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Abstract 

Background The Mediterranean fruit fly, Ceratitis capitata, is a significant agricultural pest managed through area-
wide integrated pest management (AW-IPM) including a sterile insect technique (SIT) component. Male-only releases 
increase the efficiency and cost-effectiveness of SIT programs, which can be achieved through the development 
of genetic sexing strains (GSS). The most successful GSS developed to date is the C. capitata VIENNA 8 GSS, con-
structed using classical genetic approaches and an irradiation-induced translocation with two selectable markers: 
the white pupae (wp) and temperature-sensitive lethal (tsl) genes. However, currently used methods for selecting suita-
ble markers and inducing translocations are stochastic and non-specific, resulting in a laborious and time-consuming 
process. Recent efforts have focused on identifying the gene(s) and the causal mutation(s) for suitable phenotypes, 
such as wp and tsl, which could be used as selectable markers for developing a generic approach for constructing 
GSS. The wp gene was recently identified, and efforts have been initiated to identify the tsl gene. This study investi-
gates Ceratitis capitata deep orange (Ccdor) as a tsl candidate gene and its potential to induce tsl phenotypes.

Results An integrated approach based on cytogenetics, genomics, bioinformatics, and gene editing was used 
to characterize the Ccdor. Its location was confirmed on the right arm of chromosome 5 in the putative tsl genomic 
region. Knock-out of Ccdor using CRISPR/Cas9-NHEJ and targeting the fourth exon resulted in lethality at mid- 
and late-pupal stage, while the successful application of CRISPR HDR introducing a point mutation on the sixth exon 
resulted in the establishment of the desired strain and two additional strains (dor 12del and dor 51dup), all of them 
expressing tsl phenotypes and presenting no (or minimal) fitness cost when reared at 25 °C. One of the strains exhib-
ited complete lethality when embryos were exposed at 36 °C.

Conclusions Gene editing of the deep orange gene in Ceratitis capitata resulted in the establishment of temperature-
sensitive lethal mutant strains. The induced mutations did not significantly affect the rearing efficiency of the strains. 
As deep orange is a highly conserved gene, these data suggest that it can be considered a target for the development 
of tsl mutations which could potentially be used to develop novel genetic sexing strains in insect pests and disease 
vectors.
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Background
The Mediterranean fruit fly, Ceratitis capitata (Wiede-
mann), is one of the most important agricultural pests 
due to the damage it causes to many plant species of 
agronomic importance [1, 2]. The sterile insect technique 
(SIT), as part of area-wide integrated pest management 
(AW-IPM) programs, is a control tactic that has been 
developed to suppress, contain, and prevent the (re)intro-
duction or locally eradicate populations of insect pests of 
agricultural, veterinary and human health importance 
[3–6].

One of the most critical aspects of SIT applications 
concerns the development of genetic sexing strains 
(GSS), which enable the mass production and separation 
of males and females. Male-only releases significantly 
improve the effectiveness and cost-efficiency of SIT 
applications [7–10]. Several GSSs have been developed 
using irradiation and classical genetic approaches for SIT 
applications against C. capitata. The two strains used 
nowadays are VIENNA 7 and VIENNA 8 [10, 11].

The successful development and application of these 
GSS depend on the presence of (i) two selectable phe-
notypes, the white pupae (wp) gene and temperature-
sensitive lethal (tsl), both being located on the right arm 
of chromosome 5, and (ii) a Y-autosome translocation, 
T(Y;A), which is required to link the wild-type alleles of 
these genes to the male sex chromosome [10]. Females 
of these GSS are homozygous for the recessive alleles, 
sensitive to high temperatures, and emerge from white 
puparia, while males are heterozygous at both loci and, 
since they carry a single copy of the wild-type alleles for 
both wp and tsl loci, they are resistant to high tempera-
tures and emerge from brown puparia [8, 10, 11].

The development of these GSS was a rather lengthy 
process of over two decades, entirely based on the ser-
endipitous discovery of the wp and tsl mutations and the 
stochastic induction of suitable translocations (T[Y;A]). 
The same approach was followed for all GSS constructed 
using classical genetic approaches [10]. Given recent 
advances in the field of genome editing, a generic (neo-
classical) approach was proposed for the construction of 
non-transgenic GSS for SIT applications [12, 13]. This 
approach requires the identification of gene(s) and the 
causal mutation(s) of suitable phenotypes, which could 
be used as selectable markers. The next step includes the 
induction of similar mutations in the orthologous gene(s) 
of SIT target species and the linkage of the wild-type 
allele of the gene marker(s) to the male sex using genome 
editing approaches [12, 13].

As the wp and tsl genes could be useful selectable mark-
ers for developing GSS in different SIT target species, 
initial efforts focused on identifying the genes responsi-
ble for these two phenotypes. The wp gene was recently 

mapped by in-situ hybridization to position 76B of the 
salivary gland polytene chromosomes and in earlier stud-
ies by deletion mapping to position 59B of the C. capitata 
trichogen polytene chromosome map [14, 15]. Based on 
similar transposition and deletion mapping experiments, 
the tsl gene was cytogenetically mapped at position 59B-
61C [14, 16]. Based on these findings, efforts were initi-
ated to identify the gene responsible for the tsl phenotype 
in C. capitata so that it could be used as a marker for the 
development of GSS in other SIT target species [12, 13]. 
As a first step, a tsl test (TSLT) was applied to several 
wild-type, GSS, and tsl mutant strains, and the results 
indicated that the lethality rates observed as a response 
to increasing temperatures depend on genetic and envi-
ronmental factors [17]. This analysis also contributed to 
the identification of potential reference strains that could 
be used in functional tests of candidate genes [17].

