [23]. Because the sulfotransferase problem in
N. benthamiana was completely solved by co-expressing
APK2, the provision of PAPS was clearly the limiting fac-
tor (and not sulfate availability nor the sulfotransferase
AtSOT16).

Even under PAPS-limiting conditions, the addition
of either AtSOT resulted in increased BGLS
accumulation as compared when only endogenous
N. benthamiana sulfotransferases were available. This
increase can be speculated to be even more pro-
nounced under PAPS unlimited conditions (i.e. in the
presence of APK2). Conversely, it was not possible to
determine any difference in the performance of the
three AtSOTs under PAPS-limiting conditions, and
future studies could therefore focus on determining
the optimal AtSOT for production of specific GLS in
the presence of APK2.

The finding that APK2 alone could resolve the sulfo-
transferase bottleneck also demonstrates that other
PAPS-related activities, namely ATPS and bisphosphate
nucleotidase activities were not limiting either. This
likely reflects that the two latter enzymes participate in
important PAPS-independent pathways. ATPS synthe-
sizes the central sulfur assimilation intermediate APS,
which can either be used in the reductive sulfur assimi-
lation pathway leading to cysteine and glutathione or
converted into to PAPS by an APK. In turn, bispho-
sphate nucleotidases not only hydrolyze PAP, but also
inositol polyphosphate [14] and have been linked to
numerous physiological processes such as salt, cold, and
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drought tolerance [24], RNA silencing [25], and leaf
morphogenesis [26].

Although usually drawn as a linear pathway, the glu-
cosinolate pathway is fueled by the co-substrates
NADPH, glutathione, UDP-glucose, and PAPS [21].
While the three former co-substrates are used in many
ubiquitous processes in primary metabolism, most sulfa-
tion processes are considered part of secondary metabo-
lism [17]. Therefore, the formation and regeneration of
NADPH, glutathione, and UDP-glucose is expected to
be under more stringent control than that of PAPS (for
example, by strict feedback regulation). This helps ratio-
nalizing why efficient glucosinolate production in N.
benthamiana does not seem to require the engineering
of co-substrates other than PAPS.

Conclusion

Our study shows that modulation of sulfur metabolism
towards enhanced PAPS biosynthesis enables an efficient
heterologous production of glucosinolates in
N. benthamiana. This represents an important step
towards a clean and efficient production of glucosino-
lates in heterologous hosts and emphasizes the impor-
tance of considering co-substrates and their biological
nature in metabolic engineering projects.
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