C. capitata wild-type, GSS, and tsl mutant strains 
were recently used in genomic, transcriptomic, bioin-
formatic, and cytogenetic analyses to identify candidate 
genes in the so-called C. capitata tsl genomic region that 
may be involved in the tsl phenotype [18]. This region is 
defined by the wp gene at its left border and the glucose-
6-phosphate 1-dehydrogenase gene (also known as Zw) at 
its right border, located at position 79C of the polytene 
chromosome map [18, 19]. It is 6,200,460  bp long and 
contains 561 genes [18]. The results of this integrated 
and comparative approach led to the identification of 
33 Drosophila melanogaster temperature sensitive genes 
with orthologs in the C. capitata tsl genomic region. In 
addition, 214 polymorphisms were detected in 19 out of 
the 33 genes including locus LOC101455833 (vacuolar 
protein sorting-associated protein 18 homolog, VPS18) 
also known as the deep orange gene in D. melanogaster 
(Dmdor) (Gene ID: CG3093) [18].

The deep orange gene plays a major role in vesicle-
mediated protein trafficking to lysosomal compart-
ments and in membrane docking/fusion reactions of 
late endosomes/lysosomes probably as part of the class 
C core vacuole/endosome tethering (CORVET) com-
plex, as previously reported [20–23]. It is essential in lar-
val neuromuscular junctions for endosomal sorting and 
trafficking old or dysfunctional synaptic vesicle proteins 
through a degradative endolysosomal route [22]. Moreo-
ver, it is essential for the biogenesis of eye pigment gran-
ules [21] and for maintaining normal levels of the protein 
Rush hour, which functions in endosome formation and 
trafficking [24].

Several Dmdor mutations have been associated with 
lethal phenotypes appearing at the third instar larval, 
pre-pupal, or pupal stage, with some mutations being 
temperature sensitive [19, 24, 25]. Exposure to elevated 
temperatures may not only result in lethality, but might 
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also affect eyes, wings, late endosomes, thorax, and 
macrochaeta [20, 26].

The C. capitata orthologue of the deep orange gene 
(hereafter Ccdor) was selected as a potential tsl can-
didate gene and was targeted via Clustered Regularly 
Interspaced Short Palindromic Repeats (CRISPR/Cas9) 
gene editing for further characterization. It is known 
that CRISPR/Cas9 genome editing can be used to tar-
get specific genes introducing a double-strand break 
(DSB), which can be repaired in two ways: by the non-
homologous end-joining (NHEJ) or the homology-
directed repair (HDR) [27, 28]. Both pathways can be 
exploited for gene editing. Performing NHEJ, mutations 
are induced, and the repair system implies the intro-
duction of random INDELs (insertions or deletions), 
mainly used to knock out genes. Carrying out HDR, a 
DNA donor template is used to modify a specific region 
[29]. CRISPR/Cas9 has been successfully applied in 
many insect pest species targeted by SIT, such as Cera-
titis capitata [15, 27, 28, 30], Bactrocera tryoni [15, 31, 
32], Bactrocera dorsalis [33, 34], Anastrepha suspensa 
[35] and Zeugodacus cucurbitae [36].

In the present study, we investigated whether the C. 
capitata dor gene is involved in a temperature-lethal phe-
notype in this species. We used CRISPR/Cas9-mediated 
NHEJ to knock out the Ccdor gene targeting the fourth 
exon and CRISPR/Cas9-mediated HDR to introduce a 
specific point mutation in the sixth exon and character-
ized the mutant strains with an emphasis on the expres-
sion of temperature-sensitive lethal phenotypes.

Results
Ceratitis capitata deep orange gene
The Drosophila melanogaster deep orange gene ortho-
logue in C. capitata (Ccdor) is characterized by a length 
of 3,290 bp (973 aa) (RNAseq and genomic data – NCBI 
BioProject No PRJEB57574), a total of 6 exons (Fig. 1A), 
and 56.14% identity at the amino acid level with its D. 
melanogaster orthologue. Combined results from the 
NCBI Conserved Domain Database Server and SMART 
predicted the presence of four conserved domains 
for Ccdor: a Pep3/Vps18/deep orange family domain 
(300–452 aa), a Clathrin/VPS domain (627–772 aa), a 
Helo_like_N domain (804–865 aa) and a Ring finger/U-
box domain (861–948 aa) (Fig. 1A). The C. capitata deep 

Fig. 1 A Schematic representation of the Ccdor gene spanning six exons. Pep3/Vps18/deep orange family domain, Clathrin/VPS domain, Helo_like_N 
domain, Ring finger/U-box domain, and sgRNAs are shown in green, blue, purple, orange, and black, respectively. Red dashes represent the six SNPs 
that lead to amino acid changes identified via wild type and wp tsl mutant strains’ deep orange genomic sequence comparison. B Ccdor gene SNPs 
Sanger sequenced in Benakeion Volos FF26 (hence Benakeion) (wild-type), Seibersdorf FF26 (hence SEIB) (wild-type), VIENNA 8 2010 FF26 (hence 
VIENNA 8) (GSS), D53-3–28 FF21 (hence D53 tsl) (mutant) and wp tsl FF21 (hence wp tsl) (mutant) strains using as reference Ccap 3.2.1 (accession 
GCA_905071925.1) genome
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orange gene is localized on the right arm of chromosome 
5, in position 77B of the polytene chromosome map, as 
shown by in-situ hybridization analysis (Figure S1).

As reported in our previous study, polymorphism 
calling using the VIENNA 7 GSS (female) and wp tsl 
mutant strain (male and female) Illumina NGS data 
(NCBI BioProject No PRJEB57574) identified 36 SNPs 
in the respective Ccdor gene coding sequences [18]. The 
present study confirmed them via Sanger sequencing in 
the wp tsl strain. Six of them lead to amino acid changes 
(I83M, D100E, H313P, I458L, E839K, L940I). H313P is 
in the Pep3/Vps18/deep orange family domain, E839K 
in the Helo_like_N domain, and L940I in the Ring 
finger/U-box domain (Fig.  1A; Table S1). These six 
positions were checked in several wild-type, GSS, and 
tsl mutant strains (Table  1) to confirm their homozy-
gosity in wild-type and tsl mutant strains (including 
GSS females) and their heterozygosity in GSS males, 
a pattern which should be expected for a tsl mutation 
(Fig.  1B). One of them (E839K) followed the proper 
pattern in all studied strains (Fig.  1B). Further analy-
ses were conducted to assess the conservation of DOR 
protein and the conservation of these positions across 

various species to evaluate dor’s eligibility as a selecta-
ble tsl marker (Figure S2). This assisted in identifying 
and prioritizing suitable target sites for CRISPR/Cas9 
genome editing. The findings revealed that the DOR 
protein has a pairwise identity of 59.3% among insect 
species, which increases to 91.3% when only Tephrit-
ids are considered (Figure S2). Moreover, its second-
ary structure was evaluated and predicted by  Phyre2 
and it contains 42% alpha helix, 19% beta-strand, and 
22% disordered regions (Figure S3). Additionally, it was 
observed that three out of the six amino acids, in which 
polymorphisms were identified in tsl mutant strains, 
exhibit high conservation among insect species (Figure 
S2) and are located in the alpha helix (E839K & L940I) 
and disordered regions (D100E).

Knock‑out of the Ccdor gene in exon 4 causes lethality 
at the pupal stage
The sgRNA_NHEJ (Table S2) targeting exon 4 and 
recombinant Cas9 protein were injected in 586 Egypt 
II FF26 (hence EgII) embryos to knock out the Ccdor 
gene. After injection, 145 embryos reached the larval 
stage, 70 reached the pupal stage, and 55 eclosed as 
adults (Table S3). Fifteen dead pupae were analyzed 
genotypically for CRISPR/Cas9-induced dor mutations; 
seven had NHEJ events (Figure S4).

Surviving adults were individually backcrossed to 
EgII wild-type virgin individuals and eggs from those 
crosses were collected three times in two-day intervals. 
 G1 adults were inbred and  G2 adults were subjected to 
non-lethal genotyping. 425  G2 adults were screened for 
CRISPR-induced mutations, but none were detected. 
This suggested that all  G0 individuals with mosaic 
genotypes (Figure S4) died at mid- or late-pupal stage 
(Fig. 2), most likely due to the mutation that took place.

Table 1 Ceratitis capitata strains used in the present study

Strain Group Used for

1 Egypt II FF26 wild type Illumina NGS, 10X Genomics, 
tsl test

2 Benakeion Volos FF26 wild type Sanger sequencing, RNA-Seq

3 Seibersdorf FF26 wild type Sanger sequencing

4 VIENNA 8 2010 FF26 GSS Sanger sequencing

5 VIENNA 7 GSS Illumina NGS, 10X Genomics

6 wp tsl FF21 mutant Illumina NGS, 10X Genomics, 
Sanger sequencing, RNA-Seq, 
tsl test

7 D53-3–28 FF21 mutant Sanger sequencing

Fig. 2 Lethal phenotype of Ccdor gene knock-out. Lethality was observed during mid- (A) and late-pupal stage (B) following Ccdor gene knock-out 
in exon 4 by CRISPR/Cas9 NHEJ targeted mutagenesis
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Deep orange E839K mutation introduced in EgII using 
CRISPR/Cas9 HDR
Recombinant Cas9 protein, a sgRNA targeting the 
sixth exon (sgRNA_HDR) of Ccdor, close to the E839K 
(G2889A) mutation and a short single-stranded repair 
template (151 nt), designed in sense orientation of 
the gene (Table S2), were injected into 255 Cc EgII 
embryos (Table S3). In addition, 100 Cc EgII embryos 
were injected using the same mix but replacing the 
sense-oriented single-stranded repair template with 
the antisense-oriented one (Table S3). Twenty-eight 
adults survived the injections using the sense-oriented 
ssODN, and three survived using the antisense-ori-
ented ssODN. Differently from what was done during 
the NHEJ experiment,  G0 adults were individually back-
crossed to wp tsl FF21 (hence wp tsl) mutant strain 
virgin mates, trying to obtain complementation of the 
CRISPR allele with the tsl mutant one with the conse-
quent manifestation of the desired phenotype. Using 
non-lethal genotyping on  G1 adults, we determined 
that at least one  G0 family, injected using the sense-
oriented single-stranded repair template, produced 
HDR-positive offspring. Positive siblings were single-
pair mated to EgII wild-type individuals of the opposite 
sex to remove the wp tsl background thus avoiding any 
impact on the tsl phenotype arising from its presence. 
Crosses, non-lethal genotyping and Sanger sequencing 
were performed during the next generations to isolate 
flies carrying the E839K mutation. Once identified, 
they were inbred to obtain a homozygous mutant strain 
(Fig. 3). No change in eye color or other visible mutant 
phenotype was detected.

Deep orange CRISPR NHEJ events obtained 
during the CRISPR HDR experiments
In addition to the successful CRISPR HDR performed to 
introduce the E839K point mutation, the genotyping of 
 G1 embryo pools suggested the presence of at least three 
 G0 flies with editing events different from the expected 
one. Genotyping of  G1 adults showed flies with mosaic 
genotypes (Figure S4). However, unlike the latter ones, 
induced mutations were viable. We used non-lethal geno-
typing to determine that at least two  G1 families showed 
different NHEJ events. Crosses and non-lethal geno-
typing were performed during  G2 and  G3 to isolate the 
single events: a deletion of 12  bp (TGT GAT AAA CAA ) 
and a duplication (which also included the E839K HDR 
event) of 51  bp (AAA CGT GTT ATG AAA GAT TTA CAA 
AAT GTG CGT GAG AGA AGC ATA CAA GCG), both in 
frame (Fig. 3), presumably produced as a result of errone-
ous repair by the DNA polymerase. Once flies homozy-
gous for the 12  bp deletion and the 51  bp duplication 
were identified, they were inbred at  G4 to establish the 
respective homozygous strains (dor 12del and dor 51dup) 
(Fig. 3). These NHEJ events were unrelated to eye color 
change or other visible mutant phenotypes.

Temperature‑sensitive lethal tests of the three dor mutant 
strains
Egg hatching, pupal recovery, and adult emergence rates 
were assessed for all homozygous CRISPR-mutant (dor 
12del, dor 51dup, and dor E839K) and control strain 
(wild type: EgII, SEIB, and mutant: wp tsl) (Table S4), 
based on the initial 100 embryos collected per each of the 
three replicates. Statistically significant differences were 
detected at the egg hatching rate among all the strains 

Fig. 3 CRISPR strains obtained after targeting Ccdor via CRISPR HDR. The Ccdor reference sequence (Ccap 3.2.1 (accession GCA_905071925.1)) 
with the sgRNA target sequence in grey and the PAM site is shown in the first row. The rows below represent the three mutant strains obtained 
via CRISPR HDR with the SNP responsible for the E839K mutation (dor E839K), the 12 bp deletion (dor 12del), and the 51 bp duplication inserted 
via false integration of the HDR repair template (dor 51dup), respectively. The nucleotide change responsible for the E839K mutation is shown in red, 
while the duplication is underlined
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tested at 25 °C (F = 9.1437, df = 48, p = 3.674 ×  10–6), 31 °C 
(F = 54.733, df = 48, p < 2.2 ×  10–16), 32  °C (F = 18.745, 
df = 48, p = 2.746 ×  10–10), 33  °C (F = 260.49, df = 48, 
p < 2.2 ×  10–16), 34  °C (F = 686.77, df = 48, p < 2.2 ×  10–16), 
35  °C (F = 79.944, df = 48, p < 2.2 ×  10–16) and 36  °C 
(F = 72.464, df = 48, p < 2.2 ×  10–16) (Fig. 4, Table S4, Table 
S5).

At the embryonic stage, dor 12del and dor 51dup egg 
hatching rates at 25°C were significantly different from 
those observed in the wild-type strains EgII and SEIB 
(Table S6), indicating fitness cost, albeit minimal. On 
the contrary, no difference was detected among the dor 
E839K and the two wild-type strains. Thermal sensitivity 
of wild-type and CRISPR strains started at 35°C (Table 
S5), and egg hatching rates ranged between 92.67 ± 2.81% 
(EgII) and 57.78 ± 9.94% (dor 51dup) (Table S4). At 36°C, 
the egg hatching rate of the EgII and SEIB strains was 
78.00 ± 3.59% and 62.33 ± 8.81%, respectively, while that 
of the three CRISPR strains was significantly decreased 
(dor 12del = 17.22 ± 11.70%, dor 51dup = 0.11 ± 0.19% 
and dor E839K = 41.44 ± 10.75%; Table S4). Interestingly, 
at 36°C, dor 51dup and wp tsl were not statistically differ-
ent (Table S6), indicating a similarity between the behav-
ior of the CRISPR strain and the original tsl strain.

Statistically significant differences were also 
detected for pupal recovery among all the strains 
tested at 25  °C (F = 2.5388, df = 48, p = 0.04064), 
31  °C (F = 27.071, df = 48, p = 6.635 ×  10–13), 32  °C 
(F = 18.848, df = 48, p = 2.524 ×  10–10), 33 °C (F = 10.445, 
df = 47, p = 8.825 ×  10–7), 34  °C (F = 28.269, df = 40, 
p = 3.475 ×  10–11) and 35  °C (F = 29.097 df = 40, 
p = 2.281 ×  10–11). At 36 °C, wp tsl and dor 51dup strains 
did not show any pupal recovery (Table S4) (F = 2.518, 
df = 28, p = 0.07845) (Fig. 5, Table S4, Table S7).

A significant difference was observed among the 
different strains concerning the temperature at 
which the pupal recovery rate started to decrease 
(Table S7). The wp tsl mutant strain was shown to 
be the most sensitive since the pupal recovery rate 
started to reduce at 31  °C, while for dor 12del and 
dor 51dup, the reduction was initiated at 33  °C, for 
dor E839K at 34  °C (Table S7), and for the wild-type 
strains at 35  °C, respectively (Table S7). In addi-
tion, the TSLT results provided clear evidence that 
the pupal recovery rate of the dor 51dup strain dras-
tically decreases between 34  °C (52.56 ± 6.98%) and 
35  °C (7.67 ± 6.24%) (Table S7), while for dor 12del 
(35  °C = 25.67 ± 7.10; 36  °C = 0.33 ± 0.58%) and dor 

Fig. 4 Egg hatching rates of wild-type control (EgII, SEIB), mutant (wp tsl), and CRISPR-mutant (dor E839K, dor 12del, and dor 51dup) strains. Egg 
hatching rates (shown as mean ± standard deviation) of strains reared without heat-shock treatment at 25 °C and after 24 h heat-shock treatment 
at 34 °C, 35 °C or 36 °C are shown. Values represent the mean of the three replicates for the three tested days
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E839K (35  °C = 51.22 ± 8.74; 36  °C = 7.44 ± 4.27%), an 
exposure at 36 °C was required (Table S7).

Statistically significant differences were also 
detected for adult emergence among all the strains 
tested at 25  °C (F = 14.223, df = 48, p = 1.541 ×  10–8), 
31  °C (F = 112.10, df = 48, p < 2.2 ×  10–16), 32  °C 
(F = 211.1, df = 48, p < 2.2 ×  10–16), 33  °C (F = 8.7947, 
df = 40, p = 3.424 ×  10–5), 34  °C (F = 434.56, df = 40, 
p < 2.2 ×  10–16) and 35  °C (F = 10.909, df = 40, 
p = 4.481 ×  10–6), while at 36  °C (F = 0.2303, df = 23, 
p = 0.7961) no statistical differences were found (Fig. 6, 
Table S4, Table S8).

The impact of exposure to high temperatures on 
adult emergence differed among CRISPR and control 
strains. The adult emergence rate of the wp tsl mutant 
strain decreased at 31  °C (Table S7) that of EgII and 
dor 12del at 34  °C, while dor 51dup at 35  °C, respec-
tively (Tables S4 and S8). It is worth noting that when 
embryos were subjected to a 24-h heat treatment at 
36  °C, the observed lethality was 100% for dor 51dup 
and almost 100% (99.67 ± 0.58%) for dor 12del (Tables 
S4 and S8).

Discussion
The temperature-sensitive lethal (tsl) phenotype has 
been used as a selectable marker in the most successful 
C. capitata GSS, VIENNA 7 and VIENNA 8, developed 
so far [10, 11]. More than two billion sterile GSS males 
are being produced in mass-rearing facilities every week 
and released to control populations of this major agricul-
tural pest worldwide. Identifying the tsl gene and char-
acterizing the mutation(s) responsible for the respective 
phenotype will pave the way for using it as a selectable 
marker for developing GSS in other SIT target species 
[10, 12, 13, 37–39]. In the present study, we characterized 
the deep orange locus of C. capitata. This gene is known 
to have temperature-sensitive lethal mutations in D. mel-
anogaster, and we investigated whether a tsl phenotype, 
similar to the ones reported previously, can be repro-
duced by inducing CRISPR/Cas9 mutations in Ccdor [21, 
25, 40].

The Ccdor gene was selected as a candidate tsl gene 
by thoroughly analyzing the tsl region on chromosome 
5 [18]. Four sets of data were pointing towards that can-
didate: (a) the most recent genome assembly suggested 

Fig. 5 Pupal recovery rates of control (wild type: EgII, SEIB, and mutant: wp tsl) and CRISPR-mutant (dor E839K, dor 12del, and dor 51dup) strains. 
Pupal recovery rates (shown as mean ± standard deviation) of strains reared at 25 °C without heat-shock treatment and after 24 h heat-shock 
treatment at 34 °C, 35 °C and 36 °C are shown. Values represent the mean of the three replicates for the three tested days
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the presence of Ccdor on the right arm of chromosome 
5. Its position was confirmed by in-situ hybridization on 
polytene chromosomes, which localized Ccdor in 77B, 
in the area where the tsl gene is expected to be [14, 16]; 
(b) mutations in its D. melanogaster orthologue have 
resulted in a tsl phenotype [21, 25]; (c) the presence of 
point mutations resulting in amino acid substitutions 
when Ccdor gene sequences were compared between 
wild type and tsl mutant strains [18] and (d) its highly 
conserved amino acid sequence among insects, making it 
suitable for the construction of GSSs in other SIT target 
species.

CRISPR/Cas9-NHEJ targeting the Ccdor functional 
domain Pep3/Vps18/deep orange, present in exon 4, 
resulted in non-viable progeny with lethality being 
observed at the mid- and late-pupal stages (Fig. 2A and 
B). This contrasts observations in D. melanogaster, where 
lethality occurred during larval and pre-pupal stages [20, 
25, 26, 41, 42]. This difference in lethality stages observed 
in Ccdor after the knock-out may be influenced by the 
specific indel(s) introduced. However, the exact nature of 
the indel(s) has not been determined due to the genetic 
mosaicism encountered during  G0.

CRISPR/Cas9-HDR gene editing in the EgII wild-type 
strain introduced a point mutation detected on the sixth 
exon of the Ccdor gene of the tsl mutant strain. This 
resulted in the desired correction and two additional 
mutations: a deletion and a duplication, both in frame, 
due to an error in the use of the repair template during 
the double-strand break sealing process. The efficiency 
of CRISPR HDR, including the appearance of errors, 
can be impacted by various factors, such as the activity 
of the endogenous repair systems, the cell cycle, and the 
length of the homology arms of the repair template [43]. 
The three strains obtained, dor E839K, dor 12del, and dor 
51dup, are all temperature-sensitive lethal, but showed 
differences from the original tsl mutant strain. The 
embryonic lethality in the CRISPR Ccdor strains appears 
at higher temperatures than the original tsl mutant strain. 
Notably, only the dor 51dup strain exhibited almost com-
plete embryonic lethality at 36  °C, but all three strains 
reached high lethality rates at an early larval stage. The 
rearing efficiency of the new strains was satisfactory, and 
the dor gene is a valuable target for developing GSS in 
other species. However, more investigations are needed 
to employ dor as a selectable marker in Ceratitis capitata, 

Fig. 6 Adult recovery rates of control (wild type: EgII, SEIB, and mutant: wp tsl) and CRISPR-mutant (dor E839K, dor 12del, and dor 51dup) strains. Adult 
emergence rates (shown as mean ± standard deviation) of strains reared at 25 °C without heat-shock treatment and after 24 h heat-shock treatment 
at 34 °C, 35 °C and 36 °C are shown. Values represent the mean of the three replicates for the three tested days
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and to explore the genetic background and possible 
involvement of other loci in the tsl phenotype.

Deep orange has several domains with diverse and 
essential functions. As the protein plays an important 
role in cellular activities, mutations in these domains may 
lead to loss/gain of function or significantly affect cellu-
lar activities, resulting in lethality [20, 44, 45]. The Pep3_
Vps18 domain, targeted by CRISPR NHEJ in the present 
study, is involved in endosomal sorting and vesicle traf-
ficking [20, 44, 45]. Knock-out mutations in this domain 
have caused severe defects in endosomal sorting, vesicle 
trafficking, multivesicular body (MVB) formation, and 
increased levels of cellular stress and oxidative damage 
in yeast and mammalian cells [46, 47]. Thus, this might 
also be responsible for the lethal effect we experienced in 
the knock-out via NHEJ targeting in this study. The func-
tion of the Helo_like_N domain, which was targeted via 
CRISPR (HDR), is not fully understood. Previously, it was 
reported to play a role in RNA processing, DNA binding, 
transcriptional regulation, and cell death-inducing activ-
ity [48–52]. Moreover, mutations within the Helo_like_N 
domain, particularly in its transmembrane helix region, 
may compromise its function [53]. As shown in Fig-
ure S3, the E839K mutation, the deletion dor 12del, and 
the duplication dor 51dup are all located in an α-helix 
region. This could affect the regular gene expression 
pattern, leading to cellular function and development 
changes, including the gain of temperature sensitivity 
[50]. Although temperature sensitivity (ts) has been com-
monly associated with point mutations, deletions and 
duplications/insertions have also been reported, albeit 
less frequently, as the causal factor of tsl [30, 32, 54–74]. 
Such mutations may alter a functional domain, the over-
all native structure, or the specific activity of the protein 
and these may be potential explanations for the tsl phe-
notype of dor 12del and dor 51dup strains [73, 74].

Mutations in the ring finger/U-box domain may replace 
highly conserved cysteine residues needed to form the 
"U-shaped" beta-sheet, destabilizing the protein and 
affecting its function [75–77]. This is the case of the D. 
melanogaster temperature-sensitive lethal mutation dor1 
(C979Y) [21]. When insects carrying the Dm dor1 muta-
tion are exposed to high temperatures, they die at the 
pupal stage [25] and present altered phenotypes in the 
eyes, thorax, and wings [20]. The C. capitata tsl mutant 
strain also has a non-synonymous point mutation in the 
same domain (L940I; Table S1). Whether this mutation 
has any effect on the tsl phenotype awaits investigation. 
It should be mentioned, however, that the expression 
of the typical tsl phenotype observed in the C. capitata 
tsl mutant strains may require the combination of point 
mutations in more than one domain of the Ccdor; for 
example, the E839K mutation in the Helo_like_N domain 

combined with the L940I in the ring finger/U-box domain 
or mutations in other domains or even other genes [78]. 
This was previously observed in D. melanogaster in genes 
involved in the control of body size [79], behavior [80], or 
tumor suppression [81]. Finally, none of the mutations in 
this study in the Ccdor resulted in eye colour alteration or 
any other visibly detectable phenotypes.

Conclusions
The successful application of CRISPR/Cas9 genome edit-
ing targeting the deep orange gene of Ceratitis capitata 
resulted in three mutant strains that proved to be tem-
perature sensitive. The presence of a 51  bp duplication 
together with the E839K mutation (dor 51dup) in the 
Ccdor coding region triggers total embryonic lethal-
ity following heat shock at 36 °C. In addition, for all the 
CRISPR strains (dor 51dup, dor 12del, and dor E839K), 
a variable lethality was observed during the larval and 
pupal stages following heat shock at 35  °C. Although 
two of the three CRISPR strains, dor 51dup, and dor 
12del, exhibited minimal fitness cost at the embryonic 
stage when reared at 25  °C, all gene-edited strains pre-
sent a high productivity rate suggesting their suitability 
for breeding. Given this characteristic and the high con-
servation of the Deep orange protein sequence among 
insects, particularly Tephritids, the dor gene emerges as 
a promising selectable marker for creating new genetic 
sexing strains (GSS).

Methods
Ceratitis capitata: strains and fly rearing.
In the frame of this study, seven Ceratitis capitata strains 
were used (Table 1) and reared under standard laboratory 
conditions (24 ± 2 °C, 55 ± 10% RH, and 14/10 h light/dark 
cycle) as previously reported in Sollazzo et al., 2022 [17].

Analysis of Dm deep orange gene orthologue in Ceratitis 
capitata
Using the Cc deep orange protein sequence 
(XP_004536447.1), a search for conserved domains 
was carried out through the NCBI Conserved Domain 
Database server (http:// www. ncbi. nlm. nih. gov/ cdd/ cdd. 
shtml) [82] and the SMART online tool (http:// smart. 
embl- heide lberg. de/) [83, 84]. The detected domains 
were annotated on Ccdor genomic sequence in Geneious 
Prime 2022.1.1 to check if any polymorphism found in 
its coding sequence (CDS) [18] was located inside a con-
served domain. Secondary structure and disorder predic-
tions have been carried out using  Phyre2 (http:// www. 
sbg. bio. ic. ac. uk/ phyre2) and the Ccdor wild-type protein 
sequence as input [85].

http://www.ncbi.nlm.nih.gov/cdd/cdd.shtml
http://www.ncbi.nlm.nih.gov/cdd/cdd.shtml
http://smart.embl-heidelberg.de/
http://smart.embl-heidelberg.de/
http://www.sbg.bio.ic.ac.uk/phyre2
http://www.sbg.bio.ic.ac.uk/phyre2
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DNA extraction and Sanger sequencing of the deep orange 
gene
Genomic DNA was extracted from three males and three 
females of C. capitata Benakeion, SEIB, VIENNA 8, wp 
tsl, and D53 tsl strains using ExtractMe DNA tissue kit 
(Blirt, Poland) following the manufacturer’s instructions. 
A NanoDrop spectrometer was used to assess the quan-
tity and quality of the extracted DNA. Primers (Table S2) 
were designed using the Geneious Prime 2022.1.1 soft-
ware. PCRs were performed in a 25 µL reaction volume 
using 12.5 μL Platinum™ Green Hot Start PCR Master 
Mix (2X) Kit (Thermo Fisher Scientific), 60–80 ng DNA, 
and the following PCR settings [94  °C, 2  min; 35 cycles 
of (94  °C, 30 s; 60  °C, 30 s; 72  °C, 120 s); 72  °C, 5 min]. 
PCR products were analyzed by electrophoresis in 2% 
agarose gels and visualized under UV light. Amplicons 
were purified using the DNA Clean & Concentrator-25 
kit according to the manufacturer’s protocol (Zymo 
Research—Irvine, CA, USA). The purified products were 
adjusted to the concentration of 10 ng/µl while sequenc-
ing primers were diluted following the Eurofins Genom-
ics instructions up to 100  nmol/µl. The sequencing mix 
was prepared in a final volume of 15  µl (13  µl of DNA 
and 2 µl of primer). Sequencing results were imported in 
Geneious Prime 2022.1.1 and aligned to the Ccdor gene 
wild-type sequence extracted from Ccap 3.2.1 (accession 
GCA_905071925.1) using the Geneious Prime “Map to 
reference” tool with default parameters.

CRISPR/Cas9 genome editing
Lyophilized Cas9 protein from Streptococcus pyogenes 
(CP01—PNA Bio, Newbury Park, California, USA) was 
resuspended in nuclease-free water to 1 μg/μl, separated 
in aliquots, and stored at − 80  °C until further use. Sin-
gle guide RNAs: sgRNA_NHEJ (TCA AAA TGC ACC 
ACG TGC CA) and sgRNA_HDR (GGA TGA ATG TGA 
TAA ACA AG) were designed and checked for off-targets 
using the “Find CRISPR site” tool in Geneious Prime 
2022.1.1 [86] using the Ceratitis capitata 2.1 genome 
(accession GCF_000347755.2) from NCBI as the off-tar-
get database. sgRNAs were ordered from Sigma Aldrich, 
Germany, with the following specifications (Physical 
material: Synthetic RNA, Purification: HPLC, CRISPR 
species: SpCas9, Structure: sgRNA (crRNA + tracrRNA 
as one), Scale of synthesis: 3 nmol, modified, dry).

The two 151  bp single-stranded donor templates for 
CRISPR HDR, “ssODN_E839K_sense” and “ssODN_
E839K_anti”, designed in sense and antisense orienta-
tion (Table S2) to the double-strand break (DSB) [87] 
to re-build the mutation in position 839 (E839K), were 
synthesized by Eurofins Genomics (EXTREMer oligo, 
purified salt-free, quality control by CGE). They differ 
from the wild-type sequence by three bases (72A > G, 

75G > C, 76G > A). The change in position 76 of the 
ssODN (G > A; Glu839 > Lys839) re-builds the muta-
tion found in the wp tsl mutant strains while the sec-
ond 75 (G > C; Ala838 > Ala838) and the third 72 (A > G; 
Gln837 > Gln837) are silent mutations to reduce the tar-
get sequence similarity after HDR and mutate the PAM 
site to prevent re-editing by the CRISPR/Cas9 machinery 
[88, 89].

Embryonic microinjections for CRISPR‑Cas9 targeting
The injection mix for CRISPR NHEJ and HDR con-
tained 360  ng/μl Cas9 protein, 200  ng/μl sgRNA, and a 
final concentration of 300 mM KCl in a 10 μl volume, as 
described in previous studies [27, 90, 91]. The mix was 
subjected to 10 min incubation at 37  °C to complex the 
sgRNA and Cas9 protein. For CRISPR HDR, we added 
200  ng/μl ssODN (sense or antisense) after the incuba-
tion step; also previously described [27, 28, 30, 90, 91].

Microinjections were carried out in 40–45  min old 
wild-type C. capitata EgII embryos which were previ-
ously chemically dechorionized (up to 1-day old solution 
of 2.8% sodium hypochlorite, 3  min), fixed on double-
sided sticky tape (Scotch 3 M), dehydrated (93% calcium 
chloride, 6  min) and covered with halocarbon oil 700 
(Sigma-Aldrich) [92]. Microinjections were performed 
using siliconized quartz glass needles (Q100-70–7.5; 
Sutter Instruments, Novato, CA USA) drawn out on a 
laser-based micropipette puller (Sutter P-2000) with the 
following conditions (Heat = heat, Filament = Fil, Veloc-
ity = Vel, Delay = Del, Pull = Pull): Quartz (Q100-70–7.5): 
Heat 750, Fil 5, Vel 70, Del 130, Pull 175, a FemtoJet 4X 
micromanipulator/microinjector (Eppendorf, Hamburg, 
Germany) and a Leica DM IL LED inverted microscope 
(Leica Microsystems, Wetzlar, Germany). Once injected, 
embryos were kept at 25  °C and 60% RH until larval 
hatching and transferred from the oil to the larval food 
using a brush.

Molecular detection of CRISPR/Cas9‑induced deep orange 
mutations
Genomic DNA extraction from single  G0 flies and pupae, 
PCRs, DNA purification, and Sanger sequencing were 
performed as described above in “DNA extraction and 
Sanger sequencing of deep orange in Ceratitis capitata 
strains”.  G2 and  G3 flies were analyzed via non-lethal gen-
otyping using an adapted version of the protocol estab-
lished by Carvalho et al. [93], using a single adult leg and 
Platinum™ Direct PCR Universal Master Mix kit (Thermo 
Fisher Scientific). In more detail, PCRs were performed 
by cutting single legs from anesthetized flies using micro 
scissor (Hammacher Karl, Germany), placing each one 
of them into single PCR tubes containing 12.5 μL Plati-
num™ Direct PCR Universal Master Mix (Thermo Fisher 
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Scientific), primers (100 nM) and water up to a final vol-
ume of 25 μL. The following pairs of primers were used: 
P58_NHEJ_geno_F / P58_NHEJ_geno_R for NHEJ and 
P58_HDR_geno_F / P58_HDR_geno_R for HDR, respec-
tively (Table S2). PCR settings were the following: [94 °C, 
2 min; 35 cycles of (94 °C, 15 s; 60 °C, 15 s; 68 °C, 20 s); 
68 °C, 5 min]. The 940 bp (CRISPR NHEJ) and the 829 bp 
(CRISPR HDR) PCR products were then verified by gel 
electrophoresis, purified using the DNA Clean & Con-
centrator-25 kit according to the manufacturer’s protocol 
(Zymo Research—Irvine, CA, USA), Sanger-sequenced 
(NHEJ: P58_NHEJ_geno_F; HDR: P58_HDR_geno_F) 
using Eurofins Genomics Tube service and analyzed in 
Geneious Prime 2022.1.1.

Crossing and screening
G0 adults that survived to sexual maturity were individu-
ally crossed to three EgII wild-type (CRISPR NHEJ) or 
wp tsl (CRISPR HDR) virgin mates (Table S3). Eggs were 
collected three times, and  G1 adults were inter-crossed in 
mass, resulting in three potential  G2 genotypes: dor +/+, 
dor  +/CRISPR, and dor  CRISPR/CRISPR. Non-lethal genotyp-
ing allowed the screening of  G2 adults to isolate the dor 
CRISPR/CRISPR genotype and subsequent set up of single 
pair crosses according to the nature of the induced muta-
tion found by sequencing.  G3 eggs from each single pair 
cross were collected three times, and adults were sub-
jected to non-lethal genotyping to confirm the strain’s 
stability. CRISPR strains with germline mutations of dif-
ferent natures were isolated and kept under laboratory 
conditions.

In‑situ hybridization
In-situ hybridization was performed as described in 
Gouvi et al. and Sollazzo et al. [18, 94]. Polytene chromo-
some preparations were prepared from third instar larvae 
salivary glands of Ceratitis capitata EgII strain, according 
to Mavragani-Tsipidou et  al. 2014 [95]. The DNA labe-
ling was performed using the “DIG-DNA Labeling and 
Detection” kit (Roche, Germany) following the manufac-
turer’s instructions. Well-spread nuclei were analyzed for 
the identification of the hybridization signals. Hybridiza-
tion sites were photographed at a combined magnifica-
tion of 60 × and 100 × using a phase contrast microscope 
DM2000 Led (Leica) and a camera DMC5400 (Leica). 
They were identified by using the salivary gland chromo-
some maps of C. capitata as reference [96].

Temperature‑sensitive lethal test
Temperature-sensitive lethal tests (TSLT) were per-
formed on CRISPR strains (two generations after the 
establishment of homozygous strains) and control strains 
(EgII, SEIB, and wp tsl) as previously described [11, 17, 

97] to assess their temperature sensitivity. Briefly, three 
replicates of 100 eggs each were prepared, for each of 
the seven temperatures tested, resulting in the collection 
of 2100 eggs in total on a daily basis. This egg collection 
scheme was repeated for three consecutive days. For each 
replicate, the eggs were placed on black strips on top of 
90 × 15 mm Petri dishes filled with larval carrot diet and 
kept at 25  °C for 24  h. Each set of three replicates was 
incubated at different temperatures (25, 31, 32, 33, 34, 
35, and 36 °C) for 24 h. After the heat shock, Petri dishes 
were placed at 25  °C to complete their development. 5-, 
15-, and 23-days post egg collection, egg hatching, pupal 
recovery, and adult recovery rates were determined. Egg 
hatching, pupal recovery, and adult emergence rates 
were calculated for single replicate using the number of 
collected embryos (100) as a reference and the number 
of hatched eggs after five days, the number of puparia 
obtained after fifteen days, and the number of eclosed 
adults after twenty-three days, respectively.

Statistical analysis
All statistical analyses were performed using R version 
4.2.0 [98]. All datasets of this study represent recovery 
rates (egg hatching, pupal recovery, and adult emergence) 
and were, therefore, analyzed using a GLM-binomial 
family or a GLM-quasi-binomial family, when overdis-
persion was detected [99]. The DHARMA package was 
used to check if the simulated dispersion is equal to the 
observed dispersion and identify overdispersion in the 
generalized linear models (GLM) [100]. In the case of 
overdispersion, a GLM-quasibinomial model using a 
logit link function was employed to address it [101]. The 
chi-square test for the GLM-binomial models and an 
F-test for the GLM-quasi-binomial models were used to 
analyze deviance. The goodness-of-fit of the models was 
inspected with simulation envelopes of half-normal plots 
[102]. The ‘estimated marginal means’ (emmeans) pack-
age was used for the pairwise comparisons of the fitted 
model estimates [103]. For all data, the significance level 
was set to α = 0.05.
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